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Abstract Interactions lie at the heart of social organization, particularly in ant societies.

Interaction rates are presumed to increase with density, but there is little empirical evidence for

this. We manipulated density within carpenter ant colonies of the species Camponotus

pennsylvanicus by quadrupling nest space and by manually tracking 6.9 million ant locations and

over 3200 interactions to study the relationship between density, spatial organization and

interaction rates. Colonies divided into distinct spatial regions on the basis of their underlying

spatial organization and changed their movement patterns accordingly. Despite a reduction in both

overall and local density, we did not find the expected concomitant reduction in interaction rates

across all colonies. Instead, we found divergent effects across colonies. Our results highlight the

remarkable organizational resilience of ant colonies to changes in density, which allows them to

sustain two key basic colony life functions, that is food and information exchange, during

environmental change.

DOI: https://doi.org/10.7554/eLife.38473.001

Introduction
Ants are one of the most ecologically successful groups in nature: they are widespread and abun-

dant in almost every terrestrial ecosystem, and have been around for >140 million years

(Moreau and Bell, 2013). This success has been attributed to their social organization, particularly

their division of labor (Wilson, 1971). The ants’ high degree of social organization has allowed them

to develop collective behaviors that have many similarities to human societies: ants have complex

architecture, have true agriculture cultivating fungi for food and herding aphids, use antibiotics and

wage war with each other (Hölldobler and Wilson, 2009). Many collective behaviors in ant colonies

are presumed to be the result of self-organization, in which complex colony-level patterns emerge

from local interactions among workers following simple rules (Beshers and Fewell, 2001;

Bonabeau et al., 1997). The rates of these interactions are particularly important, as they have been

shown to influence decision making, task allocation and task intensity in ants and other social insects

(Gordon and Mehdiabadi, 1999; Greene and Gordon, 2007; O’Donnell and Bulova, 2007). How-

ever, such elaborate organization also calls for constant regulation to maintain the status quo or, if

necessary, to facilitate an adaptive shift to a new state, so that the colony can sustain essential social

processes such as food distribution, thermoregulation, defense and nest construction (cf. social

homeostasis; Hölldobler and Wilson, 1990).

Interaction rates are typically thought to be density-dependent, implying that changes in colony

size and density could significantly alter group dynamics (Pacala et al., 1996). Changes in colony
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size and density are a naturally occurring phenomenon that are part of the life cycle of wood dwell-

ing social insects such as carpenter ants. Colonies start with a single queen that moves into a small

wooden cavity and lays eggs. Once the workers hatch, they have to excavate wood to enlarge the

nest and allow for colony growth. Accordingly, each subsequent brood cycle will lead to fluctuations

in colony size and density. Density changes can also occur when workers discover an attractive nest-

ing location and the colony decides to split into multiple nest sites and thus becomes polydomous

(Buczkowski, 2011). To minimize potentially adverse effects resulting from changes in density and

maintain social homeostasis, ant colonies should therefore try to actively manage the rates of their

interactions. Indeed, a study that manipulated colony size and density by putting workers in various

arena sizes found that ants may be able to regulate their interaction rates (as measured by counting

contacts via antennae) by forming clusters when density is low or by avoiding contact with nearby

neighbors if density is high (Gordon et al., 1993). However, any change in the distribution of work-

ers in the nest could substantially alter a colony’s spatial ordering of work.

Workers are known to exhibit distinct movement zones, that is ‘spatial fidelity zones’ (Sendova-

Franks and Franks, 1995), which have been linked to an individual’s behavioral repertoire in a vari-

ety of social insects (Baracchi and Cini, 2014; Heyman et al., 2017; Jandt and Dornhaus, 2009;

Mersch et al., 2013; Powell and Tschinkel, 1999; Robson et al., 2000; Seeley, 1982). This is

thought to play a key role in the development of the division of labor by promoting task specializa-

tion and reducing task switching costs (Bourke and Franks, 1995). It is therefore important not only

to study how changes in density influence the interaction rates of a colony, but moreover

to consider how ants alter their spatial and social dynamics when density changes. Surprisingly, there

has been a lack of studies that have combined spatial and social network statistics to examine how

social insects maintain homeostasis after intracolonial density changes. In our experiment, we con-

centrated on one of the most important social interactions in ants and other eusocial insects: troph-

allaxis. Its primary function, the fast and efficient transfer of liquid food via regurgitation among

colony members, is crucial because only a few workers, the foragers, leave the nest to collect resour-

ces, so trophallaxis ensures that all colony members receive food.

Results and discussion
We manipulated the nests of the common black carpenter ant Camponotus pennsylvanicus to exam-

ine the effect of intracolonial density on spatial organization, food transfer, and social connectivity.

To do this, we filmed three colonies under high-density conditions for four hours each (Figure 1A,

Figure 1—figure supplement 1) before quadrupling the available nest space. Following a week of

habituation to this low-density setting, we recorded four additional hours under low-density condi-

tions, leading to a total of 24 hr of video footage. The videos were watched multiple times resulting

in about 630 hr of observations of trophallaxis and 980 hr of observations of tracking. From these

videos, we manually recorded 6,912,480 ant locations and 3262 trophallaxis events. We recapitu-

lated the natural conditions of the wood-nesting carpenter ant, C. pennsylvanicus, by filming ants

inside completely dark wooden nests that were connected to foraging arenas, providing access to

food and water located 188 cm away from the colony. Each colony was comprised of a queen and

between 77 to 85 uniquely labeled workers and 15 larvae.

We first investigated how the four-fold increase in nest space influenced the ants’ overall distribu-

tion and spatial organization inside the nest. Instead of evenly dispersing across the newly gained

space, which now consisted of four connected chambers instead of just one chamber, the colonies

split into two spatially separated groups. During the observation period, about 39% of all ants in the

nest (38.8 ± 2%, 37.2 ± 2%, 42.4 ± 2%; average percentage ± SD of colonies 1–3, respectively)

aggregated in the entrance chamber, while around 60% (60.4 ± 3%, 62.6 ± 2%, 56.2 ± 2%), which

included the queen for each colony, stayed in the chamber farthest away from the entrance, hence-

forth referred to as the queen chamber. Only about 23% (30.6%, 20.3%, 18.3%; colonies 1–3,

respectively) of all workers moved between the two ant groups in the entrance and queen chamber

(Figure 1—figure supplement 1, Figure 1—figure supplement 2).

We next analyzed whether the increase in nest space influenced spatial organization, that is how

ants organize themselves into distinct groups on the basis of their space use in the nest. To divide

the colony into distinct groups, we first quantified the position in the nest of each ant at every point

in time (Figure 1B). We then measured the similarity between each pair of ants on the basis of their
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Figure 1. At low density, colonies exhibit dramatically different movement patterns in the center part of the nest that result in faster travel between

groups. (A) Still images from the videos that were used to track ants in colony 1 in high- (one chamber) and low-density (four chambers) environments.

(B) Tracking data for all ants in colony 1. (C) Still images from the animations visualizing ant identity (each labeled polygon represents a specific ant),

Figure 1 continued on next page
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spatial signature. Finally, we applied a community detection algorithm to partition this network into

groups of similar ants (see ’Materials and methods’). Our algorithms revealed two to three distinct

spatial groups inside each nest (Figure 1C). Ants that were outside the nest during the entire obser-

vation period were added as an additional spatial group. We found that an ant’s spatial group

before the nest expansion predicted its spatial group afterwards (Figure 2A and Figure 2—figure

supplement 1; Spearman’s rank correlation: r = 0.26, p = 0.03; r = 0.47, p<0.0001 and r = 0.23,

p = 0.03; colonies 1–3, respectively). Thus, the fourfold increase in space merely allowed the groups

that were already present within each colony to separate from each other.

Spatial organization was also related to task performance, suggesting that the colonies were able

to maintain their spatial ordering of work. On average, 95% of all foragers were part of the spatial

group located closest to the nest entrance or outside the nest. By contrast, the one or two groups in

the back of the nest harbored the queen and brood, presumably allowing the colony to form a line

of defense against potential attacks by enemies. Overall, our results emphasize the remarkable resil-

ience of ant colonies against disturbance, allowing the ants to conserve their relative spatial group-

ing in the nest despite the shift in the actual spatial organization (i.e., the new use of a high-speed,

low-occupancy ‘transit’ section).

To study the relationship between spatial organization and interaction patterns, we calculated the

assortativity, that is compartmentalization, of the trophallaxis network with respect to the spatial

grouping that our classification algorithms revealed (Colman and Bansal, 2018; see ’Materials and

methods’). Assortativity measures the tendency of individuals to interact with others from the same

group rather than those from other groups (Newman, 2003). Owing to the spatial fidelity of individ-

ual ants, we expected positive assortativity, because ants can only interact with ants that are close to

them. We indeed found that assortativity was significantly positive across all colonies and treatments

(more than two standard deviations above 0 using the jackknife method described in New-

man, 2003). This suggests that each colony consists of a network of tightly knit spatial groups with

dense connections within a group but sparse connections between groups (Figure 2B; Figure 2—

figure supplements 2, 3, 4, 5 and 6; Video 1). In such a compartmentalized network, the regulation

of colony activity presumably relies on a few key individuals that form connections between spatial

groups (Fewell, 2003; Richardson et al., 2018). We reason that ants may mitigate the effects of

spatial separation on their social network by preserving their spatial organization and by reducing

travel time between spatial groups.

Although assortativity can modify the connectivity within a colony, it does not take overall interac-

tion rates into account. Previous findings had shown that encounter rates increase linearly with den-

sity, but level off when densities are high (Gordon et al., 1993). We found that trophallaxis

interaction rates did not increase with global density (Figure 2C). This is in agreement with the

results of Gordon et al. (1993), who measured contact rates via antennation in an open arena. The

significant interaction between colony and treat-

ment suggests divergent trends among colonies

(Table 1). Indeed, a further pairwise comparison

of the interaction terms (Table 1—source code

1; Table 1—source data 1) revealed that for col-

ony 1 and colony 2, there is significantly less

trophallaxis during high-density than during low-

density periods (Table 1—source data 2). For

colony 3, there is no significant difference in the

trophallaxis rates between low- and high-density

settings.

This experiment shows that — contrary to

expectations — ant interaction rates did not

decline after we decreased density. There are

several plausible explanations for this finding: a

change in density may have little effect on inter-

action rates, because they are limited by physical

and physiological constraints (O’Donnell and

Bulova, 2007). This is particularly relevant for

interactions like trophallaxis, in which an

Video 1. Animation for colony 1 depicting the

combined tracking and trophallaxis during the low-

density period for about 1 hr of data. Ants are

represented as circles with their identity (numbers

identify workers, ‘Q’ represents the queen). Food

sharing is visualized as a red line between two

individuals. Circle color indicates spatial-group

affiliation. Video runs at 10 times normal speed.

DOI: https://doi.org/10.7554/eLife.38473.014
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individual can only share food with one or, in rare instances, two individuals at the same time (per-

sonal observation, Modlmeier). Furthermore, ants that frequently share food with each other may

have been slower or unable to find their usual interaction partner in the dense crowd. This implies

that the form and function of an interaction rate may affect how its rate is affected by changes in the
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Figure 2. Each colony consists of a network of tightly knit spatial groups that exhibits remarkable resilience to changes in density. (A) The colored

columns depict the different spatial groups identified by the clustering algorithm in the high- and low-density treatments of colony 2. Low numbers

represent a closer position to the entrance. The gray lines between these groups visualize that the ants preferred to remain in a similar spatial position

relative to each other when nest size was increased. (B) Trophallaxis networks of colony 2 before (high density) and after nest expansion (low density).

Each node represents an ant in the network with color indicating its spatial group. Groups are arranged in a circle and sorted numerically on the basis

of their average distance to the entrance. Specifically, group 1 was closest to the entrance and group 3 furthest away. (C) Cumulative number of

interactions (food sharing events) over time during high- and low-density periods for colonies 1, 2 and 3 (from left to right).

DOI: https://doi.org/10.7554/eLife.38473.007

The following figure supplements are available for figure 2:

Figure supplement 1. The colored columns depict the different spatial groups identified by the clustering algorithm during the high- and low-density

periods for colonies 1, 2 and 3 (from left to right).

DOI: https://doi.org/10.7554/eLife.38473.008

Figure supplement 2. Trophallaxis networks of all colonies before (high density) and after nest expansion (low density).

DOI: https://doi.org/10.7554/eLife.38473.009

Figure supplement 3. Location of trophallaxis (food sharing) events during the low- and high-density periods.

DOI: https://doi.org/10.7554/eLife.38473.010

Figure supplement 4. All locations of ants in colony 1 by spatial group and density treatment.

DOI: https://doi.org/10.7554/eLife.38473.011

Figure supplement 5. All locations of ants in colony 2 by spatial group and density treatment.

DOI: https://doi.org/10.7554/eLife.38473.012

Figure supplement 6. All locations of ants in colony 3 by spatial group and density treatment.

DOI: https://doi.org/10.7554/eLife.38473.013
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density of the society. Alternatively, or in addition to this, ants may be able to regulate their interac-

tion rates actively to keep them at an optimal level for the colony by: (a) changing their movement

and distribution in the nest (Adler and Gordon, 1992; Gordon et al., 1993; Davidson and Gordon,

2017), thus maintaining local density, or (b) making a change in their interaction behavior that is

independent of local (realized) density. To examine the relative support for these two scenarios in

our experimental data, we measured the local (realized) density around each ant, here defined as

the mean number of other ants within 15 mm (please see ’Materials and methods’ for details). We

estimated local density to be 9.9 ants in high-density nests and 7.9 ants in low-density nests. This dif-

ference was significant (Wald Chi-square test, p<0.00001), indicating that local density was indeed

lower for ants in low-density nests than for ants in high-density nests. Also, it seems to be worth not-

ing that even though there is a reduction in local density, this reduction is substantially lower than

would be expected under a null model of random diffusion (i.e., a 75% reduction in density), so it

still suggests that the ants are regulating local density, to at least some degree.

To get a clearer picture of the effect of local density, we also performed an analysis of when

trophallaxis events occurred between pairs of ants. By viewing trophallaxis events as arising from an

inhomogeneous Poisson process, we examined how rates of trophallaxis initiations differed across

colonies (1,2,3), treatments (high and low density), and also different levels of ‘local density’. We

defined local density as the number of additional ants (beyond the focal pair) within a range of spa-

tial lags (5 mm, 10 mm, 15 mm, and 20 mm). This allows us to examine how much of the variation in

trophallaxis rates can be attributed to differences in colony, treatment, and local density. We found

no significant interactions (p-value >0.05, Z-test) in this analysis between colony and treatment (high

or low density). We found significant interactions between colony and local density (numbers of ants

within different spatial lags), but the qualitative patterns in the effects of local density were con-

served across all colonies (see Figure 3). Furthermore, we found lower rates of trophallaxis in the

high-density treatment than in the low-density treatment (Table 2). This significant main effect of

treatment provides direct support for the idea that the relationship between local density and inter-

action rate differs between density treatments, suggesting a change in behavior that is independent

of local density. In addition to this treatment-level effect, we found that local density had significant

effects on trophallaxis initiation rates, and that this effect varied slightly between colonies. There

were significant interaction effects between local density and colony, but the qualitative effect of

local density is very consistent across the three colonies (see Figure 3): the more ants that are very

close (5 mm or 10 mm) to an ant pair, the higher the rate of trophallaxis initiations between pairs,

Table 1. Summary of the parameter estimates of a generalized linear model with Poisson distribution and log-link predicting the

number of interactions that were initiated each second depending on treatment (high versus low density) and colony identity (1, 2

and 3).

Total sample size is 86,406. 14,401 observation points (one observation per second) per treatment and colony (14,401 �

2�3=86,406). CL, confidence limit.

Level of effect Estimate Standard error Wald stat. Lower CL 95% Upper CL 95% p-value

Intercept �3.30 0.02 33538.95 �3.34 �3.27 <0.0001

Colony 1 0.04 0.03 1.97 �0.01 0.08 0.16

Colony 2 �0.23 0.03 71.58 �0.28 �0.18 <0.0001

Treatment High �0.11 0.02 36.34 �0.14 �0.07 <0.0001

Colony*Treatment 1 0.01 0.03 0.12 �0.04 0.06 0.73

Colony*Treatment 2 �0.16 0.03 36.86 �0.22 �0.11 <0.0001

DOI: https://doi.org/10.7554/eLife.38473.015

The following source data is available for Table 1:

Source code 1. R code for the pairwise comparison of the interaction terms colony by treatment presented in Source data 2.

DOI: https://doi.org/10.7554/eLife.38473.016

Source data 1. The Source data for the results presented in Table 1 and Source data 2.

DOI: https://doi.org/10.7554/eLife.38473.017

Source data 2. Pairwise comparison of the colony by treatment interaction terms presented in Table 1.

DOI: https://doi.org/10.7554/eLife.38473.018
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but having additional ants nearby (15 mm or 20 mm) decreased the rate of trophallaxis initiations.

Overall, this suggests that ants are more likely to initiate trophallaxis when there are small clusters of

ants separated by some additional space. This is a surprising result, because the expectation would

be that there are negative effects of density at all radii as the result of crowding, that is, if there are

fewer ants around, then the ants will find each other and initiate a trophallaxis event more

frequently.

In summary, even though ants had lower observed local density as a result of nest expansion,

they did not decrease the rate at which they had trophallaxis interactions. Our data consequently

provide empirical support for the hypothesis that ants make a change in their interaction behavior

that is independent of local, realized density. By contrast, the results from Gordon et al. (1993) sug-

gested that contact via antennation is actively regulated through changes in movement and distribu-

tion (regulation of local density). We were able to demonstrate that the regulation of interaction

rates cannot be entirely explained by a regulation of local density. In other words, we showed that

ants make changes to their interaction behavior that are independent of local density. This differ-

ence to the findings of Gordon et al. (1993) could be due to the fact that they measured a different

form of interaction, that is, antennation versus trophallaxis. In summary, we found that ants were

able maintain the rate of their trophallaxis interactions through changes in behavior that were inde-

pendent of local density.

To better understand how the ants maintain their well-connected network structure, we also

examined the underlying movement patterns. We analyzed the tracking data using stochastic differ-

ential equation (SDE) models for animal movement (Russell et al., 2016; see ’Materials and meth-

ods’). These SDE models capture directional persistence in movement through a continuous-time

correlated random walk (Johnson et al., 2008), directional bias in movement through a

spatially varying potential surface (Brillinger et al., 2002; Preisler et al., 2013), and changes in over-

all animal movement rate through a spatially varying motility surface (Russell et al., 2016). The
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Figure 3. Interaction plot depicting the effect of local density on trophallaxis rate over a range of radii. The values shown are the percent change in

average rate of trophallaxis events when one additional ant is present at different distance lags. For all colonies, additional ants within 10 mm correlate

with increased rate of trophallaxis events, while additional ants within 10 mm–20mm correlate with a decreased rate of trophallaxis events.
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estimated motility surfaces for all colonies (Figure 1D, Figure 1—figure supplement 3) show that

ants move much faster when they travel through the middle two chambers of the enlarged nest.

These chambers were predominantly empty. By contrast, ants move much slower in occupied cham-

bers, irrespective of density. The estimated potential surfaces reveal regions in the nest where ants

change direction and/or speed consistently over our observation window, with the average force

acting on an animal (Katz et al., 2011) proportional to the negative gradient of the potential surface

(Preisler et al., 2013). Thus, animals move predominantly ‘downhill’ on the potential surface. The

estimated potential surfaces (Figure 1E, Figure 1—figure supplement 4) reveal that ants accelerate

upon entering one of the two middle chambers, then change direction quickly as they go around

corners in the nest. The change of speed in these middle chambers is striking, implying the ants per-

ceive this space differently. Mechanistically, this may involve learning, the establishment of chemical

trails and/or the low rate of encounters with other ants. In summary, workers primarily use the mid-

dle two chambers as a corridor for faster travel between the two ant groups. This helps a colony to

retain fast flow of information and food within the colony despite the spatial separation.

In conclusion, our results showcase the kinds of behavioral mechanisms that ant colonies apply to

achieve social homeostasis in the face of disturbance. Specifically, ants change their spatial distribu-

tion, movement dynamics and interaction behavior (independent of local density) in a way that

allows them to maintain critical elements of their spatial organization and social interaction patterns

despite drastic changes in their environment. This is crucial, because changes in either of these fac-

tors are predicted to have large impacts on the efficiency of division of labor and food distribution in

the colony (O’Donnell and Bulova, 2007).

Materials and methods

Ant collection and maintenance
Three queenright Camponotus pennsylvanicus colonies were collected in the State Game Lands

northeast of State College, PA, USA in Spring 2015. They were subsequently kept in the laboratory

Table 2. Results of a pair-based analysis of when ant pairs initiate trophallaxis.

We modeled trophallaxis initiations for each pair as coming from an inhomogeneous Poisson point

process, where the rate of trophallaxis initiations depends on colony and local-density effects. We

included effects for each colony and experimental condition (high or low), and also considered inter-

actions between colony and the local density at 5 mm (n5), 10 mm (n10), 15 mm (n15), and 20

mm (n20).

Estimate Standard error Z-value p-value

Colony 1 �5.80 0.07 �82.25 <2e-16

Colony 2 �6.04 0.09 �69.18 <2e-16

Colony 3 �8.59 0.29 �30.04 <2e-16

Treatment �0.49 0.04 �11.11 <2e-16

n5 0.18 0.04 4.08 4.60e-05

n10 0.05 0.02 2.08 0.04

n15 �0.41 0.03 �15.01 <2e-16

n20 �0.26 0.02 �10.57 <2e-16

col2:n5 �0.04 0.07 �0.62 0.5335

col3:n5 0.40 0.07 5.98 2.30e-09

col2:n10 �0.03 0.04 �0.69 0.49

col2:n15 0.08 0.04 1.77 0.08

col3:n15 0.19 0.03 5.84 5.29e-09

col2:n20 �0.002 0.04 �0.06 0.96

col3:n20 0.07 0.03 2.14 0.03

DOI: https://doi.org/10.7554/eLife.38473.020
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Figure 4. Experimental set-up. (A) Overview of the foraging arena. (B) Camera box with side wall removed to show inner parts. (C) Worker walking over

twine. Photos by Christoph Kurze.
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under a 14 hr:10 hr light:dark regime at about 24˚C, and fed weekly with crickets and 20% sucrose

solution.

Experimental set-up
About 1 week prior to the start of the experiments, we selected a queen, 85 workers and 15 larvae

from each colony to create three experimental colonies of comparable colony size. Each worker was

tagged with a unique 2 � 2 mm label (Crall et al., 2015). The labels were fixed to the gaster of each

worker using cyanoacrylate glue (Maxi-Cure, Hobbytown USA), while the ants were immobilized with

monofilament line (South Bend, Northbrook, IL) on styrofoam blocks.

After the glue had dried, each colony was allowed to move into an artificial nest made of a

wooden U-shaped chamber (65 � 40 � 6 mm) with a transparent acrylic cover and a 6-mm-wide

entrance. Once the ants had moved into the nest, the chamber was placed inside a wooden camera

box (Figure 4B). This allowed us to film ants inside their nest under infrared light from above (dis-

tance between camera and nest = 165 mm) using GoPro-cameras (Hero3 and Hero3+ GoPro cam-

eras with modified infrared filters and macro lenses, RageCams, Sparta, MI; Mega IR, 8 mm, 1/2.5").

The nest was illuminated by fourteen 5 mm infrared LEDs (Adafruit Industries, New York, NY; 940

nm wavelength, 20 degree beam width) to maintain the ants in a natural setting of complete dark-

ness, thereby avoiding light disturbance.

Ants were able to leave the nest at any time to enter the foraging arena, which was connected to

the nest chamber with a short tunnel made of Sugru self-setting rubber (Sugru Inc, Livonia, MI). The

foraging arena was maintained under a 14 hr:10 hr light:dark regime. To better mimic natural forag-

ing distances, the foraging arena consisted of four open plastic containers that are connected in a

series: three large elongated containers (30.5 � 13 � 6.5 mm), and one smaller container (19 �

14 � 9.5 mm) with food that was placed furthest away from the nest (Figure 4A). To prevent ants

from escaping, the walls of the foraging arena were covered with Fluon. To further increase the dis-

tance to the food, ants had to climb up bamboo skewers and walk over parcel post twine (Lehigh

Group, Macungie, PA) to travel from one container to the next (Figure 4 A and C). This resulted in a

minimum distance of at least 188 cm from the nest entrance to the food location. A forager is

roughly 8 mm meaning the distance covered was 235 times its body length. The food consisted of

20% sucrose solution, water and cricket paste. Cricket paste was prepared by homogenizing three

adult crickets with a TissueLyser II (Quiagen, Valencia, CA) using four 1/8" metal bearings (Wheels

Manufacturing Inc, Louisville, CO) at a frequency of 24.0 Hz for 66 s. We also placed a GoPro camera

with a modified infrared filter above the food to differentiate ants who merely left to nest from

actual foragers. The food location was illuminated by a power LED infrared illuminator (CMVISION

IRS48 WideAngle; C and M Vision Technologies Inc, Houston, TX) which allowed us to identify forag-

ers at the food when the foraging arena was dark.

It was not feasible to add a temporal control, so the following steps were performed to minimize

acclimation effects. First, all colonies were kept in the laboratory for several months to avoid any

short-term changes due to the stress of destroying their original home during collection. Second,

colonies were given a full week to acclimate after potential disturbance resulting from the set-up of

the experiment to ensure that we measured natural behavior. Third, our nests were built to resemble

their natural nest sites as much as possible: we used only infrared light and kept them in wooden

chambers. Fourth, the foraging arena was set up in a way that forced the ants to show natural forag-

ing behavior: they had to leave the nest and wander quite some distance (188 cm) to find food. All

of this was done to minimize acclimation effects resulting from the laboratory setting.

Video recording
After a week of habituation, we filmed the ants inside their chamber for four hours. We chose to

begin filming about 45 min after the start of the dark cycle, because foraging in C. pennsylvanicus is

primarily nocturnal (Fowler and Roberts, 1980). One day after the completion of the filming, we

quadrupled the available nest space by adding three more nest chambers (each contained within a

camera box) to our set-up. The three new boxes were connected to the original camera box via a 6

mm-wide entrance that allowed the ants to move freely from the original nest chamber through the

new chambers into the foraging arena (see Figure 4A). After 1 week of habituation, we filmed the

four nest chambers for another four hours.
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Collection of trophallaxis and tracking data
Seventeen undergraduate students were recruited and individually trained to record all trophallaxis

events inside the nest by noting the start time, end time and the identities of the participating ants.

For this, the students individually followed each ant throughout a video and recorded trophallaxis

events that were at least two seconds long. Subsequently, the first author re-watched every single

trophallaxis event to ensure that the times and identities were correctly recorded by the students.

We also manually collected the spatial location of all ants inside the nest for every second of the

four-hour observation period for all colonies and treatments. For this, we converted all videos into

screenshots with a temporal resolution of one screenshot per second. Students subsequently

recorded the position of each ant individually by clicking on the point where the head and thorax

(‘neck’) met on the focal ant in each screenshot of a video. We used a customized Python code (Col-

man, 2018; copy archived at https://github.com/elifesciences-publications/tracking_tool) to auto-

matically record the x- and y-coordinates that were generated by the students’ clicking, speeding up

this time-consuming process. When the neck of an ant was not visible in a screenshot, because the

ant was underneath other ants for instance, we estimated the neck area based on other visible body

parts and/or the neck’s last known position. To standardize the location data across treatments and

nest chambers, we also acquired the coordinates of all nest chamber corners. We subsequently cre-

ated animations of the spatial movement and trophallaxis events to spot and correct errors (e.g.,

Video 1).

Last but not least, it is worth noting that in the future manual tracking will probably be replaced

by automated tracking systems. Knowing first-hand how much work manual tracking involved for this

study, we hope that automation or machine learning will continue to improve, and that in the future,

these improvements will allow us to reduce the time for data collection by months, if not years (e.g.,

the new idTracker.ai [http://idtracker.ai/]).

Data processing
The video recordings with GoPro cameras were continuous, but automatically divided into multiple

videos with either 17 min 35 s length (GoPro Hero3) or 26 min ~4.5 s length (GoPro Hero3 silver).

After data collection, we accounted for the 0.5 s difference per video between the two camera types

by subtracting one second from every second video recorded with a GoPro Hero3 silver. In addition

to this adjustment, we also accounted for time delays (a few seconds between cameras in the low-

density treatment) that resulted from sequentially turning on multiple cameras. The resulting ‘global

time’ was then used for all further analysis. We confirmed these corrections visually in the actual vid-

eos (for instance when ants moved between chambers) and in the animations.

Individual ant locations were first recorded in units of image pixels from the digital camera

recording. Affine transformations were used to align these locations with the ant nest by finding the

optimal affine transformation relating the corners of each nest chamber to the known dimensions of

each nest chamber. Occasionally, the ant locations ended up outside the nest chamber after such a

transformation (<1%). The transformed locations were projected onto the nest chamber polygon,

and are recorded as being the location in the nest closest to the projected location. When ants

move between nest chambers, they are often not visible on any camera for a few seconds. We used

linear interpolation to impute ant locations at these times, again projecting any interpolated points

that fall outside of the nest to the closest location within the nest. This results in a full set of second

by second locations for all ants within the nest during the observation period.

Classification algorithms for the spatial groups
We developed a novel method to partition a colony into distinct groups on the basis of the similarity

of their spatial movements. The algorithm first creates a network in which the weight of the connec-

tion between two ants is the similarity of the set of locations that they occupy, it then partitions the

ants into separate groups using a standard community-detection algorithm from the network litera-

ture (i.e., the Louvain algorithm, Blondel et al., 2008). The following paragraphs describe each step

in detail.

To quantify the location of an ant at a given point in time, we measured their distance to the

entrance, that is how far they would need to move to leave the nest, taking into account the fact

that she cannot walk through walls. This is measured as the distance an ant would need to travel to
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leave the nest, assuming that their direction of movement is either parallel or perpendicular to the

nest walls. We chose this metric because it gives a more realistic path to the entrance than the short-

est possible path. The spatial signature of an ant can be characterized by the distribution of all their

recorded locations during the 4-hr period.

To measure similarity between two ants, we measured the difference between their location dis-

tributions using the Kolmogorov-Smirnov (KS) statistic, which measures the largest distance between

the cumulative distributions of the two spatial signatures. The advantage of this measure is that it is

invariant to changes in scale, meaning that if both distributions were stretched so that they are, say,

twice as wide, then this would not change the value of the KS statistic. We defined similarity

between two ants, i and j, as Si,j = 1–KS(i,j), where KS(i,j) is the KS statistic between the distributions

of ants i and j. We did this for every pair of ants, resulting in a weighted network for which the

weight of the edge is the similarity of the adjacent nodes.

To group the ants, we then performed community detection on the similarity network using the

Louvain algorithm (Blondel et al., 2008). The algorithm partitions the network into several groups in

a way that maximizes the similarity between nodes belonging to the same group while minimizing

the similarity between nodes belonging to different groups. In principal, the smallest number of

groups that can be detected is 1, this would occur if the similarity we calculate between every pair

of ants is exactly the same (but not 0). The largest number of groups possible is equal to the number

of ants, this would occur if there is no overlap at all between the ants’ spatial signatures.

To test the sensitivity of the outcome of this procedure, we asked whether the identified groups

are robust against perturbations in the data. We additionally created 1000 perturbed networks in

which the new similarity of each edge was randomly sampled from a beta distribution whose mean is

given by its actual similarity (in cases where Si,j = 0, the mean was chosen to be 0.001). The shape

parameter of the beta distribution was chosen to be b = 4, which corresponds to mean change in

similarity of 10% over all the edges. We applied the community detection algorithm to each of the

perturbed networks and compared the group membership of each ant in the actual network to her

group in the perturbed equivalent. We consider the ant to have changed group if fewer than half

of the ants she was grouped with in the smaller of the two groups are also present in the larger of

the two groups. In all cases, fewer than 5% of the ants changed group membership, implying that

the detected groups are robust to relatively large corruptions of the data.

Consistency of the spatial groups
After performing case-wise deletion to remove individuals that died during the experiment, the pro-

cedure for identifying groups of ants was applied to each of the six tracking datasets. In the first col-

ony, three groups were identified in the high-density treatment (sizes 35, 22 and 19 ants) and two

groups in the low-density treatment (sizes 32 and 41 ants). In the second colony, three groups were

identified in the high-density treatment (sizes 35, 24 and 13 ants) and three groups in the low-

density treatment (sizes 32, 7 and 41 ants). In the third colony, three groups were identified in the

high-density treatment (sizes 23, 24 and 29 ants) and three groups in the low-density treatment

(sizes 38, 30 and 15 ants). We then performed Spearman’s rank correlation to test whether the spa-

tial group in the high-density treatment predicts the spatial group in the low-density treatment.

Workers that were outside during an entire observation period (2.6%, 10% and 11.6% for colonies

1, 2 and 3, respectively, during high density; 0% for all three colonies during the low-

density treatment) were added as spatial group zero. We performed case-wise deletion to remove

individuals that died after the first treatment (�6.4%, 0%, �3.5% for colonies 1, 2 and 3, respec-

tively). We found that an ant’s spatial group before the nest expansion predicted its spatial group

afterwards (Spearman’s rank correlation: r = 0.26, p = 0.03, nants = 73 for colony 1; r = 0.47,

p<0.0001, nants = 80 for colony 2; and r = 0.23, p=0.03, nants = 83 for colony 3). P-values were calcu-

lated using a permutation test based on Spearman correlations with 40,000 simulations using the

‘jmuOutlier’ package in R version 3.4.0 (http://www.r-project.org/).

Quantitative estimate of local density
We define local density of an ant i at time t as the number of ants that are within a 15 mm distance

of ant i. The distance here is measured as the straightest possible feasible path from one ant to the

other, that is the ants can move around walls but they cannot go through them. We compute this
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local density for each ant from each colony at 1 s time intervals. These local density measurements

are correlated between ants because the local density for each ant at a given time is a function of

the location of all other ants at that time. Similarly, these local density measurements are correlated

in time, as ant locations are correlated in time.

We obtain uncorrelated local density measurements by first averaging local density over all ants

at each time, resulting in a mean local density measurement for each colony at time

t = 1,2, ... ,14,000. We then subset each of these time series at 25 min time intervals. After doing so,

the resulting time series show no temporal autocorrelation (p-value>0.05 for all colonies and densi-

ties), and we can thus reasonably treat the resulting mean local density measurements as indepen-

dent replicates. We fit a mixed effects model to local mean density with a fixed effect for nest set-up

(high- or low-density nest), and random effects for colony.

Comparing ant trophallaxis rates with local density using different radii
To further assess how different radii of local density affect the propensity for trophallaxis events, we

considered an analysis of when ant pairs initiate trophallaxis. For this analysis, we assumed that each

pair of ants are independent of all pairs. For a given pair of ants, we modeled the observed trophal-

laxis initiations as events in an inhomogeneous Poisson process (IHPP). An IHPP is a stochastic pro-

cess for modeling the times when events (such as trophallaxis events) occur. Each event time is

independent of all other event times, and the likelihood of seeing events is controlled by a rate

function l tð Þ, which can change over time and depend on covariates. For any given interval of

time (I ¼ t; t þ Dð Þ), the number of observed events in the IHPP is distributed as a Poisson random

variable with rate
R

I
l tð Þdt. As we have data collected at each second, we can approximate the likeli-

hood of the IHPP with high accuracy by assuming that l tð Þ is constant for each one-second interval.

The likelihood of the observed set of trophallaxis events for one pair of ants is then:

Y

T

t¼1

l tð Þytexp l tð Þf g

where yt ¼ 1 if the pair of ants begin trophallaxis in the t-th second and yt ¼ 0 otherwise. If we model

l tð Þ using covariates with a log link, we can estimate the effect of different covariates on the rate of

trophallaxis using Poisson regression.

As the rate of trophallaxis events should be zero whenever ants are too far apart, we set l tð Þ=0

any time ants were greater than 20 mm away from each other. Although ants must be

physically closer than 20 mm to have trophallaxis, we included all times when ants were within

20 mm of each other, implicitly assuming that ants are aware of each other and can quickly close this

gap and initiate trophallaxis at will with others within this radius. We modeled l tð Þ using multiple

covariates. For each second of observation, we calculated the number of additional ants within

5 mm, 10 mm, 15 mm, and 20 mm of the centroid of the pair of ants. This provides four measures of

local density, each at different distance lags. These local density effects were coded as the additional

numbers of ants within each successive distance. The focal pair of ants was not included in this calcu-

lation, so, for example, when two ants are within 20 mm of the centroid of the focal pair of ants,

with one ant being 7 mm away and the other ant being 12 mm away from the centroid, then the

local density covariates for 5 mm, 10 mm, 15 mm, and 20 mm were coded as, respectively, 0, 1, 0,

and 1. We also included categorical variables for colony (1, 2, 3) and treatment (high- or low-density)

in our analysis. Interactions between colony and treatment in this Poisson regression analysis were

not significantly different from zero (p-value >0.05, Z-test), and are thus not reported. As there are

no significant interaction effects with treatment (high- and low-density), this analysis reveals overall

trends in trophallaxis rates that are conserved across colonies.

Stochastic differential equation modeling of tracking data
We analyzed the tracking data using stochastic differential equation (SDE) models for animal move-

ment (Russell et al., 2016). These SDE models capture directional persistence in movement through

a continuous-time correlated random walk (Johnson et al., 2008), directional bias in movement

through a spatially varying potential surface (Brillinger et al., 2002; Preisler et al., 2013), and

changes in overall animal movement rate through a spatially varying motility surface (Russell et al.,

2016). For simplicity, we will write out our SDE models in one-dimension, with xt denoting the
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location of an ant at time t. The ant’s velocity at time t is vt ¼
d
dx
xt and is approximated using

vt ¼ xt � xt�1ð Þ=h, where h is the temporal step size. Our SDE model for movement considers model-

ing acceleration, which is proportional to the force acting on an ant. Following Russell et al. (2016)

and Hanks et al. (2017), we model:

dvt ¼�b xt �� xtð Þð Þdtþ c xtð ÞdWt

where b captures temporal autocorrelation (directional persistence), � xtð Þ is a spatially varying mean

vector, and c xtð Þ is a spatially varying variance of the Brownian motion process Wt, and can also be

seen as a time dilation function (Hanks et al., 2017). Taking a second-order approximation (as in

Hanks et al., 2017) results in a model for position that depends on the position at the previous two

time steps:

xt ¼ xt�1 2�bhð Þþ xt�2 bh� 1ð Þþbh2� xt�2ð ÞþN 0;h3c2 xt�2ð Þ
� �

Under a potential function approach, we set � xtð Þ ¼ c xtð Þ d
dx
P xtð Þ, where P xð Þ is a potential surface

(Brillinger et al., 2002; Preisler et al., 2013) that controls directional bias in movement. We also

allow c(x) to vary as a motility surface that affects absolute speed without affecting directional bias,

whereas P(x) affects both absolute speed and directional bias. We model both P xð Þ and c xð Þ using

penalized spline expansions, with 2-d spline basis functions being constant on a fine grid, and penal-

izing the square of the second derivative of both functions. We estimated movement parameters by

iterating through the following steps.

1. Assuming a uniform motility surface, we estimated b and P xð Þ using penalized spline fitting
implemented in the GAM package in R.

2. Given these estimates, we then estimated the motility surface c xð Þ using the residuals from
step 1. This optimization was again done using GAM in R.

3. Using this estimate for the motility surface, we then re-estimated estimated b and P xð Þ using
penalized spline fitting.

The first two steps of this procedure essentially consist of a restricted maximum likelihood (REML)

estimate of the motility surface, and the third step estimates the mean parameters (the autocorrela-

tion parameter and the potential surface) conditioned on the REML estimate of the motility surface.

Data availability
Raw data sets are available through Dryad (DOI: 10.5061/dryad.sh4m4s6). We have compiled the

classification algorithms for the spatial groups in the following GitHub repository: https://github.

com/EwanColman/Ant-colonies-maintain-social-homeostasis-in-the-face-of-decreased-density

(Colman and Bansal, 2018; copy archived at https://github.com/elifesciences-publications/Ant-colo-

nies-maintain-social-homeostasis-in-the-face-of-decreased-density). Code to replicate the stochastic

differential equation modeling of the tracking data is available in the following GitHub repository:

https://github.com/ehanks/Ants-SDE-Motility-Potential (Hanks, 2018; copy archived at https://

github.com/elifesciences-publications/Ants-SDE-Motility-Potential).
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