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early prediction of Soybean traits 
through color and texture features 
of canopy RGB imagery
Wenan Yuan  1, nuwan Kumara Wijewardane1, Shawn Jenkins2, Geng Bai1, Yufeng Ge1 & 
George L. Graef2

Global crop production is facing the challenge of a high projected demand, while the yields of 
major crops are not increasing at sufficient speeds. Crop breeding is an important way to boost crop 
productivity, however its improvement rate is partially hindered by the long crop generation cycles. if 
end-season crop traits such as yield can be predicted through early-season phenotypic measurements, 
crop selection can potentially be made before a full crop generation cycle finishes. This study explored 
the possibility of predicting soybean end-season traits through the color and texture features of 
early-season canopy images. Six thousand three hundred and eighty-three images were captured at 
V4/V5 growth stage over 6039 soybean plots growing at four locations. One hundred and forty color 
features and 315 gray-level co-occurrence matrix-based texture features were derived from each image. 
Another two variables were also introduced to account for location and timing differences between the 
images. Five regression and five classification techniques were explored. Best results were obtained 
using all 457 predictor variables, with Cubist as the regression technique and Random Forests as the 
classification technique. Yield (RMSE = 9.82, R2 = 0.68), Maturity (RMSE = 3.70, R2 = 0.76) and Seed Size 
(RMSE = 1.63, R2 = 0.53) were identified as potential soybean traits that might be early predictable.

Increasing population, growing meat and dairy consumption and rising biofuel usage are the key factors for the 
climbing global demand for crop production1,2. By 2050, a 60 to 110% increase in world’s agricultural production 
may be needed to meet the projected demand1,3, which is known as the 2050 challenge. A 2013 study1 found 
that, globally, the average increase rates of yield from 1961 to 2008 for four major crops—maize, rice, wheat and 
soybean, were far below the adequate levels to meet future demands. Doubts even exist for our ability to maintain 
current crop yields in the context of a rapidly changing global environment4. More land clearing for agriculture 
and improving the productivity of existing cropland are two solutions for the challenge3, however the latter solu-
tion is preferred1.

Crop productivity can be improved through crop breeding and advanced management practices. Crop breed-
ing aims to improve crop genetic makeup for more desirable traits such as higher yield, however the improvement 
rate of modern crop breeding in terms of genetic gain is insufficient for the 2050 challenge5. Partially, this slow 
improvement rate is due to the long crop generation cycles6. Newly emerged methods such as “speed breeding”, 
which utilizes prolonged photoperiods, can increase the generation cycles of certain crops in greenhouse from 
2–3 to 4–6 per year6. However, a greenhouse cannot fully mimic field conditions, plus it has limited space and 
high running and maintenance costs. In order to select the crop genotypes that are suitable for extensive agri-
cultural production, breeding in field is crucial due to its advantages over breeding in greenhouse. Since field 
environment cannot be easily altered by humans, the concept of “speed breeding” cannot be realized in field in 
the same way as if in greenhouse, and alternative methods are needed for accelerating crop breeding research.

The phenotype of a plant results from the interaction between its genotype and environment, and it reflects 
plant performance under a certain environment. Since the genotype of a plant does not change throughout the 
course of growth, relationships might exist between plant phenotypes at different time points. If plant traits at the 
end of a season such as yield can be predicted by plant phenotyping at early-season, breeders then do not have to 
wait for a full crop generation cycle to make plant selections, thus the speed of crop breeding can be improved. 
Attempts for early prediction of plant traits have been made in previous research. For example, predicting soybean 
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yield using normalized difference vegetation index (NDVI) measured at reproductive stages7; predicting sugar 
and fiber contents of sugarcane at maturity using the corresponding values measured months before the harvest8; 
predicting leaf nitrogen concentration of almond in summer using leaf nitrogen and boron concentrations in 
spring9; predicting grapevine yield using the number of berries detected at fruit development stages10.

To select a phenotyping method that is suitable for large-scale crop breeding research, it needs to be 
non-destructive and efficient. Advanced instruments such as light detection and ranging (LiDAR) or hyperspec-
tral camera can provide rich information about a plant, however they are typically expensive and can be difficult 
for people with non-engineering backgrounds to use. Red-green-blue (RGB) cameras, on the other hand, have 
been widely and long employed in agricultural research. They are cheap and user-friendly, and modern models are 
able to capture images in high spatial resolutions. With the popularization of smartphones, RGB cameras also have 
high accessibility. Many well-developed image processing and analysis techniques allow various features from 
RGB images to be extracted and analyzed, however few have been studied for crop trait early prediction purpose.

Color and texture are two important aspects in digital imagery. Color is the characteristic perceived by human 
visual system. The color of a plant is closely related with plant physiology. In an image, the color information of 
a plant can be used for, for example, plant segmentation11, plant stress assessment12, disease spot detection13, or 
estimating plant traits such as ground cover14, biomass15, leaf chlorophyll content16 and leaf nitrogen concentra-
tion17. Many vegetation indices based on RGB bands have been developed and studied for accomplishing those 
tasks. Texture, though lacking a formal definition, is a visual pattern consisting of entities with certain character-
istics in terms of color, shape, size, etc. The properties of the entities give the perceived coarseness, smoothness, 
randomness, uniformity, etc., which are eventually regarded as texture18. The essence of texture in digital imagery 
is the spatial arrangement of pixels with various gray levels19. Texture analysis is important in many areas such as 
remote sensing and medical imaging, and its common applications include image segmentation, image classifica-
tion and pattern recognition19. Although various texture analysis techniques exist, texture features derived from 
gray-level co-occurrence matrix (GLCM) are the most popular because of their simplicity and adaptability20. 
Interestingly, the value of texture information of RGB image transformations such as vegetation index images has 
never been investigated to the authors’ knowledge.

The goal of this study was to explore the possibility of soybean trait early prediction using color and texture 
features of canopy RGB imagery. More specifically, the objectives of the study were:

 1. Select the modelling techniques that would provide the best prediction results among the compared ones;
 2. Determine which type of variable combination would provide the best prediction results, such as using 

only color indices, using only texture indices, using both color and texture indices, etc.;
 3. Investigate whether the color and texture information of theoretical and empirical transformations of RGB 

images, namely images in alternative color spaces and vegetation index images based on RGB bands, could 
improve prediction results;

 4. Identify which end-season soybean traits might be predictable through the color and texture features of 
early-season canopy RGB images.

GLCM Review
GLCM, originally called gray-tone spatial-dependence matrix, was first introduced by Haralick et al. in21. It 
describes the joint probability of pixel pairs at any gray levels, thus is able to represent the texture of an image 
statistically. GLCM-based texture features have many applications in agricultural research, and some examples 
are listed in Table 1.

A GLCM can be mathematically expressed as P(i, j, d, θ), where i and j stand for pixel intensities, or gray levels 
of two pixels in a pixel pair, d stands for pixel displacement, and θ stands for scanning direction. Since calculating 
a GLCM over the full dynamic range of an image can be prohibitive, quantization is a common practice for reduc-
ing the number of gray levels in an image. For 8-bit images, which have 256 gray levels, quantization level can be 
8, 16 or 3222. However, the tradeoff of this accelerated GLCM calculation is a reduction in image information.

Assume a 4 × 4 image with gray levels specified, then the corresponding GLCM represents the numbers of 
pixel pairs in the image (Fig. 1).

To calculate a GLCM, one needs to specify d and θ. d defines the distance between two pixels that can be con-
sidered as a “pair”, which is typically set as 1, meaning two adjacent pixels are considered as one pair. θ defines the 
direction along which the pixel pairs lie. 0°, 45°, 90° and 135° are common scanning directions (Fig. 2).

The distinction between two opposite scanning directions is typically ignored, such as left to right versus 
right to left, since the resulting GLCMs are simply the transpose of each other, then symmetric GLCMs can be 
employed as shown in Fig. 323, where both directions are considered.

Before extracting texture features, a GLCM needs to be normalized. p(i, j, d, θ) denotes the normalized GLCM, 
where:

θ θ
θ

=
∑

p i j d P i j d
P i j d

( , , , ) ( , , , )
( , , , ) (1)i j,

as shown in Fig. 4.
Texture features extracted from different GLCMs of the same image can be either averaged or treated as inde-

pendent variables, though Haralick et al. suggested to use the averages21.
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Materials and Methods
Data collection. Soybean canopy images were collected in 2016 over plots growing at four locations 
using a multi-sensor phenotyping system24, which was equipped with C920-C Webcams (Logitech, Lausanne, 
Switzerland). Soybean plots belonged to 35 yield evaluation experiments in University of Nebraska soybean 
breeding programs, within which the soybean populations were developed for different purposes, such as 
improved yield, improved genotype diversity, improved response to water, and improved seed quality metrics. In 
total 6383 images were captured over 6039 unique plots with measurements repeated for some plots. Among all 
plots, 2551 unique genotypes exist. Details regarding data collection are listed in Table 2. Images were stored as 
8-bit png files with a 2304 × 1536 resolution.

Ground truths. Nine soybean traits were selected for this study, which are defined as the following:

•	 Yield: seed volume in bushels per acre, adjusted to 13% moisture content, after the seeds have been dried to a 
uniform moisture content.

•	 Maturity: the number of days in between the planting date and the date when 95% of the pods have reached 
their mature color. Delayed leaf drop and green stems are not considered in assigning maturity.

•	 Height: the average length from ground to the tip of the main stem at maturity, measured in inches.
•	 Seed Size: seed weight in grams per 100 seeds.
•	 Protein, Oil, and Fiber: seed composition information was obtained through an Infratec™ 1241 Grain Ana-

lyzer (FOSS, Hillerød, Denmark) with a transmittance scanning monochromator spectrometer. Reflectance 
values were transformed through SB201301 soybean bulk seed and SB201304 soybean sample transport mod-
ule calibrations provided by the Iowa Grain Quality Laboratory, Iowa State University25 to output protein, oil 

Statistical 
Approach Application Case Study Reference

Classification

Plant identification

Plant leaf identification using Flavia dataset (32 types of plants) and Foliage dataset 
(60 types of plants)

28

Identification of grape, mango, chili, wheat, beans and sunflower affected by 
powdery mildew disease

47

Identification of five Ficus deltoidea varieties 48

Recognition of 31 classes of plant leaves 49

Flower identification Classification of 18 types of flowers 50

Seed identification

Classification for individual kernels of wheat, barley, oats, and rye 51

Classification of wheat and barley kernels 52

Identify four geographical origins of Jatropha curcas L. seeds 53

Detection of freefalling wheat kernel damage 54

Pollen identification Identify ten types of pollen grains in honey 55

Disease identification

Classify lesions of three Phalaenopsis seedling diseases and uninfected leaves 56

Classify diseased wheat leaves at five severity stages 57

Classify healthy, early blight and late blight diseased tomato leaves 58

Classify early blight diseased eggplant leaves and heathy leaves 59

Identify two types of diseased grapevine leaves 60

Stress detection Detection of three levels of drought stress in maize 61

Weed detection

Identify wild blueberry, weeds and bare spots in field 62

Detection of weeds in rice fields 63

Classify vegetables and weeds in filed 64

Plant mapping

Classification for corn, wheat, soya, pasture, and alfalfa using multipolarization 
radar data

65

Map invasive Leucaena leucocephala using QuickBird satellite imagery 66

Map invasive Fallopia japonica using orthophotos 67

Growth stage identification Phenological stage classification of wheat, barely, lentil, cotton, pepper and corn 68

Regression Trait estimation

Improve the empirical relationship between leaf area index (LAI) and normalized 
difference vegetation index (NDVI) of forest

69

Estimate age, top height, circumference, stand density and basal area of forest 70

Predict textural class, moisture content, leaf area index and leaf water potential of moss 38

Estimate forest biomass 71

Predict glucose, fructose, sucrose and total sugar content of muskmelon 72

Predict moisture content of quince fruits being dried 73

Predict maize leaf moisture content 74

Estimate leaf nitrogen content of winter wheat 75

Count ear number of wheat growing in filed 76

Table 1. Examples of agriculture-related research utilizing GLCM-based texture features.
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and fiber compositions by weight adjusted to 13% moisture. Ten subsamples were used analyzing plot seed 
samples, and values were reported as the ten-subsample average.

•	 Lodging: rated at maturity according to the following scores:

◦ 1: most plants erect.
◦ 2: all plants leaning slightly or a few plants down.
◦ 3: all plants leaning moderately, or 25 to 50% down.
◦ 4: all plants leaning considerably, or 50 to 80% down.
◦ 5: most plants down.

Figure 1. Schematic diagram showing the GLCM layout of an image.

Figure 2. Common scanning directions for generating a GLCM.

Figure 3. Symmetric GLCM examples of the sample image.

Figure 4. Normalized GLCM examples of the sample image.

Location
Date 
Planted

Date 
Harvested Date Measured

Growth Stage 
at Measuring

Number of 
Images

Clay Center, NE 5/20/2016 10/20/2016 6/21/2016 V4/V5 1254

Cotesfield, NE 5/21/2016 10/2/2016 6/23&24/2016 V4/V5 1332

Mead, NE 6/3/2016 10/16/2016 7/6&8/2016 V4/V5 2555

Wymore, NE 6/4/2016 10/31/2016 7/10/2016 V4/V5 1242

Table 2. Soybean plot and data collection details.
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•	 Seed Quality: rated according to the following scores considering the amount and degree of wrinkling, defec-
tive seed coat (growth cracks), greenishness, and moldy or other pigment:

◦ 1: very good.
◦ 2: good.
◦ 3: fair.
◦ 4: poor.
◦ 5: very poor.

Not all ground truths were available for every plot measured. Table 3 shows the availability of each ground 
truth. Relationships between the soybean traits can be found in Supplementary Information.

image processing. Image processing was completed using MATLAB R2018b (The MathWorks, Inc., Natick, 
MA, USA).

Pre-processing. For the purpose of enhancing contrast and improving color consistency across images, the con-
trast of raw images were stretched by saturating the bottom 1% and the top 1% of all pixel values in R, G and B 
channels respectively. Assume a grayscale image I(x, y), where x stands for pixel row position, and y stands for 
pixel column position. In our case, x and y ranged from 1 to 1536 and 1 to 2304. Then the contrast-enhanced 
image E(x, y) would be:

=
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where LO and UO are the original lower and upper limits, which are the 1st and 99th percentile of all pixel values in 
I(x, y), and LN and UN are the new limits, which are 0 and 255 for 8-bit images.

Next, soil background was removed since it contained irrelevant information. It was challenging to segment 
plants under different lighting and shadowing conditions using one regular thresholding technique. Here we pro-
posed a new plant segmentation method utilizing multiple vegetation indices to maximize segmentation accuracy.

First three vegetation index images were calculated from each contrast-enhanced RGB image: excess green 
(ExG)26, modified excess green (MExG) and color index of vegetation extraction (CIVE), where:

=








− = = =
− −

+ +
ExG

R G B
G R B
R G B

else

1, 0
2 ,

(3)

= . − . − .MExG G R B1 262 0 884 0 311 (4)

= . − . + . + .CIVE R G B0 441 0 811 0 385 18 78745 (5)

Each of the three vegetation index images was then rescaled to the range of 0 to 1 respectively. The difference 
image between MExG and CIVE was computed to further enhance the intensity difference between plant pixels 
and background pixels, then a binary mask M1(x, y) was generated using Otsu’s thresholding technique27. A 0.5 
threshold was applied to ExG to generate another binary mask M2(x, y). Two masks were overlaid to create the 
final mask M(x, y) where:

=





= =M x y NA M x y M x y
else

( , ) , 1( , ) 2( , ) 0
1, (6)

Ground Truth Number of Images

Yield 6001

Maturity 4719

Height 3118

Seed Size 2372

Protein 2801

Oil 2801

Fiber 2801

Lodging 4719

Seed Quality 1866

Table 3. The number of images having the corresponding ground truth available.
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Instead of using zero, NA values were adopted here to avoid the influence of a large number of zero in a 
masked image when computing color and texture features. The noise of M(x, y) was cleaned by removing objects 
with 300 or fewer connected pixels. To this point M(x, y) was ready to be used for removing soil background from 
any images calculated later (Fig. 5).

Image transformation. Four common color spaces, and 20 vegetation indices based on RGB bands were selected 
to represent the theoretical and empirical transformations of an RGB image (Table 4). Plus the original RGB 
color space, in total (1 + 4) × 3 + 20 = 35 transformed images were calculated from each contrast-enhanced RGB 
image, then mask M(x, y) was applied to all transformed images.

The famous index ExG was not listed in the table because ExG has a value range of −1 to 2, and when it is 
normalized to the range of 0 to 1, ExG has an identical expression as NG.

For each of the 35 transformed images, if applicable, non-mask NA values and negative infinity values were 
replaced as the minimum real value of the image, and positive infinity values were replaced as the maximum real 
value of the image. All pixel intensity values of transformed images were stored in double format, meaning dec-
imal places were not rounded. Figure 6 shows various texture patterns carried by different transformed images 
derived from the same RGB image. The images in Fig. 6 were colorized for viewing convenience, and the color 
scheme corresponded to the value range of an image before mask M(x, y) was applied.

image feature extraction. Color Features. For each of the 35 transformed images, four color indices 
were calculated: mean (μ), standard deviation (σ), skewness (θ) and kurtosis (δ)28. Since for each soybean plot the 
cameras were able to capture the majority of the canopy, we assumed the plant pixels in each image followed a 
population distribution instead of a sample distribution.

Take a transformed image T(x, y) where the number of plant pixels, or non-NA values is N, then:

µ =
∑ ∑ T x y

N

( , )
(7)

x y

Figure 5. Flowchart of image pre-processing.
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Notice NA values from mask M(x, y) were ignored in the calculations above. In total 35 × 4 = 140 color indices 
were derived from each original RGB image.

Type Name Abbreviation Description Note Reference

Original

Red R R channel from RGB color space
Raw values were adjusted by contrast 
stretching. Values ranged from 0 to 255.

17Green G G channel from RGB color space

Blue B B channel from RGB color space

Theoretical 
transformation

X X X channel from CIE 1931 XYZ color space
CIE 1931 2° Standard Observer; CIE 
Standard Illuminant D65

77Y Y Y channel from CIE 1931 XYZ color space

Z Z Z channel from CIE 1931 XYZ color space

L-star L* L* channel from CIE 1976 L*a*b* color space

CIE Standard Illuminant D65 17a-star a* a* channel from CIE 1976 L*a*b* color space

b-star b* b* channel from CIE 1976 L*a*b* color space

Hue H H channel from HSI color space
17,78Saturation S S channel from HSI color space

Intensity I I channel from HSI color space

Y-prime Y’ Y’ channel from Y’CbCr color space
79Cb Cb Cb channel from Y’CbCr color space

Cr Cr Cr channel from Y’CbCr color space

Empirical 
transformation

Normalized red NR =
+ +

NR R
R G B

Equations simplified. Abbreviations 
also known as r, g, b.

26Normalized green NG =
+ +

NG G
R G B

Normalized blue NB =
+ +

NB B
R G B

Excess red ExR = . −
+ +

ExR 1 4R G
R G B

Equation simplified. 80

Excess blue ExB = . −
+ +

ExB 1 4B G
R G B

Equation simplified. 81

Excess green red ExGR = − . −
+ +

ExGR 3G 2 4R B
R G B

Equation simplified. 82

Green blue difference GBD = −GBD G B
83Red blue difference RBD = −RBD R B

Red green difference RGD = −RGD R G

Green red ratio GRR =GRR G
R

14,84

Green blue ratio GBR =GBR G
B

83

Normalized green red difference NGRD = −
+

NGRD G R
G R

Also known as normalized difference 
index (NDI) or green red vegetation 
index (GRVI).

11,15

Normalized green blue difference NGBD = −
+

NGBD G B
G B

84,85

Modified normalized green red difference MNGRD = −

+
MNGRD G2 R2

G2 R2
Also known as modified green red 
vegetation index (MGRVI).

86

Visible band difference VD = − −
+ +

VD 2G B R
2G B R

Also known as green leaf index (GLI). 87,88

Red green blue vegetation index RGBVI = − ×

+ ×
RGBVI G2 B R

G2 B R
86

Crust index CI =
+

CI 2B
R B

Equation simplified. 83

Color index of vegetation extraction CIVE = . − . + . + .CIVE 0 441R 0 811G 0 385B 18 78745 89

Triangular greenness index TGI = − −TGI 95G 35R 60B Equation simplified. 16

Modified excess green MExG = . − . − .MExG 1 262G 0 884R 0 311B 90

Table 4. List of theoretical and empirical RGB image transformations.
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Texture features. It is reasonable to assume that the transformed images cannot contain more information than the 
original RGB images. Before extracting texture features, each of the 35 transformed images without mask M(x, y)  
applied was first rescaled to 0 to 255 and rounded as integers to reduce computational complexity, then mask 
M(x, y) was applied. Two symmetric GLCMs p(i, j, 1, 0°) and p(i, j, 1, 90°) were calculated from each transformed 
image. Notice NA values were ignored when computing GLCMs. Nine texture indices were calculated from each 
GLCM: maximum probability (MP), mean (MEA), variance (VAR), correlation (COR), angular second moment 
(ASM), entropy (ENT), dissimilarity (DIS), contrast (CON) and inverse difference moment (IDM)21,29, where:

θ=MP max p i j d( ( , , , )) (11)

∑ ∑θ θ= =MEA ip i j d jp i j d( , , , ) ( , , , ) (12)i j i j, ,

∑ ∑θ θ= − = −VAR i MEA p i j d j MEA p i j d( ) ( , , , ) ( ) ( , , , ) (13)i j i j,
2

,
2

∑

∑

θ

θ

=
− −

=
−

COR i MEA j MEA p i j d
VAR

ijp i j d MEA
VAR

( )( ) ( , , , )

( , , , )
(14)

i j

i j

,

,

2

Figure 6. Examples of colorized transformed images containing different color and texture information.
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∑ θ=ASM p i j d( , , , ) (15)i j,
2

∑ θ θ= −ENT p i j d log p i j d( , , , ) ( ( , , , )) (16)i j, 2

∑ θ= | − |DIS i j p i j d( , , , ) (17)i j,

∑ θ= −CON i j p i j d( ) ( , , , ) (18)i j,
2

∑
θ

=
+ −

IDM p i j d
i j

( , , , )
1 ( ) (19)i j,

2

Confusions exist in the naming and calculation of GLCM-based texture features among literature, and the fol-
lowing are a few clarifications. Eqs 12 and 13 are only valid for a symmetric GLCM. ASM is sometimes named as 
energy, while energy is sometimes defined as the square root of ASM. Both 2 and Euler’s number e can be used as the 
base of the logarithm in Eq. 16,also Eq. 16 assumes 0 × log0 = 0. IDM is also called inverse difference, homogeneity 
or local homogeneity, however the denominator of homogeneity’s expression is sometimes defined as 1 + |i − j|.

After obtaining the same texture features from two GLCMs of the same image, such as MP of p(i, j, 1, 0°) and 
MP of p(i, j, 1, 90°), two texture indices were averaged as one. In total 35 × 9 = 315 texture indices were derived 
from each original RGB image.

Data analysis. The dataset was randomly split into two segments containing 70% and 30% of all data 
entries for model calibration and validation. Five regression modelling techniques, namely Partial Least Squares 
Regression (PLS), Random Forests (RF), Cubist (CB), Artificial Neural Networks (ANN) and Support Vector 
Regression (SVR) were explored to model for Yield, Maturity, Height, Seed Size, Protein, Oil and Fiber. Five clas-
sification techniques, namely Partial Least Squares Discriminant Analysis (PLSDA), RF, Linear Discriminant 
Analysis (LDA), ANN and Support Vector Machines (SVM) were explored to model for Lodging and Seed Quality. 
All predictor variables were standardized by removing the mean and scaling to unit variance before used for cali-
brating models. Model tuning was completed through 10 random segment cross-validation. The data analysis was 
conducted in R language30 using package caret31, nnet32, pls33, cubist34, randomForests35, kernlab36 and MASS32.

Calibrated models were used to predict for the validation dataset. Prediction statistics, including root mean 
square error (RMSE), coefficient of determination (R2), Bias, Accuracy, and Cohen’s kappa coefficient (Kappa) were 
calculated to evaluate model performance. RMSE indicates the average prediction error compared to the observa-
tions. R2 indicates the percentage of observation variance that is explained by the model. Bias indicates the average 
prediction deviation from the observations. Accuracy indicates the percentage of overall accurate classifications. 
Kappa indicates the agreement between observed and predicted classes. The statistics were defined as the following:
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where n is the number of observations or the number of data entries of the validation dataset, Pi is the ith predic-
tion, Oi is the ith observation, O is the mean of observations, and c is the number of correct classifications. Notice 
n was different for each soybean trait because of the data availability (Table 3). E is defined as:

∑=E
n

np no1
(25)k k k2

where k is the kth class, npk is the number of predictions in kth class, nok is the number of observations in kth class.
For the first objective, all color and texture indices (140 + 315 = 455 variables) were used as predictor varia-

bles, and all 10 modelling techniques were employed. Results of different techniques were compared and the best 
modelling techniques were chosen based on RMSE.
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Since the RGB images were captured over different locations at different dates, we introduced another two 
variables to improve model robustness: Location and Time (LnT). Variable “Location” contained number 1, 2, 3 
and 4 representing the four locations where the soybean plots grew. Variable “Time” was the number of days in 
between the planting date and the measuring date. For the second objective, using the modelling techniques cho-
sen above, four types of variable combinations were investigated: only color indices (140 variables), only texture 
indices (315 variables), both color and texture indices (455 variables), color and texture indices and LnT (457 
variables). The best variable combination was chosen based on RMSE.

Among 35 types of transformed images, only R, G and B could be considered as direct measurements. 
Therefore, the color and texture features of R, G and B represented the original RGB image, and the rest repre-
sented theoretical and empirical transformations of the RGB image (Table 4). To investigate the third objective, 
using the modelling techniques and the variable combination chosen above, new models were calibrated for all 
soybean traits, using a combination of color features of R, G and B (3 × 4 = 12 variables), texture features of R, G 
and B (3 × 9 = 27 variables), or LnT (2 variables).

Results
Full modelling results can be found in Supplementary Information.

Objective 1. Prediction results of various techniques were not drastically different in terms of RMSE or 
Accuracy, however they fluctuated more in terms of R2 or Kappa. Comparing the worst results to the best, RMSE 
would increase by 5 to 42%, on average 16%, and Accuracy would decrease by 9 to 11%, on average 10%, while 
R2 would decrease by 8 to 62%, on average 31%, and Kappa would decrease by 100 to 105%, on average 103%.

Using RMSE or Accuracy of the validation dataset as the standard, CB consistently provided better regression 
predictions than other techniques except for Fiber, and RF performed the best for classification predictions. We 
identified CB and RF as the best techniques for the proceeding regression and classification tasks.

Objective 2. Results showed different variable combinations did not make a big difference in terms of RMSE, 
R2, Accuracy and Kappa for the majority of the soybean traits. Comparing the worst predictions to the best, 
RMSE would increase by 1 to 12%, on average 7%, R2 would decrease by 8 to 42%, on average 15%, Accuracy 
would decrease by 0.7 to 4%, on average 2%, and Kappa would decrease by 12 to 50%, on average 31%.

Except for Seed Size and Fiber, the variable combination of color, texture and LnT always provided better 
results, thus we identified it as the best variable combination for both regression and classification and used for 
the proceeding analysis.

Objective 3. Since in Objective 2 the combination of color, texture and LnT was identified as the best, new 
models were calibrated using both color and texture features of R, G and B as well as LnT as predictor variables 
(12 + 27 + 2 = 41 variables).

Even though using all variables always provided better predictions, comparable results were obtained using 
color and texture features of only R, G, and B. Comparing the results of two models for each ground truth, for all 
nine soybean traits, the percentage difference in terms of RMSE, R2, Accuracy and Kappa varied in between 0.04 
to 7%, 2 to 31%, 1 to 3% and 2 to 50%. Results suggested that the color and texture information of RGB image 
transformations could only bring marginal improvements to the models calibrated through the color and texture 
information of original RGB images.

Objective 4. When using all 457 variables as predictor variables, CB as the regression technique, and RF as 
the classification technique, prediction results for all soybean traits were presented below (Fig. 7).

Considering the value range of each soybean trait, Seed Size, Protein, Oil and Fiber had small RMSEs, Yield and 
Maturity had fair RMSEs, and Height had a large RMSE. Yield, Maturity, Seed Size, Protein and Oil all had reasonable 
R2s, whereas Height and Fiber had low R2s indicating models were not able to explain large percentages of the data 
variances. All soybean traits had very small Biases. Both Lodging and Seed Quality had fair Accuracies, however their 
Kappas were very low. The reason that caused this phenomenon might be the imbalanced data distribution, meaning 
Lodging and Seed Quality had large proportions of low rating scores, while only a few high rating scores existed. In 
this scenario even if a model classified all data entries as low rating, Accuracy of the result could still be high.

Data clusters were observed in Maturity, Seed Size, Protein and Oil. When compared to the rest three loca-
tions, Clay Center had the highest overall Maturity distribution, and the cluster at the upper-right corner in 
Maturity represented the soybean plots influenced by Clay Center’s location effect. Similar to Maturity, clusters 
in Seed Size also indicated location difference. The Seed Size distributions of Cotesfield and Wymore were cen-
tered around 17 while Clay Center and Mead were centered around 15, thus each of the two clusters in Seed Size 
represented two locations. The clusters in Protein and Oil showed a difference in between soybean populations. 
The cluster at the upper-right corner in Protein and the cluster at the lower-left corner in Oil represented the 
same soybean population, which was developed for improved genotype diversity. All other soybean populations 
behaved similarly in Protein and Oil.

Abnormally low values of Fiber existed. Per the consequential inspection of the data, there were 14 potential 
Fiber outliers if 4.3 was used as the threshold, and the corresponding Protein and Oil values tended to be in the 
high range (37–43.9) and medium range (18–19.5) respectively. As Protein, Oil and Fiber were measured by the 
same instrument simultaneously, we eliminated the possibility of instrument malfunctioning and kept all Fiber 
data entries since the corresponding Protein and Oil values appeared to be in the normal ranges.

Based on the overall consideration of the prediction results, we identified Yield, Maturity and Seed Size as 
the potential soybean traits that might be early predictable.
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Discussion
Results of the study. When it comes to different variable combinations, texture alone always provided bet-
ter predictions than color alone, which implied that texture features might carry more meaningful information 
than color features. As would be discussed in the next section, complex plant canopy structures can affect the 
values of texture indices, while color indices can indicate plant overall vigor and health. Unexpectedly, the combi-
nation of color and texture did not perform better than color or texture alone in terms of RMSE for five soybean 
traits, which indicated possible information overlapping in between color and texture features. Since the images 
were taken at different dates over soybean plots growing at different locations, the soil type and climate difference, 
as well as the number of days after plant emergence could have a significant impact on plant phenotype, or the 
canopy appearance in this study. Therefore it was not a surprise that the introduction of LnT provided the best 
results for seven out of nine soybean traits.

An interesting finding in this study was that the RGB image transformations did not contain much addi-
tional valuable information compared to the original RGB images. The models calibrated using only 41 variables 
provided comparable results to the models calibrated using all 457 variables. Since every set of 35 transformed 
images were derived from one single RGB image, linear or non-linear relationships existed in between them, 
thus the color and texture indices of different images might carry similar information. Figure 8 is the histogram 
of correlation coefficients (4552 = 207025) in the correlation matrix between 455 color and texture indices of all 
6383 RGB images. As shown in the figure, there was a considerable amount of variables having strong positive or 
negative correlations with each other, which validated our speculation on information overlapping in between 
the image indices. There were several reasons why we did not perform any feature selection for our dataset. First, 
the machine learning techniques that we used in this study do not have any statistical assumptions about the data, 
also the classical techniques such as PLSR inherently have the ability to handle collinearity37, therefore feature 
selection was not a compulsory step. Secondly, feature selection is commonly used for reducing the computa-
tional complexity of model calibration, whereas in our case the model training did not require as many resources. 
Thirdly, for a dataset when its number of predictors is greater than its number of samples, feature selection is 
important for preventing overfitting, while this issue did not apply to our dataset. Lastly, since generally the more 

Figure 7. Prediction results for nine soybean traits using all 457 predictor variables.
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predictor variables there are the better modelling results tend to be, we decided not to filter out any variables 
beforehand. Nevertheless, the color and texture features of RGB image transformations marginally improved the 
modelling results for all soybean traits.

Agronomical interpretation. The results suggested the possibility of early predicting several end-season soy-
bean traits through the color and texture features of early-season canopy images. Since this subject was rarely explored, 
the true reasons for this possibility remained mysterious. Ushada et al.38 estimated moss traits through GLCM-based 
canopy texture features, and they proposed a black box relationship between canopy parameters and canopy images. In 
this section a set of arguments are presented in an attempt to rationalize the findings by connecting plant science (e.g. 
plant parameters) with digital image processing (e.g. color and texture features of canopy images).

Plant developmental traits, such as plant architecture and leaf features, are important factors that determine 
plant overall performance and can be reflected in an early-season canopy image. Since plant canopy appearance 
is influenced by such plant parameters, it is logical to assume the color and texture features of a plant canopy 
image are indicating, or representing certain plant parameters as well as the interactions between them. We iden-
tified five major plant parameters below that can be represented by the color and texture information of a canopy 
image. In other words, the variation of the color and texture indices among different canopy images is mainly 
caused by the following plant developmental traits:

•	 Leaf color
Plant leaf color is associated with biotic and abiotic stresses in plants, such as plant diseases39 and nutrient 
deficiencies40, which would typically lead to chlorophyll destruction or chlorophyll formation failure. One 
common type of tool in crop nitrogen management is a leaf color chart, which utilizes relative leaf greenness 
as an indicator for leaf nitrogen status. A healthy plant leaf should have a uniform green color distribution, 
and the corresponding canopy RGB image should have small standard deviations in all three channels. A 
diseased leaf may have necrotic lesions with non-green colors, which leads to larger standard deviations 
in all channels because of the nonuniform color distribution. Nutrient deficient or drought-stressed leaves 
often have chlorosis, which can lead to shifts of means in three channels. Essentially leaf color indicates plant 
vigor and health, and it is reasonable to imagine vigorous young plants having better performance later on.

•	 Leaf shape
Plants with different genotypes can have diverse leaf shapes, which would further influence the efficiency 
of light harvesting when leaf area density is high. From the perspective of a 2D image, leaf shape is also af-
fected by leaf or branch angle, which has a huge effect on the amount of light that can be received by a leaf. 
Though not being observed in our images, insect damages, plant diseases or environmental stresses can 
also change the shape of a leaf. In relation to canopy imagery, texture indices are affected by the shape of 
leaves since leaves are the fundamental subunits that give the overall canopy texture appearance. Leaf shape 
contains information regarding plant health and photosynthetic efficiency, thus is partially responsible for 
plant end-season performance.

•	 Leaf size
Since our images were all collected at the same growth stages, the leaf size difference between soybean plots 
could denote plant growth rates. Also leaf size is directly related with cell number and chlorophyll content, 
which could determine plant photosynthetic capacity41. Both plant growth rate and photosynthetic capac-
ity have been found to be correlated with yield42,43. Large leaf size can give plant canopies a “coarse” texture 
appearance, while small leaf size gives a “fine” look to canopies. This canopy appearance difference would 
eventually affect the values of texture indices.

•	 Leaf area density
Leaf area density describes how close plant leaves distribute spatially. Due to similar reasons for leaf angle 
and leaf size, leaf area density directly influences plant photosynthetic capacity, also it has an impact on 

Figure 8. Histogram of correlation coefficients between 455 color and texture indices of 6383 RGB images.
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plant photosynthetic efficiency by affecting the quantity of light interception, which in the long term can 
have a substantial accumulated effect on plant end-season performance. Also leaf area density indirectly 
shows the number of stems or branches, which is usually negatively correlated with plant height and lodg-
ing. High leaf area density can add complexity to plant canopy texture, whereas canopies with lower leaf 
area densities would have “simpler” appearances.

•	 Plant density

As the seeding rates for all soybean plots that we measured were the same, plant density showing in the 
images indicates the emergence rate and early plant population of a plot. Also plant density interferes with 
plant photosynthetic efficiency through influencing light interception efficiency. Soybean plots with higher 
plant density would appear more “uniform”, while the ones with low plant density can have an “irregular” 
canopy texture. In general one can expect a plot with fewer plants emerged to have less final yield.

In summary, as the color and texture indices were statistically derived from early-season canopy images, we 
speculate that they potentially represent various intertwined characteristics of a plant, such as leaf color, leaf 
shape, leaf angle, branch angle, leaf size, plant growth rate, leaf area density, stem number, branch number, ger-
mination rate, etc. These plant developmental parameters would further indicate or determine plant vigor, plant 
health, plant drought resistance, plant photosynthetic efficiency, plant photosynthetic capacity, etc. at early growth 
stages, which can have significant impacts on plant overall performance (Fig. 9).

Limitations of the study and directions for future studies. An image is often rescaled into fewer gray 
levels before calculating its GLCMs. However, assuming the more gray levels there are the more information an 
image contains, we chose 256 gray levels for our transformed image dataset. Research has found that the classi-
fication ability of some texture indices decreases when the number of gray levels increases22. Future studies can 
investigate the optimal gray level quantization for crop trait early prediction purpose by rescaling images into 128, 
64, 32, 16 or 8 gray levels and comparing the predictions results. Optimal pixel displacement can be explored in a 
similar manner. Also, instead of only computing GLCMs of two scanning directions, GLCMs of all four scanning 
directions can be computed and their texture indices can be averaged as more comprehensive representations of 
a canopy.

A flaw in our image dataset was that the images were not color-calibrated. Image color is subject to the lighting 
condition, which can cause inconsistent color representations across images, that is, the same pixel value intensity 
can represent different colors in different images. One common practice for image color calibration is to capture 
a camera calibration target in all images, such as ColorChecker (X-Rite, Grand Rapids, MI, USA)44. Yet, how to 
effectively implement a calibration target into a high-throughput phenotyping system when measuring thousands 
of plots remains a challenge for future research.

Figure 9. Schematic diagram explaining the potential relationships between color and texture information of 
early-season canopy images and end-season plant performance.
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The cameras employed in this study were not able to capture the fine vasculature of soybean leaves. Vasculature 
features such as vein density and vein diameter regulate plant mechanical strength and serve as channels for 
transporting nutrients such as water and minerals41, therefore they are crucial for plant photosynthesis. For an 
image with a sufficient spatial resolution, texture indices can be good indicators for subtle leaf vasculature differ-
ence among plant genotypes.

Aside from the modelling techniques that were compared in this study, other machine learning methods 
such as deep learning algorithms can be examined in the future as they have been demonstrated to have supe-
rior regression performances45,46. However, large calibration samples are typically required for the success of 
using such techniques. Also depending on the dataset, for example when the response predictor relationship is 
strictly linear, even a linear modelling technique such as PLSR can outperform machine learning techniques since 
machine learning methods may model for unnecessary noises37. When the issue of imbalanced data exist, which 
was the case in the study, merging categories with small sample sizes can be one way to improve classification 
accuracy. As 5-point scale scoring is a common practice in plant breeding, results displayed in five classes could 
be more desirable and informative for breeders and we chose not to merge classes.

The soybean image dataset in this study was collected at central and eastern Nebraska areas during the sum-
mer growing season of 2016. Without images collected from another location with different environmental con-
ditions or from another year as reference, significant location and year effects on plant end-season performance 
might exist. Thus, all conclusions made in this article are solely valid for soybean plots growing at central and 
eastern Nebraska in 2016 and should not be generalized. As the concept of this study is rudimentary, experiments 
for various crops under diverse environments across multiple years are needed to confirm the validity and appli-
cability of crop trait early prediction through RGB imagery.

conclusion
Based on the results of this study, here are a few conclusions that are only valid for soybean growing at central and 
eastern Nebraska in 2016:

 1. For the purpose of soybean trait early prediction through color and texture features of canopy RGB image-
ry, among the 10 compared modelling techniques, CB was the best regression technique, and RF was the 
best classification technique.

 2. Using both color and texture indices as well as variables that account for soybean plot location difference 
and data collection timing difference could provide the best prediction results.

 3. Theoretical and empirical transformations of RGB images did contain additional color and texture infor-
mation that could bring marginal improvements to the prediction results.

 4. Yield, Maturity and Seed Size were the soybean traits that might be predictable using color and texture 
features of early-season canopy RGB images.

Data Availability
Data of the study are available to readers upon request.
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