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Abstract: Adipose tissue is the most important energy metabolism and secretion organ, and these
functions are conferred during the adipogenesis process. However, the cause and the molecular events
underlying adipogenesis are still unclear. In this study, we performed integrated bioinformatics
analyses to identify vital genes involved in adipogenesis and reveal potential molecular mechanisms.
Five mouse high-throughput expression profile datasets were downloaded from the Gene Expression
Omnibus (GEO) database; these datasets contained 24 samples of 3T3-L1 cells during adipogenesis,
including 12 undifferentiated samples and 12 differentiated samples. The five datasets were
reanalyzed and integrated to select differentially expressed genes (DEGs) during adipogenesis
via the robust rank aggregation (RRA) method. Functional annotation of these DEGs and mining of
key genes were then performed. We also verified the expression levels of some potential key genes
during adipogenesis. A total of 386 consistent DEGs were identified, with 230 upregulated genes
and 156 downregulated genes. Gene Ontology (GO) analysis showed that the biological functions
of the DEGs primarily included fat cell differentiation, lipid metabolic processes, and cell adhesion.
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly
associated with metabolic pathways, the peroxisome proliferator-activated receptor (PPAR) signaling
pathway, regulation of lipolysis in adipocytes, the tumor necrosis factor (TNF) signaling pathway,
and the FoxO signaling pathway. The 30 most closely related genes among the DEGs were identified
from the protein–protein interaction (PPI) network and verified by real-time quantification during
3T3-L1 preadipocyte differentiation. In conclusion, we obtained a list of consistent DEGs during
adipogenesis through integrated analysis, which may offer potential targets for the regulation of
adipogenesis and treatment of adipose dysfunction.

Keywords: gene expression omnibus; adipogenesis; integrated bioinformatics; robust rank
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1. Introduction

When preadipocytes differentiate into mature adipocytes during adipogenesis, adipose tissue
gains its specific physiological functions: being the primary storage site for fatty acids and the largest
endocrine organ. Much of our understanding of adipogenesis comes from in vitro studies of preadipocyte
models (e.g., the 3T3-L1 and 3T3-F442A cell lines) [1,2]. Adipogenesis (adipocyte differentiation)
is a multistep biological process that is highly controlled. The expression of several transcription
factors and adipogenic genes during adipogenesis causes adipocyte development. During the terminal
differentiation stage, the cell morphology changes dramatically (from fibroblastic to spherical), and
preadipocytes synchronously gain the characteristics of mature adipocytes. Glucose transporters,
enzymes involved in triglyceride metabolism, insulin receptors, and adipocyte-secreted products
all show increased activity and quantity, which is necessary for lipid metabolic balance and the
inflammatory response. In the past few decades, a number of regulatory factors related to adipogenic
programs have been gradually unearthed.

Some studies determined the gene expression profiles during adipogenesis, and a large number of
differentially expressed genes (DEGs) related to the initiation of adipogenesis have been identified [3–7].
However, a frequent cause of confusion is the inconsistency of these results due to differences in sample
batch, detection platforms, and data processing methods. Therefore, each independent experiment
has certain limitations. We need to integrate these results to find credible DEGs that are stable in
multiple independent studies using an unbiased approach. In this way, we can fully utilize multiple
expression profiles obtained by high-throughput technology to find reliable and effective molecular
targets. In this study, to identify DEGs associated with adipogenesis, the robust rank aggregation
(RRA) approach was used to integrate multiple ranked gene lists [8]. The RRA method is a powerful
ordering algorithm, and for all of the genes in the final ranked gene list, this method assigns a p-value
to estimate significance probabilities indicating that the result is better than expected by chance [9].
The size of the p-value corresponds to the position and significance of the corresponding gene in the
final ranked list, meaning that the smaller the p-value is, the higher the ranking position of the gene.

In this study, to more accurately identify DEGs associated with adipogenesis, we reanalyzed
five expression profile datasets from a public expression database and then integrated these results.
With these DEGs, a number of subsequent bioinformatic analyses were performed. Here, we aimed to
explore the main pathways and processes associated with adipocyte differentiation and provide key
targets for regulating adipose dysfunction and metabolic disorders.

2. Results

2.1. Expression Profile Datasets and Identification of Differentially Expressed Genes (DEGs) Associated
with Adipogenesis

Five expression profile datasets from the Gene Expression Omnibus (GEO) database were
selected. In total, 24 samples were obtained, including 12 undifferentiated 3T3-L1 cell samples and 12
differentiated 3T3-L1 cell samples (Table 1). The GSE20696 [7] and GSE93637 [3] expression microarray
datasets were standardized, and DEGs were screened with the limma package (|Log2 fold change
(log2FC)| > 1, and corrected p-value < 0.05). The high-throughput sequencing datasets GSE50934 [6],
GSE95533 [4] and GSE50612 [5] were mapped, and the expression level was calculated. DEGs were
screened by the DESeq2 package (|log2FC| > 1 and corrected p-value < 0.05). The numbers of DEGs
in these datasets are shown in Table 1. The cluster heatmaps of the top 40 DEGs from the two sets of
sample data included in each of the five expression profile datasets are shown in Figure 1a–e.
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Table 1. Undifferentiated and differentiated 3T3-L1 cell samples from the NCBI Gene Expression
Omnibus (GEO) database used in this study.

Reference GEO Platform Study Type Differentiation Stage of Samples Number of DEGs
(Up/Down)Undifferentiated Differentiated

Mikkelsen, T.S.
et al. (2010) [7] GSE20696 GPL1261 microarray GSM519581

GSM519582
GSM519585
GSM519586

2898
(1425/1473)

Romero, M. et
al. (2018) [3] GSE93637 GPL1261 microarray

GSM2459304
GSM2459305
GSM2459306

GSM2459310
GSM2459311
GSM2459312
GSM2459313

1119
(591/528)

Duteil, D. et al.
(2014) [6] GSE50934 GPL13112 RNA-seq

GSM1232686
GSM1232687
GSM1232688

GSM1232689
GSM1232690
GSM1232691

2685
(1552/1133)

Siersbæk, R. et
al. (2017) [4] GSE95533 GPL18480 RNA-seq GSM2515916

GSM2515917
GSM2515922
GSM2515923

4416
(2197/2219)

Al, A.H. et al.
(2015) [5] GSE50612 GPL13112 RNA-seq GSM1224678

GSM1224679
GSM1224682
GSM1224683

3966
(2170/1796)
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Figure 1. Hierarchical clustering heatmap of the top 20 up- and down-regulated differentially 
expressed genes (DEGs) screened in each Gene Expression Omnibus (GEO) dataset. (a) GSE20696 
data, (b) GSE93637 data, (c) GSE50934 data, (d) GSE95533 data, and (e) GSE50612 data. Each row 
represents one gene, and each column represents one sample. Red indicates that the expression of 
genes is relatively upregulated, and green indicates that the expression of genes is relatively 
downregulated. 

Figure 1. Hierarchical clustering heatmap of the top 20 up- and down-regulated differentially
expressed genes (DEGs) screened in each Gene Expression Omnibus (GEO) dataset. (a) GSE20696
data, (b) GSE93637 data, (c) GSE50934 data, (d) GSE95533 data, and (e) GSE50612 data. Each row
represents one gene, and each column represents one sample. Red indicates that the expression of genes
is relatively upregulated, and green indicates that the expression of genes is relatively downregulated.
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2.2. Identification of DEGs Associated with Adipogenesis Using Integrated Bioinformatics

After the above five adipogenesis datasets were reanalyzed by the limma [10] or DESeq2 [11]
package, five gene lists ranked according to log2FC value were obtained and then analyzed by RRA
(|log2FC| > 1 and corrected p-value < 0.05). Through rank analysis, we identified 386 DEGs, with 230
upregulated genes and 156 downregulated genes. A heatmap of the top 20 up- and down-regulated
genes is shown in Figure 2. The integrated analysis results for the top 20 up- and down-regulated
DEGs are shown in Table 2.
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Figure 2. Heatmap of the top 20 up- and down-regulated DEGs in the integrated analysis. Each row
represents one gene, and each column represents one dataset. Red indicates that the expression of genes
is relatively upregulated, and green indicates that the expression of genes is relatively downregulated.
The number in each rectangle represents the value of log2FC.
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Table 2. Top 20 up- and down-regulated DEGs identified during adipogenesis via integrated analysis.

Top 20 Upregulated Genes Top 20 Downregulated Genes

Symbol log2FC p-Value Corrected
p-Value Symbol log2FC p-Value Corrected

p-Value

Cidec 8.815805 2.15 × 10−15 5.34 × 10−11 Bnc1 −4.27787 7.38 × 10−12 1.83 × 10−7

Retn 8.50511 5.14 × 10−15 1.28 × 10−10 Pcdh18 −3.56837 8.39 × 10−11 2.09 × 10−6

G0s2 8.359012 2.39 × 10−14 5.94 × 10−10 Nrg1 −3.52592 1.30 × 10−10 3.24 × 10−6

Adipoq 9.012189 1.81 × 10−13 4.51 × 10−9 Ogn −3.95531 2.77 × 10−10 6.89 × 10−6

Cfd 8.441624 1.81 × 10−13 4.51 × 10−9 Mmp9 −3.64602 3.46 × 10−10 8.60 × 10−6

Adig 7.229626 1.17 × 10−12 2.90 × 10−8 Tubb2b −2.96698 3.77 × 10−10 9.37 × 10−6

Orm1 7.280763 9.69 × 10−12 2.41 × 10−7 Plat −3.95792 4.36 × 10−10 1.09 × 10−5

Dgat2 6.066281 1.06 × 10−11 2.63 × 10−7 Slit2 −3.3568 7.55 × 10−10 1.88 × 10−5

Mc2r 6.186546 1.10 × 10−11 2.75 × 10−7 Rerg −3.95606 1.10 × 10−9 2.73 × 10−5

Lgals12 6.873706 1.67 × 10−11 4.15 × 10−7 Thbs1 −3.27764 1.16 × 10−9 2.87 × 10−5

Mrap 7.563215 2.17 × 10−11 5.39 × 10−7 Nfkbie −2.84309 1.82 × 10−9 4.53 × 10−5

Acsl1 6.016773 3.73 × 10−11 9.29 × 10−7 Il17rd −3.02351 2.32 × 10−9 5.77 × 10−5

Wfdc21 7.632637 4.86 × 10−11 1.21 × 10−6 Il1rl1 −3.70607 2.50 × 10−9 6.21 × 10−5

Syn2 5.030408 8.88 × 10−11 2.21 × 10−6 Tnc −3.78602 4.22 × 10−9 1.05 × 10−4

Car3 5.021359 1.14 × 10−10 2.83 × 10−6 Ptger4 −3.15885 4.22 × 10−9 1.05 × 10−4

Fabp4 6.257684 1.34 × 10−10 3.32 × 10−6 Fbn1 −2.96534 4.99 × 10−9 1.24 × 10−4

Cd36 7.115236 1.48 × 10−10 3.69 × 10−6 Atp1b1 −4.18269 5.09 × 10−9 1.27 × 10−4

Hp 6.709448 1.60 × 10−10 3.98 × 10−6 Ptprv −3.41098 6.87 × 10−9 1.71 × 10−4

Pnpla2 5.031089 1.77 × 10−10 4.40 × 10−6 Siglecg −3.88948 7.62 × 10−9 1.90 × 10−4

Gpd1 6.752793 2.03 × 10−10 5.05 × 10−6 Pla2g7 −3.91415 7.64 × 10−9 1.90 × 10−4

2.3. Enrichment Analysis of the Gene Ontology (GO) Terms of the DEGs

Significant results from the Gene Ontology (GO) term analysis of DEGs associated with
adipogenesis are shown in Table 3. The enrichment results for the biological process (BP) GO category
showed that the upregulated genes were primarily involved in fat cell differentiation, lipid metabolic
processes, and oxidation-reduction processes. The downregulated genes were primarily concentrated
in cell adhesion, positive regulation of cell-substrate adhesion, and positive regulation of neuron
projection development. The enrichment results for cell composition (CC) GO category showed
that the upregulated genes were primarily concentrated in mitochondria, lipid particles, and the
cytosol. The downregulated genes were mainly enriched in extracellular regions, the proteinaceous
extracellular matrix, and the extracellular matrix. The enrichment results for the molecular function
(MF) GO category showed that the upregulated genes were mainly enriched in oxidoreductase activity.
The downregulated genes were mainly enriched in heparin binding, calcium ion binding, and integrin
binding. Moreover, the correspondence between genes and biological processes is shown in Figure 3.

Table 3. Gene Ontology (GO) term enrichment analysis of DEGs associated with adipogenesis.

DEGs Term Category Count FDR

up

brown fat cell differentiation BP 19 1.63 × 10−23

lipid metabolic process BP 27 3.04 × 10−8

oxidation-reduction process BP 32 6.77 × 10−8

metabolic process BP 23 3.03 × 10−5

fat cell differentiation BP 10 4.76 × 10−4

lipid storage BP 7 8.27 × 10−4

triglyceride catabolic process BP 6 4.12 × 10−3

glucose homeostasis BP 10 3.70 × 10−2

white fat cell differentiation BP 5 4.44 × 10−2

mitochondrion CC 52 9.65 × 10−8

lipid particle CC 12 2.11 × 10−7

cytosol CC 42 8.61 × 10−3



Int. J. Mol. Sci. 2018, 19, 3557 6 of 16

Table 3. Cont.

DEGs Term Category Count FDR

intracellular membrane-bounded organelle CC 24 1.60 × 10−2

mitochondrial membrane CC 9 2.25 × 10−2

oxidoreductase activity MF 27 3.98 × 10−6

down

cell adhesion BP 20 8.40 × 10−6

positive regulation of cell-substrate adhesion BP 7 1.19 × 10−3

positive regulation of neuron projection development BP 9 1.74 × 10−2

extracellular region CC 51 4.64 × 10−14

proteinaceous extracellular matrix CC 24 2.78 × 10−13

extracellular matrix CC 21 1.28 × 10−10

extracellular space CC 41 1.82 × 10−9

basement membrane CC 11 4.33 × 10−6

calcium ion binding MF 24 4.46 × 10−6

integrin binding MF 9 1.34 × 10−3

heparin binding MF 13 2.56 × 10−6
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2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis of DEGs

The top 20 significant pathways for the upregulated genes were selected (Table 4). The upregulated
genes were mainly enriched in metabolic pathways, the proliferator-activated receptor (PPAR)
signaling pathway, and regulation of lipolysis in adipocytes, and were also enriched in some
adipogenesis-related pathways, including the AMP-activated protein kinase (AMPK) signaling
pathway, fat digestion and absorption, adipocytokine signaling pathway, and insulin signaling pathway.
On the other hand, 11 significant pathways for the downregulated genes were filtered out (Table 4).
Except for some diseases and cancer-related pathways, the downregulated genes were mainly enriched
in the tumor necrosis factor (TNF) signaling pathway, forkhead box O (FoxO) signaling pathway, and
some fundamental biochemical processes (such as focal adhesion, endocrine and other factor-regulated
calcium reabsorption, and glycosaminoglycan biosynthesis—keratan sulfate). Cytoscape was used to
visualize the relationship between genes and pathways. The genes and pathway nodes are represented
by circles. The results are shown in Figure 4.

Table 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs
in adipogenesis.

DEGs Term Count FDR

up

Metabolic pathways 42 1.34 × 10−16

PPAR signaling pathway 15 3.33 × 10−15

Regulation of lipolysis in adipocytes 9 1.20 × 10−8

AMPK signaling pathway 10 5.06 × 10−7

Valine, leucine and isoleucine degradation 7 3.31 × 10−6

Non-alcoholic fatty liver disease (NAFLD) 9 2.05 × 10−5

Propanoate metabolism 5 5.31 × 10−5

Glycerolipid metabolism 6 5.31 × 10−5

Metabolism of xenobiotics by cytochrome P450 6 7.77 × 10−5

Glycolysis/Gluconeogenesis 6 7.77 × 10−5

Pyruvate metabolism 5 8.57 × 10−5

Nitrogen metabolism 4 8.57 × 10−5

Insulin resistance 7 8.57 × 10−5

Fat digestion and absorption 5 8.57 × 10−5

Adipocytokine signaling pathway 6 8.90 × 10−5

Carbon metabolism 7 1.09 × 10−4

Proximal tubule bicarbonate reclamation 4 1.63 × 10−4

Fatty acid degradation 5 1.65 × 10−4

Glucagon signaling pathway 6 4.20 × 10−4

Biosynthesis of amino acids 5 1.26 × 10−3

down

Malaria 4 7.99 × 10−3

Transcriptional misregulation in cancer 6 7.99 × 10−3

Rheumatoid arthritis 4 2.24 × 10−2

Bladder cancer 3 2.67 × 10−2

TNF signaling pathway 4 3.24 × 10−2

Focal adhesion 5 3.24 × 10−2

Endocrine and other factor-regulated calcium reabsorption 3 3.24 × 10−2

Glycosaminoglycan biosynthesis—keratan sulfate 2 3.51 × 10−2

Synaptic vesicle cycle 3 3.51 × 10−2

FoxO signaling pathway 4 3.51 × 10−2

Bile secretion 3 4.35 × 10−2
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2.5. Protein–Protein Interaction (PPI) Network Construction and Module Analysis of DEGs

To analyze the interaction among DEG expression products, the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database [12] was used to construct a PPI network. A total of
247 nodes and 751 edges were obtained with a combined score >0.4, as shown in Figure 5a (isolated
nodes were ignored). The top 30 highest degree nodes are shown in Figure 5b. Among these genes,
adiponectin, C1Q and collagen domain containing (Adipoq) showed the highest node degree, which was
32. Then, nine modules were selected using the plug-in Molecular Complex Detection (MCODE) to
screen the above PPI network. The top 4 modules are shown in Figure 5c–f. In addition, functional
annotations for these top 30 genes (only leucine-rich repeat kinase 1 (Lrrk1), actin, alpha 2, smooth muscle,
aorta (Acta2), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (Timp1) were
downregulated) were implemented (Table 5). GO analysis showed that the genes were mainly related
to lipid metabolism, oxidation-reduction, and fat cell differentiation. KEGG analysis showed that
they were mainly associated with the PPAR signaling pathway, metabolism pathways, and the AMPK
signaling pathway.

Table 5. Enrichment analysis of the top 30 genes with the highest degrees.

Method Term Count FDR Genes

GO

metabolic process 10 3.98 × 10−5 Dbt, Aldh1l1, Acsl1, Acadm, Bckdhb, Aldh3b2, Pnpla2,
Aldh1a7, Pdhb, Lipe

oxidation-reduction process 9 1.12 × 10−2 Ldha, Aldh1l1, Acadm, Adhfe1, Adh1, Bckdhb, Aldh3b2,
Aldh1a7, Pdhb

lipid storage 4 1.51 × 10−2 Dgat1, Cd36, Dgat2, Pnpla2

brown fat cell differentiation 4 3.07 × 10−2 Slc2a4, Pparg, Fabp4, Adipoq

negative regulation of
sequestering of triglyceride 3 3.54 × 10−2 Pparg, Abhd5, Pnpla2

KEGG

PPAR signaling pathway 8 2.89 × 10−13 Acadm, Adipoq, Fabp4, Cd36, Acsl1, Pck1, Pparg, Nr1h3

Metabolic pathways 13 1.61 × 10−10 Acadm, Adh1, Bckdhb, Dbt, Dgat1, Acsl1, Ldha, Pck1,
Aldh1a7, Pnpla2, Dgat2, Pdhb, Aldh3b2

AMPK signaling pathway 6 1.88 × 10−8 Adipoq, Cd36, Lipe, Pck1, Pparg, Slc2a4

Glycolysis/Gluconeogenesis 5 3.90 × 10−8 Adh1, Ldha, Pck1, Pdhb, Aldh3b2

Adipocytokine signaling pathway 5 5.04 × 10−8 Adipoq, Cd36, Acsl1, Pck1, Slc2a4



Int. J. Mol. Sci. 2018, 19, 3557 9 of 16Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 16 

 

 
Figure 5. Protein–protein interaction (PPI) network construction and module analysis of DEGs 
associated with adipogenesis. (a) Using Cytoscape software, the PPI network was visualized 
(isolated nodes were removed). The node size represents the node degree (a larger size indicates a 
higher degree). The width and transparency of the edge indicate the combined score of the edge (a 
wider or more opaque edge indicates a higher combined score). (b) Top 30 genes with the highest 
degrees in the PPI network. (c–f) Molecular Complex Detection (MCODE) module screening for the 
DEGs, including module 1 (score = 11), module 2 (score = 6), module 3 (score = 5.467), and module 4 
(score = 4.6). 

2.6. Verification of Changes in DEG Expression During 3T3-L1 Preadipocyte Differentiation 

We believe that the top 30 highest degree genes in the PPI network may play a key regulatory 
role in the process of adipogenic differentiation. Here, we measured their expression levels before 
and after 3T3-L1 preadipocyte differentiation. First, we induced differentiation of 3T3-L1 
preadipocytes and performed oil red O staining (Figure 6a). The results showed that the lipid 
droplets were numerous and large after differentiation. Next, we determined the expression levels of 
17 potential key genes in undifferentiated and differentiated 3T3-L1 cells through quantitative 
real-time PCR (qRT-PCR) (Figure 6b). The results showed that their expression varied significantly 
during adipogenesis. The direction of change was consistent with the results of the previous 
integrated bioinformatic analysis. 

Figure 5. Protein–protein interaction (PPI) network construction and module analysis of DEGs
associated with adipogenesis. (a) Using Cytoscape software, the PPI network was visualized (isolated
nodes were removed). The node size represents the node degree (a larger size indicates a higher
degree). The width and transparency of the edge indicate the combined score of the edge (a wider or
more opaque edge indicates a higher combined score). (b) Top 30 genes with the highest degrees in the
PPI network. (c–f) Molecular Complex Detection (MCODE) module screening for the DEGs, including
module 1 (score = 11), module 2 (score = 6), module 3 (score = 5.467), and module 4 (score = 4.6).

2.6. Verification of Changes in DEG Expression During 3T3-L1 Preadipocyte Differentiation

We believe that the top 30 highest degree genes in the PPI network may play a key regulatory
role in the process of adipogenic differentiation. Here, we measured their expression levels
before and after 3T3-L1 preadipocyte differentiation. First, we induced differentiation of 3T3-L1
preadipocytes and performed oil red O staining (Figure 6a). The results showed that the lipid droplets
were numerous and large after differentiation. Next, we determined the expression levels of 17
potential key genes in undifferentiated and differentiated 3T3-L1 cells through quantitative real-time
PCR (qRT-PCR) (Figure 6b). The results showed that their expression varied significantly during
adipogenesis. The direction of change was consistent with the results of the previous integrated
bioinformatic analysis.
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Figure 6. Verification of differential expression of key genes during 3T3-L1 preadipocyte differentiation.
(a) Undifferentiated (Day 0) and differentiated (Day 8, Oil red O staining) 3T3-L1 cells under the
induced differentiation process. (b) Relative expression levels of potential key genes were measured in
undifferentiated and differentiated 3T3-L1 cells by qRT-PCR. Three independent experiments were
performed for all of these groups, and the quantitative results are expressed as the mean ± SD of three
independent experiments. ** indicates p < 0.01.

3. Discussions

Adipose tissue is composed of many cell types, and mature adipocytes account for only two-thirds
of adipose tissue. Undifferentiated cells are also found in adipose tissue, including preadipocytes
and stem cells. Stem cells have the potential to differentiate into various types of cells, and the
direction of the differentiation of preadipocytes has been determined. Proliferation and differentiation
of preadipocytes are essential for the continued development and maintenance of adipose tissue.
Spalding et al. found that almost 50% of human subcutaneous fat is renewed every 8 years,
suggesting that adipocytes are a dynamic cell type that undergoes constant substitution by newborn
adipocytes [13]. In other words, adipogenesis fundamentally determines the expansion and functional
properties of adipose tissue. Considering the occurrence of increases in public health problems caused
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by adipose dysfunction and metabolic disorders (such as obesity, diabetes mellitus, insulin resistance,
and cardiovascular disease) on a global scale, it is necessary to explore the fundamental molecular
mechanism of adipogenesis [14].

With the development of high-throughput technology, a large amount of transcriptome data
is generated and uploaded to a public expression database. Fully exploiting these large datasets
can provide good value to life science research. Given the inevitable errors among independent
experiments, we urgently need to integrate the results of various experiments to more accurately
identify the intrinsic components and elucidate the major molecular mechanisms. In this study,
we integrated five gene expression profile datasets of the adipogenesis processes from different
independent experiments. A total of 386 DEGs were identified, including 230 upregulated genes
and 156 downregulated genes. The upregulated gene list contained many fat marker genes (such as
Adipoq, peroxisome proliferator activated receptor gamma (Pparg), and solute carrier family 2 (facilitated glucose
transporter), member 4 (Slc2a4)), and a large number of adipogenic differentiation studies have been
carried out around them. The downregulated gene list includes the well-known antiadipogenesis gene
delta-like 1 (Dlk1), but many of the other genes related to adipogenic differentiation have rarely been
reported. In general, the role of these genes with dramatic changes in expression during adipogenesis
deserves a deeper understanding. This study provides a reliable collection of DEGs associated with
adipogenic processes, providing a large number of potential subjects for subsequent research.

In addition, functional annotation of DEGs was performed to fully understand the processes and
pathways in which they participate. GO analysis of the upregulated genes revealed that adipocyte
differentiation and concomitant activities, such as lipid metabolism and redox activity, were major
biological processes in which they were involved. The KEGG analysis of upregulated genes showed
consistent results, with the PPAR signaling pathways and lipid metabolism-related pathways (such
as metabolic pathways and regulation of lipolysis in adipocytes) playing a dominant role. The PPAR
signaling pathway has been extensively studied as a core pathway in the process of adipogenic
differentiation. Peroxisome proliferator-activated receptor gamma (PPARG, encoded by Pparg) is the
master regulator of adipose differentiation; its expression is necessary for initiating differentiation and
maintaining a differentiated state, and a large number of prodifferentiation factors function through its
activation [15]. The GO and KEGG analyses of downregulated genes also showed consistent results,
with biological processes and pathways involved in adhesion and activity of the extracellular matrix
(ECM) predominating. Phenotypic changes in cells during fat differentiation were apparent and were
accompanied by changes in the levels and type of ECM components [16], and proteolytic degradation
of preadipocytes by ECM components is required for cell-shape changes, adipocyte-specific gene
expression, and lipid accumulation [17]. On the other hand, downregulated genes are also enriched in
some antiadipogenic differentiation pathways, such as the TNF signaling pathway [18] and the FoxO
signaling pathway [19].

A PPI network of DEG-encoded proteins was constructed and the 30 most closely related genes
were selected. Further functional annotation of these key genes was performed, and the results were
consistent with the functional annotations of the entire set of DEGs. They were mainly concentrated in
the same biological processes and pathways involved in adipogenesis. The findings further suggested
that the 30 key genes that we screened were credible because the 30 key genes were sufficient to
represent all the DEGs and reflect the main activities of adipogenesis. We believe that these genes with
the highest node degree play a major regulatory role in multiple processes of adipogenic differentiation.
Some of these genes are well-known as key genes in fat differentiation and lipid metabolism functions,
such as the transcriptional regulation of adipogenesis (Pparg), insulin sensitive glucose transport
(Slc2a4) [20], fatty acid transport (fatty acid binding protein 4 (Fabp4), CD36 Molecule (Cd36)) [21,22],
triacylglycerol (TAG) synthesis (diacylglycerol O-acyltransferase 1 (Dgat1), diacylglycerol O-acyltransferase
1 (Dgat2), acyl-CoA synthetase long-chain family member 1 (Acsl1)) [23–26], lipolysis and its regulation
(lipase, hormone sensitive (Lipe), patatin-like phospholipase domain containing 2 (Pnpla2), abhydrolase domain
containing 5 (Abhd5)) [27,28], and the endocrine functions of adipocytes (Adipoq, complement factor D
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(Cfd), resistin (Retn)) [29,30]. In addition, tissue inhibitor of metalloproteinases-1 (TIMP1, encoded by
Timp1) is a natural inhibitor of matrix metalloproteinases (MMPs) [31], a cluster of peptidases that
are involved in degrading and remodeling the ECM [32,33]. MMP9 (a member of the MMP family,
encoded by Mmp9) is secreted by adipocytes, and its proteolytic activity was induced during adipocyte
differentiation [34]. The Nr1h3 gene encodes a nuclear receptor, Nuclear Receptor Subfamily 1 Group
H Member 3 (NR1H3, also known as LXRα), which is a vital regulator in hepatic de novo lipogenesis
and lipid homeostasis [35]. NR1H3 exhibits ligand-dependent activation activity and is activated
primarily by cellular cholesterols, leading to the induction of transcription of a downstream nuclear
transcriptional factor, sterol regulatory element binding transcription factor 1 (SREBF1) [36]. The Pck1
gene is mainly responsible for the regulation of gluconeogenesis [37] and is closely related to diabetes
mellitus and obesity [38]. Cytosolic isozyme of phosphoenolpyruvate carboxykinase (PEPCK-C,
encoded by Pck1) stimulates the transformation of oxaloacetate to phosphoenolpyruvate (PEP) in fat
cells [39]. As a member of the aldehyde dehydrogenase 3 (ALDH3) family, aldehyde dehydrogenase
3 family member B2 (ALDH3B2, encoded by Aldh3b2) is localized in lipid droplets and is responsible for
the removal of lipid aldehydes, exhibiting broad substrate specificity towards medium- and long-chain
aldehydes [40]. The remaining genes with high node degrees, such as Lrrk1, aldehyde dehydrogenase
1 family, member L1 (Aldh1l1), and alcohol dehydrogenase, iron containing, 1 (Adhfe1), are very rarely
reported to be related to adipogenesis. These genes deserve more attention from frontline researchers,
and their potential role in adipogenesis requires further experimental verification.

Finally, we verified the expression changes in some key genes before and after 3T3-L1 preadipocyte
differentiation. Combining the results of integrated bioinformatic analyses with the results of gene
expression measurements, this study has greatly narrowed the range of potential key genes and
provides high-value targets for subsequent adipogenic differentiation research.

4. Materials and Methods

4.1. Gene Expression Profile Data

The gene expression profile datasets GSE50934, GSE95533, GSE50612, GSE93637, and GSE20696
were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The platforms of the
five GEO datasets were GPL13112 Illumina HiSeq 2000 (Mus musculus) for the GSE50934 and GSE50612
datasets, GPL18480 Illumina HiSeq 1500 (Mus musculus) for the GSE95533 dataset, and GPL1261
[Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array for the GSE93637 and GSE20696 datasets.

4.2. Identification of DEGs

For the raw data of GSE50934, GSE95533, and GSE50612, reads were mapped to the mouse
genome (GRCm38) using HiSat2 [41], and annotated genes were quantified with featureCounts [42].
Differential expression analysis was performed using the DESeq2 R package. For the raw data
of GSE93637 and GSE20696, normalization and differential expression analysis were performed
using the limma R package. DESeq2 and limma R package were all from the Bioconductor project
(https://www.bioconductor.org/). All the R packages used in this study were deployed in the
programming language R (version 3.3.3, Auckland, New Zealand).

4.3. Integration of Gene Expression Profile Data

The RRA method was based on the assumption that all genes are unordered in each list. In this
study, only the overlapping DEGs were used for the integrated analysis, and the five lists of genes
were ranked by expression level in the five datasets. The RobustRankAggreg package of programming
language R was downloaded from the Comprehensive R Network (https://cran.r-project.org/).

https://www.ncbi.nlm.nih.gov/geo/
https://www.bioconductor.org/
https://cran.r-project.org/
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4.4. GO Term and KEGG Pathway Enrichment Analyses

For functional annotation of the DEGs, GO term enrichment analysis was performed using the
online Visualization and Integrated Discovery (DAVID) software (https://david.ncifcrf.gov/) [43,44],
for the three GO categories (BP, CC and MF). In addition, KEGG pathway enrichment analysis was
carried out using KEGG Orthology-Based Annotation System (KOBAS) software (version 3.0, Peking,
China (http://kobas.cbi.pku.edu.cn/)) [45,46]. Significant enrichment was considered for a corrected
p-value (FDR) < 0.05.

4.5. PPI Network Construction and Module Analysis

The list of genes was mapped to the STRING database (http://www.string-db.org/) to construct
a functional protein association network. Then, the PPI network was visualized with Cytoscape
software (version 3.6.0, Washington, DC, USA) (http://www.cytoscape.org/). The degree of a node is
the number of edges (interactions) incident to that node. A node is important if it links to many other
nodes. The genes at the top of the degree distribution (≥90% percentile) in the network were defined
as key genes (central genes). The plug-in MCODE (http://apps.cytoscape.org/apps/mcode) was
used to scan the PPI network to identify densely connected regions. A p-value < 0.05 was considered
statistically significant.

4.6. Cell Culture, Differentiation, and Lipid Droplet Staining

The culture and differentiation of 3T3-L1 preadipocytes were performed as previously described
in Reference [47]. For lipid droplet (LD) staining, cells were washed with phosphate buffer saline (PBS)
three times and then fixed in 4% paraformaldehyde for 30 min at room temperature. After washing
three times with PBS, the cells were stained with a 60% filtered oil red O (Sigma, St. Louis, MO,
USA) stock solution (0.3 g/100 mL of isopropanol). The cells were then rinsed three times with
PBS. All images were obtained using an inverted fluorescence microscope FV500-IX71 (Olympus,
Tokyo, Japan).

4.7. qRT-PCR Validation of Key Genes

Total RNA from undifferentiated and differentiated 3T3 cells was extracted using RNAiso (Takara,
Dalian, China). A PrimeScriptTM RT Reagent Kit with gDNA Eraser (Takara) was used to perform
reverse transcription of total RNA. A SYBR® Premix Ex TaqTM II Kit (Takara) was used to carry
out qRT-PCR with an ABI 7500 Real-Time PCR system (Applied Biosystems, Foster, CA, USA).
Gapdh served as an internal reference to normalize gene expression levels via the 2−∆∆Ct method,
as in Reference [48]. Some of the key genes whose expression trends during the adipogenesis of
3T3-L1 preadipocytes were known were excluded, and qRT-PCR validation was performed for the
remaining genes.

4.8. Statistical Analysis

All the quantitative experiments were performed three times, and the quantitative results were
expressed as the mean ± SD. Comparisons between two sets of groups were analyzed using the
Student’s two-tailed t-test with GraphPad Prism 7. Statistical significance depended on a value of
p < 0.05 (significant) or p < 0.01 (extremely significant).

5. Conclusions

Given the limitations of independent experiments, analyzing different datasets often yields
different results, especially when performing differential expression analysis. In this study, we used
the RRA method to integrate the results of five high-throughput datasets well, and we obtained
consistent DEGs showing an association with adipogenesis. This work will contribute to the study of
adipogenesis in the future, thus promoting our understanding of the molecular mechanisms underlying

https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
http://www.string-db.org/
http://www.cytoscape.org/
http://apps.cytoscape.org/apps/mcode
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adipogenesis, and it may offer potential targets for the regulation of adipogenesis and the treatment of
adipose dysfunction. Further experimental verification is needed to explore the specific functions of
these DEGs.
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