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Abstract: Osteoporosis, characterized by reduced bone mass and increased bone fragility, is a disease
prevalent in women. Likewise, breast cancer is a multifactorial disease and considered the major cause
of mortality in premenopausal and postmenopausal women worldwide. Our data demonstrated the
association of the MYLK gene and PTGS1 gene variants with osteoporosis and benign breast tumor
risk and the impact of ovariectomy on osteoporosis in Korean women. We performed a genome-
wide association study (GWAS) of women with osteoporosis and benign breast tumors. There were
60 single nucleotide polymorphisms (SNPs) and 12 SNPs in the MYLK and PTGS1 genes, associated
with benign breast tumors and osteoporosis. Our study showed that women with homozygous MYLK
rs12163585 major alleles had an increased risk of osteoporosis following ovariectomy compared to
those with minor alleles. Women carrying the minor PTGS1 rs1213265 allele and not treated via
ovariectomy carried a higher risk of osteoporosis than those who underwent ovariectomy with a
homozygous genotype at the major alleles. Our results suggest that both the MYLK and PTGS1 genes
are genetic factors associated with the phenotypes, and these associations appear to be modulated
by ovariectomy.

Keywords: osteoporosis; benign breast tumor; ovariectomy; MYLK; PTGS1; genome-wide associa-
tion study

1. Introduction

Osteoporosis is defined by low bone mass and deterioration in bone architecture [1,2].
It is mainly caused by factors such as increasing age, postmenopausal status, deficiencies in
sex hormones like estrogen and androgen, premature ovarian failure, ethnic background,
low body mass index, and vitamin D deficiency [3]. Previous studies have shown that
early or premature menopause and ovarian resection were associated with the risk of osteo-
porosis due to the effect of estrogen deficiency on osteoclasts [4–6]. The Korean National
Health and Nutrition Examination Survey (KNHANES) reported that the incidence of
osteoporosis in Korean females aged 50 years and older was 38% [7].

Benign breast disease, which proliferates in epithelial tissue, is a breast cancer precur-
sor associated with an increased risk of breast cancer [8,9]. Women carrying benign breast
tumors had a two-fold increased risk of breast cancer and a five-fold increased risk of an
atypical hyperplasia [8]. Breast cancer is a multifactorial disease and the major cause of
mortality in premenopausal and postmenopausal women worldwide [10]. The accumula-
tion of adipocytes in postmenopausal women can influence breast cancer development by
increasing estrogen and insulin levels [11–13].

Thus, biochemical and genetic links between postmenopausal osteoporosis and breast
disease are of great interest. Both bone and breast tissue are regulated not only by estrogen,
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which is a hormone that controls bone density, but also receptor activator of nuclear
factor-κB ligand (RANKL), thereby restoring the equilibrium between bone formation and
resorption [14–17]. In postmenopausal women, breast cancer and osteoporosis are common,
and although both are dependent on estrogens this leads to conflicting implications for
the diagnosis and treatment, that is, estrogens reduce the risk of fractures but increase
the risk of breast cancer. In particular, the RANKL/RANK pathway, regulating osteoclast
differentiation and activation, is also involved in breast carcinogenesis [18].

To prevent and treat heavy menstrual bleeding, dysmenorrhea, chronic pelvic pain,
endometriosis, uterine prolapse, and gynecologic cancer, ovariectomy, a major gyneco-
logic procedure, has been performed in premenopausal women [4]. Breast cancer and
osteoporosis are affected by estrogen levels, which complicate the diagnosis and treatment.
Estrogens, which are secreted by the ovary, reduce the risk of fractures but increase the risk
of breast cancer [19]. Therefore, ovariectomy prevents breast cancer but is one of the risk
factors for bone loss [20]. One study investigated the risk of osteoporosis in Korean women
who underwent hysterectomy, which increased the risk of osteoporosis regardless of age or
bilateral ovariectomy [4].

To the best of our knowledge, no study has demonstrated an association between both
MYLK and PTGS1 genes in the risk of osteoporosis and benign breast tumor. Furthermore,
few/no study has examined the impact of ovariectomy on gene-disease risk for osteoporosis
among Korean women. We identified the SNPs in our genome-wide association study
(GWAS) that simultaneously increased the risk of osteoporosis and benign breast tumors.

2. Materials and Methods
2.1. Study Population

The present study was performed with data obtained from the Korean Genome and
Epidemiology Study (KoGES) [21], which was a large-scale cohort study conducted in
a Korean population. KoGES is composed of six types cohorts, including subjects from
the Health Examinee (HEXA) study used to determine the association between benign
breast tumors, osteoporosis, and ovariectomy. Details of the KoGES and HEXA studies
are described elsewhere [21]. Briefly, a total of 173,357 participants aged 40–79 years were
recruited between 2004 and 2013. Following informed consent, the participants were
examined at health examination centers in Korea. We performed a series of cross-sectional
analyses in the present study by the baseline data from the HEXA study [21].

Figure 1 is a schematic illustration depicting the participant selection process for this
study and the process from GWAS.
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We used GWAS to test the association between SNPs and the genetic risk of benign
breast tumors and osteoporosis. Participants with missing information on osteoporosis
and benign breast tumors were excluded from the 28,445 participants with accessible SNP
information. In addition, since we analyzed the association between osteoporosis and
ovariectomy, only females were evaluated in this study (n = 18,183). A control group of
6518 healthy participants was used in the present study, which consisted of individuals
who were not diagnosed with hypertension, diabetes mellitus, hyperlipidemia, transient
ischemic attack, myocardial infarction, chronic gastritis, gastric ulcer, intestinal polyps,
acute liver disease, fatty liver, cholelithiasis, chronic bronchitis, chronic obstructive pul-
monary disease (COPD), asthma, allergy, thyroid disease, arthritis, osteoporosis, gout,
cataracts, glaucoma, periodontal disease, chronic nephritis, renal failure, malignant tumor,
or fractures. Since the disease history was included in the KoGES project, it was selected as
the criterion for healthy controls. Of the 6518 healthy controls, 2162 males were excluded
and a total of 4356 healthy female controls were used. However, because benign breast
tumors were not considered when the healthy controls were identified, the healthy control
group for benign breast tumors included a final number of 3922 after subtracting 9080
subjects with other diseases from the 13,002 participants who stated the absence of tumors.
The diagnosis of benign breast tumors and/or osteoporosis was made by a medical doctor.
Consequently, 4356 healthy controls and 1382 osteoporosis cases were identified, and 3922
healthy controls and 1126 benign breast tumor cases were analyzed.

2.2. Assignment of Ovariectomy

Information on the ovariectomies was obtained through self-report during a trained
interviewer administered survey. The questionnaire was composed of four options:
1 = no, did not undergo ovariectomy, 2 = yes, removed only one ovary, 3 = yes, removed
both of them but partially, and 4 = yes, removed both of them entirely. To ensure accurate
results, the participants who answered 1–3 were defined as the “no ovariectomy” group
and the participants with responses of 4 were defined as the ovariectomy group. Of a total
of 18,183 women, 11,344 answered the questionnaire, 11,629 women were defined as the
“no ovariectomy” group, and 285 women were defined as the ovariectomy group. The
subjects’ age based on a response of 4, indicating both ovaries were entirely removed, was
considered the surgical age.

2.3. Genome-Wide Genotyping and Selection of SNPs

Genotype data were obtained from the Center for Genome Science, Korea National
Institute of Health. DNA samples isolated from the participants were genotyped with an
Axiom® 2.0 Reagent Kit (Affymetrix Axiom® 2.0 Assay User Guide). The genotype data
were obtained from the K-CHIP designed by the Center for Genome Science at the Korea
National Institute of Health. Additional information regarding this protocol has been
presented elsewhere [22,23]. Subjects with a high missing call rate (>10%), high missing
genotype rates (>5%), minor allele frequency <0.01, or gender inconsistency were excluded
during the quality control process. We performed GWAS and selected SNPs with a p-value
of less than 0.001. The location of the genes and SNPs was identified using the genome
reference consortium human build 37 (GRCh37).

2.4. Statistical Analysis

PLINK version 1.90 beta (https://www.cog-genomics.org/plink2, accessed on
3 March 2021) and predictive analytics software (PASW) version 18.0 (SPSS Inc., Chicago,
IL, USA) were used for most statistical analyses. We investigated the interaction be-
tween SNP and the risk of diseases using logistic regression models with the additive
genetic model. The multivariable model was adjusted for age and residence [24,25]
to investigate the effect of complex factors. The residential areas initially consisted of
16 areas indicated by administrative district codes. However, we reorganized them
into rural (Gyeonggi, Chungcheongbuk, Chungcheongnam, Sejong city, Gangwon, Je-

https://www.cog-genomics.org/plink2
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ollabuk, Jeollanam, Gyeongsangbuk, and Gyeongsangnam) and urban (Seoul, Busan,
Ulsan, Daegu, Daejeon, Incheon, and Gwangju) areas. The association between SNPs and
the risk of diseases was computed by the odds ratio (OR) and 95% confidence interval
(95% CI). Statistical significance was determined by the two-tailed Student’s t-test, and
p-values < 0.05 were considered significant.

HaploReg database (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.
php, accessed on 3 March 2021) was also used to predict the potential functional effects
of the MYLK rs12163585 and PTGS1 rs1213265 genotypes. The geography of genetic
variants (GGV) browser (https://popgen.uchicago.edu/ggv, accessed on 3 March 2021)
was utilized to report the worldwide frequency of the minor alleles of SNPs.

2.5. Ethical Review

This study was approved by the Institutional Review Board of the Korean National In-
stitute of Health (KNIH, KBN-2019-004) and Hoseo University (IRB approval no.: 1041231-
150811-BR-034-03). Written informed consent was obtained from all subjects.

3. Results
3.1. Subject Characteristics

In this study, 18,183 females from the HEXA cohort were included in the association
study. Age and the number of subjects with each disease are listed in Table 1. Healthy
controls were filtered from 18,183 females in the HEXA cohort and categorized into 4356
healthy controls and 1382 women with osteoporosis (cases). Similarly, there were 3922
healthy controls and 1126 women with benign breast tumors (cases). There were 285
ovariectomy cases in the total HEXA females, and 61 and 45 females had ovariectomies in
the healthy controls and cases in the osteoporosis group, respectively. In the benign breast
tumor group, 54 healthy controls and 38 subjects with benign breast tumors underwent
ovariectomies. The osteoporotic patients were older (average 59.6 years) than the subjects
in the control group (average 50.5 years). In addition, the age at ovariectomy in the
osteoporotic group was older (average 47 years) than that of the healthy controls (average
45.33 years). There was no significant difference between the cases and the controls in the
benign breast tumor group.

Table 1. Characteristics of women in the Health Examinee (HEXA) study cohort.

Quantitative Trait Analysis
Characteristics Case-Control Analysis for Benign Breast Tumor

Controls Cases p-Value *

18,183 No. 3922 1126
53.14 ± 7.62 Age (M years ± SD) 49.92 ± 6.96 52 ± 6.69 <0.001

Case-control analysis for osteoporosis

Controls Cases p-value *

No. 4356 1382
Age (M years ± SD) 50.75 ± 7.48 59.59 ± 6.38 <0.001

Abbreviations: M, mean value; SD, standard deviation. * Significant differences in characteristics between the controls and the cases were
determined via two-tailed Student’s t-test.

3.2. Selection of SNPs from Genome-Wide Association Study Based on the HEXA Data

In the GWAS, the SNPs (p < 0.001) were filtered based on the HEXA data. Of them,
464 and 469 SNPs associated with benign breast tumor and osteoporosis were found
respectively. Only five SNPs were common between the two diseases (rs3732486, rs3732487,
rs58154051, rs2293973, and rs1213265). Two (rs3732486 and rs3732487) of the five SNPs
were found in the MYLK gene, rs58154051 in the RPS6KA2 gene, rs2293973 in DLGAP2, and
rs1213265 in PTGS1 (Table 2). In this study, after excluding genes unrelated to osteoporosis
or breast disease, we focused on the MYLK and PTGS1 genes, which presented the least

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://popgen.uchicago.edu/ggv
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p-value and the highest odds ratio for both diseases. The rs3732487 SNP in MYLK showed
associations with both benign breast tumor (OR = 1.20, 95% CI: 1.09–1.32, p = 1.94 × 10−4)
and osteoporosis (OR = 1.21, 95% CI: 1.09–1.35, p = 2.57 × 10−4). In addition, rs1213265
in PTGS1 showed significant associations with benign breast tumors (OR = 1.81, 95% CI:
1.29–2.53, p = 6.03 × 10−4) and osteoporosis (OR = 2.03, 95% CI: 1.36–3.03, p = 4.90 × 10−4).

Table 2. Significant association of SNPs in both benign breast tumors and osteoporosis in the HEXA women cohort.

Gene Chr SNP Minor
Allele MAF Function

Benign Breast Tumor
(Case = 1126, Control = 3922)

Osteoporosis
(Case = 1382, Control = 4356)

OR (95% CI) p Value OR (95% CI) p Value

MYLK 3 rs3732486 A 0.487 intron 1.19
(1.08~1.31) 3.52 × 10−4 1.21

(1.09~1.34) 3.23 × 10−4

3 rs3732487 G 0.489 intron 1.20
(1.09~1.32) 1.94 × 10−4 1.21

(1.09~1.35) 2.57 × 10−4

RPS6KA2 6 rs58154051 A 0.208 intron 1.23
(1.09~1.37) 4.20 × 10−4 1.25

(1.10~1.41) 6.51 × 10−4

DLGAP2 8 rs2293973 A 0.185 intron 0.80
(0.71~0.91) 6.62 × 10−4 0.78

(0.68~0.89) 2.78 × 10−4

PTGS1 9 rs1213265 C 0.015 intron 1.81
(1.29~2.53) 6.03 × 10−4 2.03

(1.36~3.03) 4.90 × 10−4

Age and residential area were included as covariants in all genetic models. Abbreviations: Chr, Chromosome; MAF, minor allele frequency;
OR, odds ratio; CI, confidence interval. This analysis yielded 5 SNPs demonstrating genome-wide significance (p-value < 0.001), including
MYLK and PTGS1 genes, which were examined from this study.

3.3. Association of SNPs with Benign Breast Tumor and Osteoporosis

We analyzed the association between benign breast tumors and osteoporosis and
MYLK and PTGS1 SNPs. Sixty SNPs in the MYLK gene and 12 SNPs in the PTGS1 gene
were found. Among the 60 SNPs in the MYLK gene, nine and six SNPs were significantly
associated with benign breast tumors and osteoporosis, respectively (Table 3 and Supple-
mentary Table S1). In addition, three common SNPs (rs3732487, rs3732486, and rs12163585)
were associated with both diseases. In the case of the PTGS1 gene, of the 12 SNPs, two
common SNPs (rs1213265 and rs3119773) were associated with benign breast tumors and
osteoporosis (Supplementary Table S1). The association of these five SNPs in the two genes
with benign breast tumors and osteoporosis in the HEXA cohort females was analyzed
using the additive model. While the MYLK rs3732487 and rs3732486 variants showed
similar patterns of increased risk of benign breast tumors (OR = 1.20, 95% CI: 1.09–1.32,
p = 1.94 × 10−4; OR = 1.19, 95% CI: 1.08–1.31, p = 3.52 × 10−4, respectively) and osteo-
porosis (OR = 1.21, 95% CI: 1.09–1.35, p = 2.57 × 10−4; OR = 1.21, 95% CI: 1.09–1.34,
p = 3.23 × 10−4, respectively), the rs12163585 variant was associated with a decreased risk
of benign breast tumors and osteoporosis (OR = 0.87, 95% CI: 0.79–0.96, p = 5.69 × 10−3;
OR = 0.88, 95% CI: 0.80–0.98, p = 1.98 × 10−2, respectively) (Table 3). In the case of the
PTGS1 gene, the rs1213265 and rs3119773 variants significantly increased the risk of benign
breast tumors (OR = 1.89, 95% CI: 1.23–2.88, p = 3.38 × 10−3; OR = 1.88, 95% CI: 1.23–2.88,
p = 3.41 × 10−3, respectively) and osteoporosis (OR = 2.88, 95% CI: 1.36–3.85, p = 1.93 × 10−3;
OR = 2.28, 95% CI: 1.35–3.84, p = 1.99 × 10−3, respectively) (Table 3). Nine other SNPs in
the MYLK gene showed association with benign breast tumors or osteoporosis (p < 0.05),
but the association was significant in only one of the two diseases.
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Table 3. Association of SNPs in the MYLK and PTGS1 genes with benign breast tumor and osteoporosis in the HEXA women included in the additive genetic model.

Gene SNP Minor Allele. MAF Function
Benign Breast Tumor Osteoporosis

OR (95% CI) p Value OR (95% CI) p Value

MYLK rs3732487 G 0.489 missense 1.2 (1.09~1.32) 1.94 × 10−4 1.21 (1.09~1.35) 2.57 × 10−4

rs3732486 A 0.487 missense 1.19 (1.08~1.31) 3.52 × 10−4 1.21 (1.09~1.34) 3.23 × 10−4

rs12163585 C 0.475 intron 0.87 (0.79~0.96) 5.69 × 10−3 0.88 (0.80~0.98) 1.98 × 10−2

rs58036435 T 0.468 intron 0.88 (0.80~0.97) 1.17 × 10−2 0.91 (0.82~1.01) 0.066
rs3796164 G 0.438 intron 0.89 (0.80~0.97) 1.26 × 10−2 0.93 (0.84~1.30) 0.190

rs151091281 T 0.043 intron 0.74 (0.57~0.96) 2.29 × 10−2 0.87 (0.67~1.13) 0.300
rs77820417 A 0.428 intron 0.91 (0.82~1.00) 4.33 × 10−2 0.91 (0.82~1.00) 0.060
rs9836287 C 0.035 intron 1.28 (1.00~1.63) 4.71 × 10−2 1.05 (0.80~1.39) 0.711

rs117430366 C 0.029 intron 0.74 (0.54~1.00) 4.84 × 10−2 0.86 (0.63~1.16) 0.319
rs181117066 G 0.010 intron 1.27 (0.78~2.07) 0.339 1.99 (1.21~3.29) 6.89 × 10−3

rs74629231 C 0.010 intron 1.29 (0.23~0.82) 0.268 1.88 (1.17~3.01) 8.77 × 10−3

rs7637909 C 0.047 intron 0.89 (0.12~0.71) 0.267 0.76 (0.59~0.98) 3.22 × 10−2

PTGS1 rs1213265 C 0.015 intron 1.81 (1.29~2.53) 6.03 × 10−4 2.03 (1.36~3.03) 4.90 × 10−4

rs3119773 A 0.015 intron 1.88 (1.23~2.88) 3.41 × 10−3 2.28 (1.35~3.84) 1.99 × 10−3

rs12555242 C 0.025 intron 1.81 (1.29~2.53) 6.01 × 10−4 1.11 (0.80~1.55) 0.538
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3.4. MYLK rs12163585 Variant and Ovariectomy with Osteoporosis

Excluding the participants with missing genotype data (n = 16), among the 11,613 partici-
pants, there were 200 ovariectomized participants with minor alleles and 85 with homozygous
genotypes in the major alleles. In contrast, in the non-ovariectomized participants, the number
of minor allele carriers was 8218, and 3110 carried a homozygous genotype in the major allele.
In the presence of a minor rs12163585 allele, the risk of osteoporosis was increased 1.86-fold in
women who underwent an ovariectomy. However, in individuals carrying the homozygous
genotype in the major alleles, the risk of osteoporosis was significantly increased by 2.36-fold
(Figure 2a). The results showed that those who underwent ovariectomy, which increased
the risk of osteoporosis and was minor allele carriers, carried a decreased risk of developing
osteoporosis than those without minor alleles. Those who had minor alleles and underwent
ovariectomy had a lower risk of developing osteoporosis than those carrying homozygous
genotypes in the major alleles. Our results confirmed that having a minor rs12163585 allele
lowered the risk for osteoporosis, which can be interpreted in the same context as the GWA
study results.
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Figure 2. The relative odds ratio of osteoporosis according to oophorectomy and (a) MYLK rs12163585 and (b) PTGS1
rs1213265 genotypes. The ORs (95% CI) of the genetic correlation between dominant/homozygous genotypes of each gene
and ovariectomy are shown. The homozygous model was set as the reference allele. p-values were adjusted for age and
residential area by analysis of covariance. * p < 0.05, ** p < 0.01. Abbreviations: OR, odds ratio; CI, confidence interval.

3.5. PTGS1 Variant rs1213165 and Ovariectomy with Osteoporosis

Excluding participants with missing genotype data (n = 15), the 11,614 participants
included nine minor allele carriers and 276 homozygous genotype major allele carriers
who had ovariectomies. In contrast, in the non-ovariectomized participants, the number
of minor allele carriers was 344, and 10,985 carried homozygous genotypes in the major
allele. With a homozygous rs1213165 genotype in the major allele, the risk of osteoporosis
was increased 1.83-fold in women who underwent ovariectomy (Figure 2b). In contrast, in
individuals carrying a minor allele, the risk of osteoporosis was decreased 0.27-fold, but
there was no statistical significance. In addition, those who did not undergo ovariectomy
and were minor allele carriers had a 2.22-fold higher risk of developing osteoporosis than
those without minor alleles. Interestingly, those who carried minor alleles and did not
undergo ovariectomy had a higher risk of osteoporosis than those with a homozygous
genotype in the major allele who underwent ovariectomy.

3.6. Functional Annotations of MYLK and PTGS1

The HaploReg database was used to predict the potential functional effects of MYLK
rs12163585 and PTGS1 rs1213265 (Supplementary Table S2). Both MYLK rs12163585 and
PTGS1 rs1213265 were found to change the motif factor-binding site, as shown in Supple-
mentary Table S2. We also performed the analysis of eQTL for MYLK and PTGS1 based on
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GTEx databases (Supplementary Figure S1). Gene expression for MYLK was high in the
female genital organs, especially breast, cervix, ovary, and uterus.

4. Discussion

In this prospective GWAS, we identified an association between MYLK rs12163585
and PTGS1 rs1213265 variants, ovariectomy, and the risk of osteoporosis using HEXA
Korean women data. Our results showed that (1) women with a homozygous genotype
in the MYLK rs12163585 major alleles had an increased risk of osteoporosis following
ovariectomy than those with minor alleles, and (2) women who had the minor PTGS1
rs1213265 allele and were not ovariectomized carried a higher risk of osteoporosis than
those with homozygous genotype of the major alleles and undergoing ovariectomy. The
GWAS of osteoporosis and benign breast tumors revealed that five common SNPs in four
genes were significantly associated with the two diseases. SNP rs58154051, located on
chromosome 6 and belonging to the RPS6KA2 gene, did not show a statistically significant
relationship with ovariectomy or osteoporosis (Supplementary Figure S2). SNP rs2293973,
which is located on chromosome 8 and belongs to DLGAP2, was considered a gene variant
unrelated to osteoporosis or breast disease. From the present study, following genetic
signals, we can prevent osteoporosis and breast cancer, and suggest ovariectomy or not.
However, further studies with greater age of cases and large sample size, especially in
stratified analysis, are required in the future. To the best of our knowledge, no study
has reported the association between ovariectomies and osteoporosis with MYLK and
PTGS1 genes until now, and consequently, the MYLK and PTGS1 genes were selected in the
present study.

Although the genetic variations in the MYLK gene were selected as the targets in our
study, its association with breast disease or osteoporosis has yet to be reported. MYLK
is an element of the actin cytoskeleton and is involved in foundational cellular processes
such as cell adhesions, migration, and survival [26]. It is included in the oxytocin signaling
pathway and hence, RhoA/Rho kinase pathways are also activated, contributing to the
invasion of cancer cells [27]. Expression of MYLK is downregulated in breast cancer and
loss of MYLK leads to disruption of cell–cell adhesion and invasive behavior of breast
epithelial cells [28].

Meanwhile, MLCK is well known as a molecular target in lung inflammation, a defin-
ing feature of sepsis and acute lung injury (ALI) [29]. Gao et al. speculated that MYLK was a
candidate gene engaged in acute lung injury susceptibility and disease [30]. Another study
showed that the thoracic aortic disease phenotype was associated with MYLK pathogenic
variants [31]. Recently, Dai et al. reported the higher expression of circular RNA (circRNA)
MYLK in human prostate cancer tissue and suggested using circRNA-MYLK as a tool to
diagnose and determine treatments for prostate cancer [32]. The MYLK gene significantly
influenced the progression of prostate cancer, which is a sex hormone-dependent disease
in males, and the MYLK variants found in this study were associated with benign breast
tumors related to female hormones, in line with the previous study. Furthermore, androgen,
involved in maintaining bone mass density and preventing osteoporosis, is transformed
into endogenous estrogen. The ovaries generate enormous amounts of androgen for years
in postmenopausal women, helping to retain bone mass. Ovariectomy, which reduces
androgen production, may increase the risk of osteoporosis [33]. Our results show the
correlation between the MYLK gene and ovariectomy and demonstrate that the risk of
osteoporosis in women who underwent ovariectomy was significantly higher and nearly
double the risk of those without (Figure 2a).

PTGS1, also known as cyclooxygenase 1 (COX1), is ubiquitously found in tissues and
involved in the biosynthesis of prostaglandin (PG), which regulates renal, gastrointestinal,
and platelet function [34]. Besides, PTGS1 has been connected with multiple pathological
disorders including inflammation, arthritis, and cancer. One study had compared whole-
genome expression data of breast tissue samples with serum hormone levels using data
from healthy women and breast cancer patients using microarrays. PTGS1 was found
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differentially expressed dependent on estradiol levels, which was downregulated in breast
samples from women with high serum estradiol [35]. In both ex vivo and in vivo studies,
PTGS1 that controls osteogenesis of adipose-derived stem cells via regulating the NF-κB
signaling pathway is required for the osteogenic differentiation of adipose-derived stem
cells [36]. Nagao et al. performed a meta-analysis to determine the association between
PTGS variants and nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the
biosynthesis of PG by PTGS and reduce inflammation [37]. Another study confirmed wide
genomic regions that caused inflammatory arthritis in a heterogeneous [10] mice cohort and
identified PTGS1 as a key candidate based on the differential expression in arthritis [38].
Wang et al. reported that the depletion of PTGS1 promoted osteogenesis in adipose-derived
stem cells and suppressed the NF-κB pathway. Additionally, the knockdown of PTGS1
may regulate the inflammatory microenvironment during bone remodeling [36].

Most hysterectomies performed for gynecologically benign conditions, preserve the
ovaries. However, occasionally, some physicians suggest bilateral ovariectomies (BOs)
along with hysterectomy to prevent the development of cancer [39]. The hysterectomy
rates for benign disease were 1.48, 1.49, and 1.52/1000 Korean women aged over 16 years
in 2007, 2008, and 2009, respectively, which showed an increasing trend [40]. In our present
study, we considered a case of ovariectomy when bilateral ovariectomy was performed,
and the rate of ovariectomies for benign breast tumors was 3.37/1000 women. The data
used in the study were followed up from 2004 to 2013, with increasing trend similar to that
of the previous study.

We analyzed the minor allele frequency of MYLK rs12163585 and PTGS1 rs1213265
with a geographic genome variants (GGV) browser. The GGV browser uses maps of allelic
frequencies in populations distributed across the globe based on 1000 genomes (hg19).
While rs12163585 was mostly seen in Southeast Asia, rs1213265 was mostly detected in
Africa (Supplementary Figure S1). The MYLK rs12163585 minor allele was associated
with a decreased risk of osteoporosis and benign breast tumors in Asia, while the PTGS1
rs1213265 minor allele detected mostly in Africa was associated with an increase in both
diseases. In the Haploview results, MYLK rs12163585 was predicted to change the motif
factor binding site of GATA (Supplementary Table S2). GATAs (GATA-DNA-binding
protein) are known as a transcription factor in osteoblasts and functions in transducing cell
survival signaling. GATAs are expressed in osteoblasts and control osteoblast survival and
functions [41]. Above all, GATA-3 has been reported that its expression is induced during
fracture healing and many studies have reported the correlation between the GATA-3 and
estrogen receptor in breast cancers as well [42–44]. Additionally, SOX, which was predicted
to change the motif factor binding site by MYLK, was suggested to sensitive triple-negative
breast cancer marker along with GATA-3 [45]. Expression of HAND1, which was predicted
to changed motif factor binding site by PTGS1, develops long bones and involves in their
morphogenesis [46]. Smad4 gene that has interaction with estrogen receptor α is required
for TGF-β-induced epithelial to mesenchymal transition and bone metastasis of breast
cancer cells [47–49].

5. Conclusions

Genetic variants in MYLK and PTGS1 are associated with both benign breast tumors
and osteoporosis. Analysis of the differences in the risk of osteoporosis and ovariectomy
in the MYLK rs12163585 and PTGS1 rs1213265 genotypes showed significant associations
with each genotype. Consequently, pathological factors such as ovariectomies substantially
affect the association between gene variants and osteoporosis in Korean women.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4425/
12/3/378/s1, Figure S1: Geographic distribution of (a) MYLK rs12163585 and (b) PTGS1 rs1213265. The
position of the SNPs is shown at the top (chr3:123416351 and chr9:125136447) and the blue quarter indicates
a 0.25 minor allele global frequency based on 1000 genomes (hg19). In Korea, the minor allele frequencies of
rs12163585 and rs1213265 were 0.48 and 0.015, respectively. Figure S2: Relative odds ratio of osteoporosis
according to the ovariecptomy and RPS6KA2 rs58154051. The OR (95% CI) of genetic interaction of

https://www.mdpi.com/2073-4425/12/3/378/s1
https://www.mdpi.com/2073-4425/12/3/378/s1
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dominant /homozygous genotypes of each gene with variable ovariectomy. The homozygous model was
set as the reference allele. p values were adjusted for age and residential area by analysis of covariance.
Abbreviations: OR, odds ratio; CI, confidence interval. Table S1: Association of the SNPs in MYLK and
PTGS1 with benign breast tumors and osteoporosis in the HEXA women cohort in the additive genetic
model. Table S2: Results of HaploReg analysis of MYLK rs12163585 and PTGS1 rs1213265. Abbreviations:
A1, minor allele; A2, major allele; IPSC, Ips DF 6.9 cells.
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