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The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid
leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can process
medical image data and provides data-driven class predictions. Here, we apply a multi-step DL approach to automatically segment
cells from bone marrow images, distinguish between AML samples and healthy controls with an area under the receiver operating
characteristic (AUROC) of 0.9699, and predict the mutation status of Nucleophosmin 1 (NPM1)—one of the most common
mutations in AML—with an AUROC of 0.92 using only image data from bone marrow smears. Utilizing occlusion sensitivity maps,
we observed so far unreported morphologic cell features such as a pattern of condensed chromatin and perinuclear lightening
zones in myeloblasts of NPM1-mutated AML and prominent nucleoli in wild-type NPM1 AML enabling the DL model to provide
accurate class predictions.

Leukemia (2022) 36:111–118; https://doi.org/10.1038/s41375-021-01408-w

INTRODUCTION
A fundamental component in the diagnostic workflow of acute
myeloid leukemia (AML) is cytomorphology [1]. The assessment of
myeloblast counts and their morphology is essential for correct
diagnosis, response assessment, and relapse detection. Cytomor-
phology may, in some cases, also lead to the suspicion of possible
underlying genetics [2], e.g., in acute promyelocytic leukemia with t
(15;17) and PML-RARα [3, 4] and AML with t(8;21), inv(16), or t(16;16)
[5]. One of the most commonly mutated genes in AML is
Nucleophosmin 1 (NPM1). It plays a critical role in disease initiation
and is utilized for molecular risk stratification in the recent European
Leukemia Net 2017 (ELN2017) recommendations [1]. Mutated NMP1
can be found in a third of all adult AML cases and up to 50–60% in
AML with a normal karyotype [6, 7] and is considered a distinct
disease entity in the current WHO classification [8]. So far, different
morphological subtypes of AML according to the FAB classification
[3] have been associated with different frequencies of NPM1
mutations [9]. However, the interpretation of cytomorphologic
image data is subjective, time-consuming, and suffers from intra-
and inter-observer variability [10, 11]. Artificial neural nets (ANN)
have demonstrated excellent capabilities in the processing of large
quantities of image data [12]. Deep learning (DL) models are large-
scale ANN consisting of a multitude of interconnected parallel
processing units called artificial neurons [13, 14]. Especially

convolutional neural nets (CNN) achieve outstanding results in
image recognition [15]. These capabilities can be used for computer
vision purposes in the diagnosis of acute leukemias [16–18].
In our study, we present a CNN-based scalable model that

accurately distinguishes between AML cases and healthy subjects
from digitalized bone marrow images. Further, our model
accurately predicts NPM1 mutation status from bone marrow
cytomorphology and unveils distinct morphologic features for the
prediction of NPM1 mutation status.

METHODS
Data set and molecular analysis
We identified 1251 patients who have been newly diagnosed and treated
with AML in the previously reported multicentric trials (AML96 [19]),
AML2003 [20], AMLCG1999 [21], AML60+ [22], AMLCG2008 [23], and
SORAML [24]) or from the multicentric patient registry of the German
Study Alliance Leukemia (SAL, NCT03188874) via retrospective chart
review. Eligibility criteria for the AML cohort were newly diagnosed AML
according to WHO criteria [8], age ≥18 years, and available biomaterial at
initial diagnosis. A control cohort was comprised of 236 bone marrow
samples from healthy bone marrow donors who underwent bone marrow
donation at our center. Figure 1 shows the set-up of the study cohort and
the split of augmented image data between training and test set (4:1). All
mentioned studies were previously approved by the Institutional Review
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Board of the Technical University Dresden. All participants gave their
written informed consent according to the Declaration of Helsinki. The
preparation of squash slides was performed from anticoagulated bone
marrow by experienced laboratory technicians within 2 h after the sample
was taken, as recommended by WHO guidelines [25]. Sample staining was
performed with the May–Grunwald–Giemsa method [26]. Screening for
NPM1 mutations was performed as described previously [27] and a 5%
variant allele frequency (VAF) mutation cut-off was used. High-resolution
pictures of representative regions of the bone marrow smears (BMS) were
taken using the Nikon Eclipse E600 microscope (50-fold magnification) with
the Nikon DSFi2 mounted camera and Nikon Imaging Software Elements
D4 for image processing. Corresponding regions of interest were manually
selected by hematologists and measured 0.1775 × 0.1325mm. For selection
of archived BMS, image acquisition, and upload of images to the database,
10min of manual labor were needed per case. Per case, a median of 168.5
cells were captured (interquartile range: 124–217). Samples were randomly
assigned to either a training or a validation set with a split of 4:1.

DL model
A multi-step machine learning workflow with individual DL models for
different tasks was set up as shown in Fig. 2. Step 1: BMS were digitalized and
uploaded to an online segmentation and labeling platform that we developed
for the purpose of this work. A human-in-the-loop cell segmentation approach
was performed by hematologists with a Faster Region-based Convolutional
Neural Net [28] (FRCNN). First, initial segmentation was done with the VGG
Image Annotator [29] tool. Then, the FRCNN was trained with the segmented
images and created new segmentation proposals for unsegmented images
which were manually corrected by hematologists. The loop was closed by the
refinement of segmentation proposals and repeated network training. A
quarter of cases was segmented using this human-in-the-loop approach while
for the remainder of cases the FRCNN worked autonomously without the need
for human intervention for re-segmentation of cells. This way, segmentation
quality improved substantially over iterations eliminating the need for manual
segmentation in the following unsegmented images. Additionally,

hyperparameter optimization was performed automatically using the Optuna
[30] framework with a predefined hyperparameter space. Step 2: Feature
extraction was performed manually by hematologists. In all, 8500 individual
cells were labeled according to lineage, cell type, and characteristics like Auer
rods. Features like cell size, eccentricity, and color range were automatically
derived by the computer vision algorithms. Step 3: For distinction between
AML and healthy control samples based on segmented images, we trained a
multitude of DL models for binary predictions of cell types and characteristics
that expressed results as ratios (e.g. ratio of myeloblasts among all cells or
features such as presence or absence of Auer rods). The aggregated results
given by these individual models were used as input for an Ensemble Neural
Net (ENN) for final classification decisions. Model architecture for the distinction
between AML and healthy control samples was based on the Xception CNN
[31] utilizing transfer learning. Xception architecture was modified to receive
BMS images (2560 × 1920 pixels) as input at the top level. Fully connected
output layers for the 2048-dimensional output vectors of the core Xception
architecture were established via hyperparameter optimization. Hyperpara-
meters differed between individual models. Step 4: For NPM1 status prediction,
transfer learning with a ResNet50 [32] pretrained on ImageNet was utilized on
BMS images. The ResNet50-architecture was modified to use larger input sizes
(2000 × 1500 pixels) and the output layer was reshaped to a fully connected
layer with two neurons to accommodate the binary classification problem
before retraining. Hyperparameter optimization was performed for learning
rate, learning rate gamma, momentum, and weight decay. Occlusion sensitivity
maps were used to derive information from classification decisions for NPM1
status prediction. DL models were implemented in Python version 3.7.9 with
Keras version 2.3.0, TensorFlow version 2.1.2, and PyTorch version 1.5.0.
Computations were performed using a high-performance computing system.

Model performance and statistical analysis
For performance analysis of the classification models, we used
precision–recall curves and receiver operating characteristics (ROC) with
the area under the curve (AUC). Precision is the fraction of true positives
among all positive predictions of the DL model while recall is the fraction

control cohort

patient cohort

1251 AML patients 

diagnosis of AML according to
WHO classification
age ≥ 18 years
available biomaterial at
diagnosis
386 with mutated NPM1 
exclusion of acute
promyelocytic leukemia

236 healthy bone
marrow donors

digitization of bone marrow smears, image preprocessing and augmentation:

5204 augmented AML bone marrow smear images
5428 augmented control bone marrow smear images

training set test set
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4163 augmented images from
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4342 augmented images from
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1041 augmented images from 
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Fig. 1 Study cohort. Patients were identified using retrospective chart review from previous multicenter clinical trials or the German Study
Alliance Leukemia (SAL) registry. The control group was comprised of healthy bone marrow donors who underwent unrelated bone marrow
donation at our center. Bone marrow smears (BMS) were digitized and sample size was increased by image augmentation (e.g. mirroring or
rotating of images). Subsequently, samples were split into a training and test set with a ratio of 4:1.
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of all positive predictions of the DL model among all relevant events. The
final models were evaluated on the validation set that was withheld from
model training. To compare NPM1 VAF the Mann–Whitney U test was used.
Computational and statistical analysis was performed in Python (version
3.7.9) and R (version 4.0.3).

RESULTS
DL accurately distinguishes between BMS of AML patients and
healthy bone marrow donor samples
We retrospectively identified 1251 AML patients, 386 of which
harbored mutated NPM1 according to molecular analyses.

Detailed information on patient characteristics and controls is
provided in Table 1. A total of 94,162 individual cells were
manually segmented to iteratively train the FRCNN. Subsequently,
automatic cell segmentation with the FRCNN achieved a mean
average precision and a mean average recall of both 0.97 at an
intersection over union ratio of 0.5. Inaccuracies were mostly due
to overlapping cells. We then applied a CNN-based binary
classification model on the previously segmented images to
distinguish between cell types and characteristics and aggregated
results were used by an ENN to distinguish between AML and
healthy donor samples. We found this multistage approach to
substantially increase accuracy over simple whole image
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cell borders  

NPM1-mutated AML

Labeled BMSRetrospective chart review

AML patients and
healthy controls

Segmented cells

Eccentricity: 0.72
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Cell features
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Train Faster R-CNN
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Improved cell borders

Image
processing
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Image
segmentation

module

Annotation
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Image
classification

module
Manual input

AML classification 
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Automated feature
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cell type and
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Train DL models on cell
types and characteristics Labeled BMS and

segmented cells per
labeled BMS

Feature pool
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Fig. 2 Schematic workflow of the multi-step deep learning platform. AML patients and healthy controls were identified via retrospective
chart review. Representative pictures of bone marrow slides (BMS) were taken and labeled according to diagnosis and NPM1 mutation status.
Subsequent image preprocessing, transformation and augmentation led to initial cell border proposals by the Faster Recurrent Convolutional
Neural Net (FRCNN) that were manually corrected in order to improve cell borders. The FRCNN was trained iteratively to improve cell border
proposals. Automated feature extraction on segmented cells by the image processing module determined characteristics like cell perimeter or
nucleus-to-cytoplasm ratio (N:C). Segmented cells were manually labeled according to cell type and characteristics. Manual cell segmentation
and labeling was performed with a modified version of the VGG image annotator tool. Thereby, a feature pool of BMS, segmented and labeled
cells was generated to iteratively train the image classification module with a split of 2:1 between training and validation set using threefold
cross-validation.
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classification with only one CNN. Single cell-based disease status
prediction was tested, but did not yield satisfactory results
(AUROC 0.53). To adjust for the moderate sample size and to
balance the data set, simple image augmentation techniques like
linear transformations or adjustment of color channels and
brightness range BMS images were applied. Thereby, we reached
an augmented sample size of 5204 AML and 5428 non-AML
(healthy donor) BMS images. To prevent overfitting, we used a
pooling dropout of 0.25 as suggested by automated hyperpara-
meter optimization. The AML classification model achieved an
average AUC for the precision–recall curve of 0.9691 (95% CI:
0.9669–0.9713; Fig. 3A) and an average AUROC of 0.9699 (95% CI:
0.9677–0.9721; Fig. 3B) with a corresponding micro-average
accuracy of 0.91. Table 2A shows the distribution of correctly
and incorrectly identified AML and control samples in the
validation set.

DL accurately predicts NPM1 mutation status and unveils
morphologic features
Further, we investigated whether DL could predict the mutational
status of NPM1 from bone marrow morphology. BMS image
classification at a 50-fold magnification was performed using a
ResNet50-architecture using transfer learning. Mirroring and
random cropping plus resizing was used to increase sample size
and to balance the data. Weight decay of 0.0003 is utilized to
prevent overfitting and the data was divided into training and test
set with a split of 4:1. The model achieved an accuracy of 0.86 for
NPM1 prediction and an AUROC of 0.92 (95% CI: 0.8768–0.9631;
Fig. 3C). Table 2B shows the distribution of correctly and
incorrectly identified NPM1-mutated and NPM1 wild-type samples
in the validation set. Classification on single cells compared to
whole image classification did not improve accuracy. To identify
key morphological features that led the DL model to the
prediction of the respective mutation status we used occlusion
sensitivity maps (Fig. 4). This method iteratively blocks pixels of an
image from being evaluated by the DL model for classification,
which may reduce its predictive capabilities. Thereby, image areas
that are essential for high accuracy can be detected as they
greatly reduce model performance when being blocked (Fig. 4 ii,
iii). By analyzing the heatmaps, we observed that the prediction of
mutated NPM1 was associated with a pattern of condensed

chromatin and perinuclear lightening zones in myeloblasts (Fig. 4a,
orange arrows indicate examples). The prediction of NPM1 wild
type was driven by prominent nucleoli (Fig. 4b, yellow arrows
indicate examples) which could only very rarely be observed in
samples with mutated NPM1 and in that context led to
misclassification (false negatives). We further analyzed patient
samples from the validation set grouped by NPM1 mutation status
and true or false predictions given by the DL model regarding
clinical and molecular data. NPM1-mutated AML samples that
were correctly identified by the model (true positives) had a
significantly higher median VAF than NPM1-mutated AML samples
that were misclassified (false negatives) (true positives: 0.41 [95%
CI: 0.39–0.42] vs. false negatives: 0.31 [95% CI: 0.1–0.42], p= 0.018,
Fig. 5). Further, the rate of patients with therapy-associated AML
(tAML) was significantly higher among false negatives compared
to true positives (27.3% vs. true positives: 4.1%, p= 0.02) and false
negatives had a significantly lower median white blood cell count
(WBC) (false negatives 13.16 GPt/l [IQR:2.25–28.57] vs. true
positives: 37.48 GPt/l [IQR:17.84–84.95], p= 0.007) and a trend
for lower blast counts in peripheral blood (false negatives 25.5%
[IQR: 4.75–38.5] vs. true positives: 52.5% [IQR: 16–75.25], p=
0.062). No significant differences for age, sex, ELN2017 risk
category, absence or presence of a complex karyotype, bone
marrow blast count, Hb, and platelet count were detected. For
patients with wild-type NPM1 AML, there was a trend for
lower median WBC for true negatives (3.54 GPt/l [IQR:
1.52–19.82] vs. false positives 11.3 GPt/l [IQR:3.95–36.849], p=
0.095), but age, sex, ELN2017 risk category, AML type (de novo,
secondary or therapy-associated), absence or presence of a
complex karyotype, bone marrow or peripheral blast count, Hb
and platelet count showed no differences. As another internal
sanity check, we applied the pretrained classifier to the healthy
bone marrow donor image data set and found that 214/236 (91%)
of cases were correctly identified as NPM1 wild type while only 22/
236 (9%) were labeled as NPM1 mutated (false positives).
However, we want to point out that the NPM1 classifier has
never been trained on healthy controls. Considering its AML-
specific training, the very low false-positive rate on newly
presented and differently structured image data of healthy
controls underlines the distinct morphology picked up by the
classifier for correct predictions in NPM1-mutated AML.

Table 1. Patient characteristics.

Parameter All AML samples NPM1-mutated AML NPM1 wild-type AML Bone marrow donors

N 1251 386 865 236

Age, median (IQR) 57 (38–67) 57 (49–66) 54 (38–64) 31 (25–39)

Sex, n (%)

Male 668 (53.4) 173 (44.8) 495 (57.2) 70

Female 583 (46.6) 213 (55.2) 370 (42.8) 30

AML type, n (%)

De novo 969 (77.7) 339 (88.3) 630 (73) /

sAML 177 (14.2) 24 (6.2) 153 (17.7) /

tAML 101 (8.1) 21 (5.5) 80 (9.3) /

ELN2017 risk, n (%)

Favorable 380 (33) 277 (78) 111 (13.8) /

Intermediate 521 (45.3) 75 (21.1) 446 (55.5) /

Adverse 249 (21.7) 3 (0.8) 246 (30.6) /

PB blasts, median (IQR) 23.5 (4–60) 38 (11–72.5) 18 (2–51) /

BM blasts, median (IQR) 60.5 (40–80) 73.5 (54–85) 54 (37–75) /

Patient characteristics for the AML and control (bone marrow donors) cohort. The AML cohort is further subdivided by NPM1 mutation status. AML type was
defined according to the WHO 2016 classification. sAML secondary AML, tAML therapy-associated AML, PB peripheral blood, BM bone marrow, N/n number, IQR
interquartile range.
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Interestingly, when we reviewed patient chart data and molecular
results in the validation set, we found one sample that was
incorrectly labeled as mutated NPM1, but was in fact wild-type
NPM1, and the corresponding BMS image was correctly identified
as such by the DL model.

DISCUSSION
We here present a machine learning approach for cell segmenta-
tion and image classification which provides a fast, scalable, and
highly accurate method to identify AML samples from bone
marrow cytomorphology. Our FRCNN achieved a cell segmenta-
tion accuracy of 0.97 from BMS. The binary classification model
showed an AUC of 0.97 for both the ROC and the precision–recall
curve and a micro-average accuracy of 0.91 distinguishing
between AML and healthy bone marrow donor samples. Our
model can potentially be applied in initial diagnosis when a case
of suspected AML is evaluated upon first contact in a hematologic
center. It operates autonomously once BMS images are uploaded
and detects AML with high accuracy. The model could operate
synchronously with lab technicians to flag cases that are highly
suspicious of AML for fast evaluation by experts while results from
other diagnostic procedures like flow cytometry, cytogenetics, and
molecular genetics are still pending. However, a human-in-the-
loop approach is still needed as we manually selected represen-
tative regions of the BMS for evaluation by the DL model. Also, it is
to be noted that bone marrow donors in our cohort were
substantially younger than AML patients. Increased age is
associated with observable changes in the bone marrow
microenvironment such as cellularity, proliferative activity, and
apoptosis [33] and such systematic differences could introduce
bias to a CNN classifier which needs to be taken seriously not only
in our use case but also considering other applications of more
subtle changes in bone marrow morphology. Further evaluation of
the model using more diverse multicenter data is warranted.
Another limitation is the necessity for manual selection of BMS
areas representative for disease classification by human judgment.
Since this is a potential source of bias, future work will focus on
implementing whole slide imaging and an automatization of
region-of-interest selection given recent advances such as DL-
based automated focusing [34]. Further automatization of BMS
development can be achieved using automated BMS staining
devices [35].
Furthermore, we used DL to predict the mutation status of

NPM1 from cytomorphology alone. For NPM1 prediction our DL
model achieved a high accuracy of 0.86 in predicting mutation
status. AML with mutated NPM1 has previously been associated

Fig. 3 Performance measures of the AML classification model and
NPM1 prediction. A Precision–recall curve and B receiver operating
characteristic (ROC) for the binary classification of AML vs. healthy
bone marrow donor samples from bone marrow slide images
obtained by threefold cross-validation (c.v.). Results of the individual
c.v. sets are shown in the respective boxes and depicted as light
blue, orange, and green graphs. Performance was measured
calculating the area under the curve (AUC) for individual validation
sets by threefold c.v. and averaging results (Macro avg, blue graph)
with one standard deviation (SD) of the mean. C ROC for the binary
classification of NPM1 mutation status on bone marrow slide images
with fivefold cross-validation. TPR true positive rate, FPR false-
positive rate.

Table 2. Classification accuracy in the validation set.

(A) AML vs.
control

Prediction by deep learning

Healthy control AML

Ground truth

Healthy
control

43 (89%) 5 (11%)

AML 28 (13%) 223 (87%)

(B) mNPM1
vs. wtNPM1

Prediction by deep learning

wtNPM1 mNPM1

Ground truth

wtNPM1 149 (86%) 24 (14%)

mNPM1 11 (14%) 66 (86%)

The model was tested on a validation set of (A) 48 healthy controls and 251
AML patients. Misclassifications were 11% false positives (healthy controls
misclassified as AML) and 13% false negatives (AML patients misclassified
as healthy). For binary classification of NPM1mutation status, the validation
set was comprised of 77 patients with mutated (m)NPM1 as well as 173
patients with wild-type (wt)NMP1. Misclassifications were 14% false
positives (wtNPM1 patients predicted to have mNPM1) as well as 14%
false negatives (mNPM1 patients predicted to have wtNPM1). It is to be
noted, that dysbalanced patient/control numbers were accounted for by
image augmentation to balance the data sets for proper training of the
classifiers.
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with cup-like blast morphology [36, 37]. When analyzing the
features that the model used for NPM1 classification with
occlusion sensitivity maps, we found so far unreported features
like a pattern of condensed chromatin accompanied by peri-
nuclear lightening zones for NPM1-mutated blasts. We observed
prominent nucleoli in myeloblasts as a feature the DL model
derived to predict wild-type NPM1 AML while these could only

rarely be observed in NPM1-mutated AML samples and then led to
misclassification by the model. Further, we found a significantly
higher VAF in NPM1 true positives while the group of false
negatives was comprised of a significantly higher rate of tAML.
Wild-type NPM1 serves as a critical structural protein of the
nucleolus, but mutations lead to a delocalization to the cytoplasm
[38]. This process is partially triggered by insertions causing a
frameshift of the C-terminal end of NPM1 and the formation of
nuclear export signals [39, 40]. Weakened anchoring and
predominant export signals subsequently result in increased
nuclear export of NPM1 [38]. Arguably, a cytomorphologic
correlate of this process may be the presence of prominent
nucleoli in wild-type NPM1 AML and the absence thereof in
mutated NPM1 AML—both detected as highly predictive features
by our DL model.
Our study shows that DL can derive morphologic features from

cytomorphology that predict mutation status. Future work will
focus on other clinically important mutations and their morpho-
logic imprint that DL may be able to pick up. In line with our
findings, a recent study showed that DL can associate the
morphology of myelodysplastic syndromes (MDS) with distinct
genetic imprints [41]. However, in order to be integrated into
clinical practice, machine-learning models need to be accurate
and generalizable. As their development is complex, collabora-
tions between physicians and software engineers is needed in an
iterative approach to increase model performance. Since the
majority of recently proposed machine-learning models—along
with our model—are built on retrospective data, future studies will
have to implement such models in a prospective setting to
confirm their diagnostic value [42]. Due to the heterogeneity of
cell morphology as well as close proximity of cells, disease

Fig. 4 Application of occlusion sensitivity maps to detect features derived by deep learning for the prediction NPM1 mutation status in
AML. Representatives images from bone marrow samples from a a patient with mutated NPM1 AML and b a patient with wild-type NPM1 AML.
(i) Bone marrow aspirates were stained with the May–Grunwald–Giemsa method. Pictures were taken at 50-fold magnification using a Nikon
ECLIPSE E600 microscope with a mounted Nikon DSFi2 camera. Images were processed using Nikon Imaging Software Elements D4. Scale bar
= 10 µm. (ii) Heatmap of occlusion sensitivity maps generated in Python. The scale indicates the importance of certain image areas for correct
class prediction: the more intensively green an area is the more important it is for correct class prediction. The heatmap shows a cell-specific
class evaluation by the deep learning model. (iii) Masked image overlay of (i) and (ii) generated in Python showing areas the deep learning
model focused on. Bright image areas are more important for class predictions. The orange arrows in (a, i) point to examples of cells with
condensed chromatin and perinuclear lightening zones the deep learning model picked up for prediction of mutated NPM1. The yellow
arrows in (b, i) point to examples of cells with prominent nucleoli the deep learning model picked up for prediction of wild-type NPM1.

Fig. 5 Variant allele frequency of NPM1 true positives and NPM1
false negatives. Box-and-whisker plot for variant allele frequency
(VAF) of mutated NPM1 AML samples that were correctly identified
as such by the deep learning model (true positives) and those that
were misclassified (false negatives) compared by the Mann–Whitney
U test.
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classification from bone marrow is much more complex than in
peripheral blood. Our use case to delineate AML from healthy
bone marrow serves as groundwork for more complicated
applications of CNNs in bone marrow morphology. AML is defined
by bone marrow blast count [1] and CNNs can use a ratio of blasts
to accurately detect AML. However, more complex use cases such
as reactive bone marrow changes, benign disorders such as
vitamin B12 deficiency, or hematologic neoplasms such as MDS are
associated with subtle changes of cell morphology [43, 44]. In this
scenario, CNNs have to be trained to accurately detect and assign
such morphologic changes to the respective disorders. Mori et al.
[45] recently used CNN-guided detection of decreased granules—
one of the most common dysplastic changes in MDS—and report
high accuracy for their classifier based on the ResNet-152.
Accordingly, integrated analysis of more complex morphologies
can potentially be achieved by feature engineering using a
knowledge bank of expert-annotated cells with sufficiently sized
training sets per morphologic feature (conceivably in the four- to
five-digit number range). Since many hematologic neoplasms are
rare disease entities, the development of such a large database
requires extensive cooperation and data sharing between
institutions and countries to ideally provide an open-source bone
marrow database where independent ML models can be trained
on analogous to existing cancer data bases such as The Cancer
Genome Atlas [46]. Nevertheless, samples need to be properly
anonymized to warrant patient data safety. If maintained and
funded properly, such a database may vastly accelerate the
development of clinically relevant computer vision tools for
hematologic diagnostics. Standardization of data acquisition and
accessible documentation of methodologies should be imple-
mented to limit bias inherent to local methodologies of digitizing
BMS and reporting patient data. Further, an integration of
different diagnostic modalities such as cytomorphology both of
bone marrow and peripheral blood, flow cytometry as well as
genetic and clinical data seems warranted to build ML models that
may aid in clinical decision making since evaluating only one
modality at a time is insufficient for accurate diagnosis. Ensemble
learning could be used to integrate the outputs of different ML
models for different diagnostic modalities and provide a
comprehensive and interpretable output to the clinician. Future
work will focus on the extension of our ML pipeline for other use
cases as well as different diagnostic modalities. As our study was
limited to our center only, future studies will focus on
transferability.
In conclusion, we here present a DL approach for the fast and

accurate detection of AML from bone marrow cytomorphology.
Our DL model accurately predicts NPM1 mutation status and
derived so far unreported morphologic features that indicate
absence or presence of NPM1 mutations from myeloblast
morphology. This approach can be implemented to aid in clinical
decision making, accelerate diagnosis, and may serve as a proof-
of-concept for further studies of genetic imprints on disease
morphology using DL.
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