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Abstract: Thyroid carcinoma is the most frequent endocrine neoplasia. Different types of thyroid
carcinoma are described: well-differentiated papillary thyroid carcinoma (PTC), poorly differentiated
thyroid carcinoma (PDTC), follicular thyroid carcinoma (FTC), anaplastic thyroid carcinoma (ATC),
and medullary thyroid carcinoma (MTC). MTC is inherited as an autosomal dominant trait in 25%
of cases. The genetic landscape of thyroid carcinoma has been largely deciphered. In PTC, genetic
alterations have been found in about 95% of tumors: BRAF mutations and RET rearrangements are
the main genetic alterations. BRAF and RAS mutations have been confirmed to play an important
role also in PDTC and ATC, together with TP53 mutations that are fundamental in tumor progression.
It has also been clearly demonstrated that telomerase reverse transcriptase (TERT) promoter muta-
tions and TP53 mutations are present with a high-frequency in more advanced tumors, frequently
associated with other mutations, and their presence, especially if simultaneous, is a signature of
aggressiveness. In MTC, next-generation sequencing confirmed that mutations in the RET gene are
the most common molecular events followed by H-RAS and K-RAS mutations. The comprehen-
sive knowledge of the genetic events responsible for thyroid tumorigenesis is important to better
predict the biological behavior and better plan the therapeutic strategy for specific treatment of the
malignancy based on its molecular profile.
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1. Introduction

Thyroid carcinoma is the most frequently reported endocrine neoplasia and represents
3–4% of all human tumors. Accordingly to their histological features, different types of
thyroid carcinoma are described: well-differentiated papillary thyroid carcinoma (PTC,
75–80%), poorly differentiated thyroid carcinoma (PDTC, 5–7%), follicular thyroid car-
cinoma (FTC, 8–10%), anaplastic thyroid carcinoma (ATC, 2–3%), which originate from
follicular cells, and medullary thyroid carcinoma (MTC, 5–7%), which derives from parafol-
licular C-cells (Figure 1) [1]. PTC, FTC and ATC are very rarely familial (only about 5% of
PTC patients), while MTC is inherited as an autosomal dominant trait in 25% of cases.

Hereditary MTC can occur as an isolated form, familial MTC (FMTC) in which only
tumors of the thyroid gland are present, or in association with neoplasia of other endocrine
organs (i.e., parathyroid and adrenal glands), thus giving rise to the multiple endocrine
neoplasia type 2 (MEN 2) syndromes. MEN 2 are then distinguished into two different
subtypes (i.e., MEN 2A, MEN 2B) according to the different clinical manifestations [2].

In the last decades, many studies have been performed to find the genetic alterations
involved in the pathogenesis of thyroid cancer. The first studies were mainly based on
the analysis of one or a few genes, and only a limited number of gene alterations were
investigated. Finally, after the improvement of sequencing techniques (next-generation
sequencing, NGS) that are nowadays able to investigate large portions of the genome
and even the whole-genome, exome or transcriptome or any other “home” with a quite
easy approach, the genomic landscape of the different histotypes of thyroid cancer has
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been deciphered [3–6]. The aim of this review is to describe genetic markers relevant to
thyroid cancer.
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Figure 1. Different histological types of thyroid carcinomas and most relevant/driver molecular
alterations.

2. Oncogenic Alterations in PTC, FTC, PDTC and ATC

The great majority of the alterations involved in the pathogenesis of these tumors are
represented by somatic mutations that likely occur in the early steps of the tumoral trans-
formation process. The most frequent driver events can be either point mutations or gene
rearrangements, mainly affecting the MAPK pathway and phosphatidylinositol-3 kinase
(PI3K)/AKT pathway. The mutated genes that affect these pathways encode cell-membrane
receptors with tyrosine kinases activity such as RET and NTRK1 and intracellular signal
transducers, among which BRAF and RAS. On the other hand, PI3K/AKT pathway, which
is mainly involved in FTC initiation, is driven by activating mutations in RAS, PIK3CA, and
AKT1 as well as by inactivation of PTEN. Mutations of TP53 and Wnt/βcatenin are indeed
involved in the progression from PTC to PDTC and ATC. Other altered genes, such as TERT,
a ribonucleoprotein polymerase that maintains telomere ends, have been described in all
the histological thyroid cancer types, with a significantly higher prevalence in aggressive
and undifferentiated tumors, indicating their role in thyroid cancer progression.

Here following we will discuss the major players in the process able to transform a
normal follicular cell into a malignant cell and to determine tumoral proliferation.

2.1. RET Rearrangements

The first rearrangement of the RET gene (named RET/PTC1) was described several
years ago using DNA transfection analysis on NIH3T3 cells [7]. As a result of this rear-
rangement, the tyrosine kinase domain of the RET gene is fused to the promoter region
of the CCDC6 gene (formerly called H4) that drives the ligand-independent activation of
the RET/PTC protein. Soon after the first description of the RET/PTC1 other RET fusions
have been discovered. In particular, the RET/PTC3 rearrangement, in which RET is fused
to the promoter region of the NCOA4 gene (also known as ELE1), was described in a
post-Chernobyl thyroid tumor [8]. Over the years, several RET/PTC rearrangements have
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been reported in thyroid carcinoma, all characterized by the fusion of the tyrosine kinase
domain of the receptor with a ubiquitous driver gene that allows the illegitimate kinase
expression in cells that commonly do not express it (i.e., follicular cells) (Figure 2A). The
gene rearrangements can be due to either a paracentric intrachromosomal 10 inversion or a
translocation between chromosome 10 and another one (Figure 2B,C).
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In most cases, these rearrangements differ for the involvement of different partner
genes, but in few cases, different RET/PTC rearrangements are characterized by the
occurrence of different breakpoints giving origin to longer or shorter chimeras [9]. The
high prevalence of RET/PTC in post-Chernobyl thyroid tumors (87%) highlighted a strong
relation between RET rearrangements and radiation exposure [10,11]. Years later, it has
been proposed by in vitro experiments that the spatial proximity of the loci involved
in RET/PTC rearrangements predisposes their mis-joining as a consequence of double-
stranded breaks produced by ionizing radiation [12–15].

RET/PTC rearrangements have been found at a higher frequency in radiation-exposed
children than in adults (probably due to the high proliferation rate of thyroid follicular
cells in childhood) [10,11,16]. It is a matter of fact that with the increase of the latency
period from the nuclear accident, the prevalence of RET/PTC rearrangements declined [17].
Interestingly a statistically significant decrease in the RET/PTC prevalence also has been
reported by some authors in sporadic PTC [18]. A relatively low prevalence of RET/PTC
rearrangements (6.3%) has been reported when using a next-generation sequencing ap-
proach [3]. Although to a much lower extent, rearrangements of the RET gene have also
been reported in benign nodules as well as in Hashimoto thyroiditis [10,19,20].

The prognostic value of RET/PTC rearrangement in thyroid cancer has not been fully
clarified yet. In a consecutive series of 1510 patients with thyroid cancer, RET/PTC-positive
cases tended to be more aggressive with respect to RAS-positive cases [21].

In addition, among PTC tumors with a RET rearrangement, RET/PTC1 was found to
be associated with a small, classic PTC variant [22]. At variance, RET/PTC3 rearrangement
is prevalent in the solid variant of PTC and with a more aggressive clinical presentation
both in post-Chernobyl childhood thyroid cancer [23] and in sporadic cases [24]. A low
prevalence of RET rearrangements, mainly in carcinoma associated with a differentiated
component, have been found in PDTC and ATC [25].

2.2. Other Rearrangements

The possibility to use sequencing techniques characterized by a very high sensitivity
has allowed the identification of additional rearrangements, other than of RET, in thyroid
cancer, mainly in radiation-induced tumors. Although gene rearrangements involving
BRAF oncogene were previously described by Ciampi et al. [26] in a series of radiation-
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induced post-Chernobyl thyroid cancer, they have also been reported in the TGCA study
in sporadic cases [3]. In particular, a total of 13/484 (2.7%) fusion of the BRAF gene
with different gene partners were identified (Table 1). Very few cases (4/484 (0.8%)) of
PAX8/PPARgamma fusions were also found in the TCGA series, in particular in the
follicular variant of PTC. Conversely, PAX8/PPARgamma fusions are much more frequent
in FTC, being present in about one-third of them and with a prevalence ranging from 12 to
56% [27,28].

Table 1. BRAF rearrangements in thyroid cancers.

Gene Fusion Prevalence Type of Cancer Reference

AKAP9/BRAF Radiation-induced [26]
SND1/BRAF 3/33 Sporadic [3]
AGK/BRAF 1/33 Sporadic [3]

AP3B1/BRAF 1/33 Sporadic [3]
BLC2L11/BRAF 1/33 Sporadic [3]

CCNY/BRAF 1/33 Sporadic [3]
ERC1/BRAF 1/33 Sporadic [3]

FAM114A2/BRAF 1/33 Sporadic [3]
MACF1/BRAF 1/33 Sporadic [3]
MKRN1/BRAF 1/33 Sporadic [3]
SVOPL/BRAF 1/33 Sporadic [3]

ZC3HAB1/BRAF 1/33 Sporadic [3]

Although to a less extent, translocations were also found in other genes such as NTRK
(1.2%), THADA (1.2%), ALK (0.8%) and FGFR2 (0.4%) [3]. In addition to PTC, ALK fusions
were found with a high prevalence in PDTC and ATC [29]. A high prevalence (55.5%) of
less common gene fusions (STRN/ALK, TPR/NTRK1, SQSTM1/NTRK3, AFAP1L2/RET,
and PPFIBP2/RET) (n = 5) were also reported in Fukushima PTC previously found to be
negative (n = 9) for the classical oncogenes, thus confirming the strong correlation between
radiation exposure and gene translocations [30].

2.3. BRAF Point Mutations

The BRAF gene encodes for a protein belonging to the serine/threonine-protein
kinase family. This protein plays a role in regulating the MAP kinase/ERKs signaling
pathway, which affects cell division, differentiation, and secretion. Mutations in this gene
are associated with various human cancers, including non-Hodgkin lymphoma, colorectal
cancer, malignant melanoma, thyroid carcinoma, non-small cell lung carcinoma, and
adenocarcinoma of the lung. The most common mechanism of BRAF activation is the
c.1799T > A, p.V600E (COSM476) point mutation that, according to the Cosmic database
(https://cancer.sanger.ac.uk/cosmic), accounts for 51% of PTCs. A similar rate of BRAF
mutations in PTC (59.7%) also has been reported by the Cancer Genome Atlas Research
(TGCA) study [3] that was performed by NGS on a series of about 500 PTC cases. All point
mutations and the rearrangements lead to the activation of BRAF kinase and to the chronic
stimulation of the MAPK pathway.

The BRAF-V600E mutation constitutes 98–99% of all BRAF mutations found in thyroid
cancer, but other alterations, including other point mutations, in-frame insertion/deletion
and rearrangements, have been reported (Table 2). However, BRAF “rare” mutations are
mainly present in the follicular variant of PTC and correlate with a good outcome [29]. In-
terestingly BRAF amplifications have been frequently found in BRAF wild-type tumors [30]

https://cancer.sanger.ac.uk/cosmic
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Table 2. Rare BRAF mutation in thyroid cancers according to the COSMIC database.

Nucleotide Change Amino Acid Substitution Mutation Type Prevalence

c.1834C > T p.Q612 Substitution nonsense 2/40,072
c.1778G > A p.G593D Substitution missense 1/21,576
c.1793C > T p.A598V Substitution missense 2/21,576
c.1796C > G p.T599R Substitution missense 1/21,576

c.? p.T599I Substitution missense 3/21,576
c.1801A > G p.K601E Substitution missense 54/21,576

c.1794_1795insGTT p.A598_T599insV Insertion inframe 8/13
c.1795_1796insTAA p.A598_T599insI Insertion inframe 1/13

c.1795_1796ins27 p.A598_T599insKKIGDFGLA Insertion inframe 1/13
c.1796_1797insTAC p.T599_V600insT Insertion inframe 1/13

c.1797_1798ins9 p.T599_V600insETT Insertion inframe 1/13
c.1798_1799ins18 p.T599_V600insDFGLAT Insertion inframe 1/13

c.? p.K601del Deletion inframe 3/6
p.V600_W604del p.V600_W604del Deletion inframe 1/6

c.1801_1803delAAA p.K601del Deletion inframe 1/6
c.1801_1812del12 p.K601_W604del Deletion inframe 1/6

c.1799_1814 > ATGT p.V600_S605 > DV Complex 1/33
c.1796_1809 > TC p.T599_R603 > I Complex 4/33

c.1799_1801delTGA p.V600_K601 > E Complex 15/33
c.1798_1798G > TACA p.V600 > YM Complex 4/33

c.1796_1798CAG > TAGCTT p.T599_V600 > IAL Complex 2/33
c.? p.T599_V600 > IYI Complex 1/33
c.? p.T599_R603 > I Complex 1/33
c.? p.V600_K601 > E Complex 1/33
c.? p.V600 > YM Complex 1/33

c.1799_1801delTGA p.V600_K601 > E Complex 3/33

A different prevalence of BRAF mutations has been observed according to different
morphological variants of PTC, and the highest prevalence was found in the tall cell PTC
than in the classic variant, while a rather low prevalence has been reported in the follicular
variant [21], where also some rare BRAF mutations are found [29].

Although not confirmed in an American series [31], a statistically significant increase
in the BRAF mutation prevalence in sporadic PTC cases has been reported in parallel with
the abovementioned decrease in RET rearrangement prevalence [18,32,33]. Since it has
been demonstrated that high iodine levels could be a risk factor for BRAF mutations [34],
the increased occurrence of BRAF mutations in PTC has been hypothesized, although
never demonstrated, to be related to the intake of prophylactic iodine that has become
increasingly recommended. Another hypothesis is that exposure to pollutants can be
responsible for the induction of BRAF-V600E mutation, and in particular, a correlation has
been found between a higher prevalence of BRAF-V600E mutation and the living close to
the Etna volcano [35].

BRAF mutations have been shown not to be a major event in post-Chernobyl thy-
roid carcinomas as well in a not irradiated pediatric population, while these alterations
have been found to be highly prevalent in thyroid carcinomas in the young population
of Fukushima, suggesting a different mechanism of the tumoral transformation in the
2 groups [36]. The BRAF-V600E mutation has also been demonstrated to be subclonal
or even oligoclonal with a different technical approach [36–39]. These findings led to
hypothesize that this mutation might not always be the first transforming genetic event but
rather a secondary event in PTC tumorigenesis [40,41]. Nevertheless, a high percentage of
BRAF-V600E mutated alleles, that indicates a clonal origin and development of tumoral
cells, correlated with a specific PTC molecular subtype and predicts a poorer disease
outcome [36].

Several studies have investigated the role of BRAF-V600E mutations as prognostic
markers and have shown a strong correlation with poor clinicopathological outcomes
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of PTC. In particular, a close association of BRAF mutation with extrathyroidal exten-
sion, lymph node metastasis, and advanced TNM stages III/IV of PTC, which are well-
documented risk factors associated with increased rates of recurrence and mortality of
thyroid cancer, have been reported [42–46]. The role of the BRAF-V600E mutation as a poor
prognostic factor has also been reported in low-risk intrathyroidal tumors [44]. Despite the
above-reported studies, the association between the BRAF-V600E mutations with increased
tumor aggressiveness and poor prognosis in PTC is still under debate [47,48]. At variance,
PTC cases with rare BRAF mutations, and in particular the BRAF-K601E, show an indolent
behavior similar to the cases with BRAF wild-type [29,49].

The BRAF-V600E mutation also occurs in about 30% of PDTC and 40% of ATC [4,50,51].
It is interesting to note that many of these carcinomas are characterized by the presence
of well-differentiated areas, and BRAF-V600E is present in both tumor components as-
suming the hypothesis that this mutation is an early event in tumor development and
dedifferentiation [52].

2.4. TERT Mutations

Telomerase reverse transcriptase (TERT) is the catalytic domain of telomerase whose
role is to add telomeres, to preserve chromosomal integrity and genome stability [53,54].
In addition, TERT has been shown to play a major role in the activation of telomerase
during malignant transformation of cells [55,56]. In 2013, using whole-genome sequencing,
mutations in the promoter of the TERT gene have been described in melanoma [57,58] and
in other human cancers, among which thyroid cancer [59]. The two most common TERT
promoter mutations occurring in thyroid cancer are located in the promoter region (chr: 5,
1,295,228 C > T (C228T) and 1,295,250 C > T (C250T)) (Figure 3).
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Figure 3. Schematic representation of TERT gene with the indication of the 2 most frequent mutations
localized in the gene promoter, responsible for the transcription of the gene starting from the
ATG codon.

These two mutations are mutually exclusive, suggesting that both the two mutations
are highly transforming. The most frequent TERT mutation in thyroid carcinoma is the
C228T mutation, and its prevalence is increasing with the increase of the level of aggres-
siveness being lower in the less aggressive PTC and very high in the more aggressive ATC.
A similar association of TERT mutations and aggressiveness of the disease is also observed
when comparing different histological variants of PTC. Pediatric thyroid tumors, which
are considered not so aggressive, have been found to be negative for the presence of TERT
promoter mutations [58]. To date, no TERT promoter mutations have been found in benign
thyroid diseases and in MTC [59,60].

TERT promoter mutations have been found to correlate strictly with poor clinicopatho-
logical features and bad outcomes of the tumor [60]. A significant association between
TERT promoter mutations with older age at diagnosis, tumor size, extrathyroidal invasion,
vascular invasion, lymph node and distant metastasis, advanced stage and mortality has
been reported [61]. TERT promoter mutations have been found to be associated with the
presence of the BRAF-V600E mutations: the coexistence of BRAF-V600E and TERT muta-
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tion has been demonstrated to define a particularly aggressive group of thyroid tumors
and in particular with tumor recurrence and mortality [60].

2.5. RAS Mutations

Proteins of the RAS family are G-proteins able to activate the MAPK and other signal-
ing pathways. In their active state, RAS proteins bind GTP; when GTP is hydrolyzed to
GDP, ras proteins assume their inactive state (Figure 4).
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COSMIC database. Interestingly all RAS mutations reported by the TGCA study are in the
follicular variant of PTC; thus, the relative frequency of the mutations in this subgroup
is really higher in keeping with the evidence that RAS mutations are a major leading
event in FTC [62]. Based on the presence of BRAF or RAS mutations, two main classes
of PTC have been identified and have been named “BRAF-like and RAS-like” [3,62]. In
detail, the first group of tumors was mainly constituted by classical or tall cell variants
and with a significant reduction of the expression of the thyroid differentiation genes. At
variance, the RAS-like PTCs were mainly follicular variants characterized by a high degree
of differentiation. Nevertheless, RAS mutations have been found to be particularly relevant
also in poorly differentiated and anaplastic thyroid cancer, where are frequently associated
with other mutations such as TERT promoter mutation [63]. Somatic mutations in the RAS
family have been reported in FTC. N-RAS mutations at codon 61 have been found to be
mutated at a prevalence varying from 15% up to 40% of FTC [64,65]. New insights from a
single-center and a large patient cohort of RAS mutated FTC have been shown to increase
the metastatic potential and disease-specific mortality.

2.6. EIF1AX Mutations

The TGCA study [3] identified EIF1AX as a novel cancer gene in PTC. Mutations of
EIF1AX were found in 1.5% of cases. The EIF1AX gene encodes for a eukaryotic translation
initiator factor involved in the control of the initiation of protein synthesis. Exons 2, 5 and
6 of the EIF1AX gene have been further analyzed in other studies [66] and 3/86 (2.3%)
PTC, 1/4 (25%) ATC and 2/27 (7.4%) follicular adenomas were found to carry one of these
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somatic mutations. The important role of the EIF1AX gene in thyroid tumorigenesis came
up also by the NGS studies on PDTC, ATC and FTC in which an EIF1AX gene mutation
was found in 11%, 9%–13% and 5.1% of cases, respectively [4,51,65]. According to the data
of the TGCA study on PTC, the EIF1AX mutations result to be mutually exclusive with any
other mutation. At variance, EIF1AX mutations seem to co-occur with RAS mutations in
more advanced tumors.

2.7. TP53 Mutations

The TP53 gene-encoded protein is involved in several cellular processes. In response
to cellular stress, it can induce cell cycle arrest, apoptosis, senescence, DNA repair, or
changes in metabolism (Figure 5).
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damage occurs, TP53 is able to induce the arrest of the cell cycle, and mutated cells cannot give origin
to altered clones. Mutated TP53 loses the ability to stop the growth of mutated cells. Thus, tumoral
clones take over.

In thyroid cancer, mainly in ATC, TP53 mutations are prevalently located in exons
5–9, and codon 273 is the most frequently involved [67,68]. The profile of TP53 mutations
has been changing over the years mainly because the recent development of the highly
sensitive NGS has allowed the identification of genetic alterations that are present at very
low prevalence. By Sanger sequencing inactivating TP53 mutations were reported in about
26% of PDTC [69] and in about 80% of ATC. No TP53 expression or mutations were found
in normal thyroid or in benign lesions [70]. According to the data reported by the TGCA
study, TP53 mutations are present in a negligible percentage (0.7%) of PTC. At variance,
using a last-generation sequencing approach [4,50,51], the prevalence of TP53 mutations is
rather elevated in PDTC and ATC. The overall prevalence of inactivating TP53 mutations
in ATC, which varied slightly in the aforementioned studies, is approximately 58% [63].
TP53 mutations can be found in ATC either associated with other genetic alterations
typical of PTC or FTC, thus suggesting that ATC can derive from the dedifferentiation
of well-differentiated longstanding thyroid cancer or as a unique genetic event, thus
suggesting a direct role of these mutations in transforming the normal follicular cell into an
undifferentiated tumoral cell. In this regard, it is worth noting that Landa et al. showed that
none of the nine patients with TP53-positive ATC had any mutation in other components
of the MAPK pathway, supporting the hypothesis that ATC can directly develop from
follicular cells. This hypothesis is also supported by the observation that when a tumor is
composed of a mixture of well-differentiated and undifferentiated areas, TP53 mutations
are restricted to the undifferentiated areas of the tumor. TP53 mutations can also be
found in PDTC, but their prevalence is significantly lower with respect to that found in
ATC (73% vs. 8%) [4]. Moreover, in series in which the PDTC identification was done



Int. J. Mol. Sci. 2021, 22, 1726 9 of 16

according to the Turin classification, TP53 mutations were demonstrated to be highly
prevalent in ATC but completely absent in PDTC, suggesting a different genetic origin of
the two malignancies [71]. A few prevalences of TP53 mutations have also been reported
in FTC [65]

3. Oncogenic Alterations in MTC

The genetic landscape of medullary thyroid cancer (MTC) is not yet fully discovered,
and about 40% of sporadic MTC and 2% of hereditary cases are still orphans of driver
mutations. At present, mutations in the RET gene, both somatic and germline, appear
to be the most important genetic events in MTC [9,72]. With the exception of the RAS
gene, very few alternative gene alterations have been described in MTC [5,6,73]. As an
alternative to point mutations, ALK and RET rearrangements have also been reported in
few cases [73,74].

Here following we will discuss the major players in the process able to transform a
normal parafollicular C-cell into a malignant cell and give origin to MTC.

3.1. RET Mutations

The RET proto-oncogene encodes for a tyrosine kinase transmembrane receptor whose
ligands are members of the glial-derived neurotrophic factor family. Following the binding
with the ligands, two RET receptor molecules make a dimer and initiate the activation of
the receptor. When point mutations occur, ligand-independent activation of the receptor
takes place (Figure 6).
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Figure 6. Mechanisms of activation of the RET gene: in physiological conditions, the binding of a RET ligand, which
is mediated by a co-receptor, induces the dimerization of two to RET molecules, causing the phosphorylation of the
tyrosine kinase domain (A). When a point mutation in the cysteine domain is present, as it happens in multiple endocrine
neoplasia (MEN) type 2A syndrome, the constitutive dimerization of 2 RET molecules occurs, and the receptor is activated
independently by ligand-binding (B). Alternatively, if the mutation occurs in the tyrosine kinase domain, as it happens in
MEN 2B syndrome, constitutive phosphorylation activates the RET receptor independently by ligand-binding (C).

Activation of RET stimulates multiple downstream pathways such as the mitogen-
activated protein kinase (MAPK), the phosphoinositide 3-kinase (PI3K). Activating RET
point mutations in MTC were first described in 1993 [75]. Since that time, many studies
have been performed in hereditary and sporadic cases demonstrating the oncogenic driver
role of RET mutations in MTC.

Hereditary cases: RET germline mutations have been found in more than 98% of MEN
2 kindreds, and only a few families affected by hereditary MTC are “orphans” of germline
mutations [9]. In addition to RET mutations, recently, a germline ESR2 mutation has been
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identified in a family as a novel cause of familial MTC/CCH and provides important
insights into a novel mechanism causing increased RET expression in tumorigenesis [76].
However, so far, it appears that this germline ESR2 mutation is a “private” mutation of that
specific family since no other kindreds carrying the same germline mutation have been
described [77].

The causative role of germline RET mutations in MEN 2 syndromes and the strict
correlation between genotype and phenotype was clearly demonstrated by the study of the
International RET Consortium that collected and published very important data about the
RET mutations and the clinical and pathological features of 477 kindred affected by MEN
2A, MEN 2B and FMTC [78]. Following this study, several MTC series have been reported
and summarized in reviews and or guidelines. One of the most important observation
is that the classical MEN 2A phenotype is mainly associated with mutations in the RET
cysteine codons 609, 611, 618, and 620 in exon 10 and, mostly, with the C634R mutation in
exon 11. Secondly, MEN 2B was almost exclusively associated with the M918T mutation
in exon 16. Few MEN 2B families have been found to have the A883F mutations: in these
families, MTC is less aggressive than the M918T MTC tumors. By contrast, in FMTC cases,
mutations were distributed among different codons/exons of the RET gene [78], but they
are mainly concentrated in non-cysteine codons, such as codon 804 in exon 14 and codons
883 and 891 in exon 15 [78,79]. Almost all mutations reported to date are listed in public
databases (www.hgmd.cf.ac.uk; www.arup.utah.edu/database/MEN2; www.ensembl.org,
accessed date: 30 November 2020) (Table 3).

Table 3. Distribution of germline RET mutation in hereditary medullary thyroid carcinoma (MTC).

Location Protein Change Classification MEN2 Phenotype

Exon 5
p.V292M Pathogenic

MEN2A and FMTC
p.T338I Pathogenic

Exon 7 p.505_506del Pathogenic MEN2A

Exon 8
p.C515S/W Pathogenic

p.G533C Pathogenic

Exon 10

p.C609R/G/Y/S/F

Pathogenic MEN2A and FMTC
p.C611S/R/G/YF/W

p.C618S/R/G/Y/F/W

p.C620S/R/G/L/F/W/Y

Exon 11

p.D631Y/A/G/V/E Pathogenic/uncertain

MEN2Ap.C634S/R/G/Y/L/W Pathogenic

p.K666E/R Pathogenic

Exon 13
p.E768D Pathogenic

MEN2A and FMTC
p.L790F Pathogenic

Exon 14

p.V804M Pathogenic

MEN2A and FMTCp.V804L Pathogenic

p.Y806C Benign

Exon 15

p.A883T Pathogenic

FMTC, MEN2B and
MEN 2A

p.A883F Pathogenic

p.S891A Pathogenic

p.S904F Pathogenic

Exon 16
p.M918T Pathogenic

MEN2B and FMTC
p.M918V Pathogenic
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As clearly reported in the ATA guidelines, not all mutations confer the same aggres-
siveness to MTC [80,81], and this aggressiveness is correlated with the transforming ability
of the RET mutation. We and others demonstrated that M918T mutation and mutations
ad codon 634 are more transforming than non-cysteine mutations [82]. Because of the
pathogenic role of germline RET mutations and their correlation with phenotype, all cases
of MTC, both those with a clear familial-positive history and those apparently sporadic,
must be submitted to the RET genetic screening. This will allow the correct identification of
the hereditary cases and of the gene carriers among their first-degree relatives. These latter
will be studied for the presence of an undiagnosed but already present MTC or for their
potentiality to develop the tumor if not yet present. The planning of a prophylactic surgical
treatment or the follow-up strategy will be done according to the age of the patients, the
type of RET mutation and the levels of serum calcitonin [83,84].

Sporadic cases: According to data collected from several studies and published in a
public database (COSMIC, https://cancer.sanger.ac.uk/cosmic), RET somatic mutations
have also been found in 932/2107 (44%) sporadic MTC tissues. The most frequent RET
somatic alterations in sporadic MTC are point mutations, but deletions and insertions
have also been reported. Although RET somatic mutations have been found at different
codons, the M918T mutation in exon 16 is the most frequently reported, especially in more
advanced cases [83,85]. The prevalence of RET somatic mutations in MTC was around
50% of cases in series in which direct sequencing was adopted for the analysis. With
the introduction of advanced sequencing methodologies (next-generation sequencing,
NGS) that allowed the deep sequencing of the larger portion of the genome, the role of
somatic RET mutations as main drivers in MTC had been confirmed. As reported in a large
series [86], RET mutations are almost always mutually exclusive, and only in few cases,
multiple RET somatic mutations are present, suggesting that MTC is a rather stable tumor.
This evidence was also reported in additional studies [87,88] that demonstrated that only
in about 20% of cases a different RET mutation profile could be found when comparing
primary tumor and its corresponding metastases. NGS studies have also allowed the
definition of the frequency of the mutated allele (AF) and have demonstrated that larger
tumors not only are characterized by a higher prevalence of RET somatic mutations [89] but
also have a higher AF corresponding to a higher number of mutated cells. This evidence
suggests the hypothesis that the presence of a RET mutation, particularly M918T, is able to
induce a growth advantage resulting in the formation of larger and clonal tumors.

The presence of somatic RET mutations has been found to be correlated with a worse
prognosis of the tumor and shorter survival [90,91]. The correlation between RET somatic
mutation and a worse outcome is strengthened by the evidence that the prevalence of RET
somatic mutations is higher in patients with a more advanced tumor and lower in patients
with smaller tumors [85]. At variance with the RET genetic screening in the familial form,
the search for somatic RET mutation in the tumoral tissue is not yet part of the routine
clinical practice, although it is highly desirable to be new anti-RET-specific drugs under
development.

3.2. RAS Mutations

Interestingly, in the last years, RAS mutations have also been found in MTC [86,92,93].
In 2011, a Portuguese group [92] found somatic HRAS and KRAS mutations in 15/26
(57.7%) and in 3/26 (11.5%) RET wild-type MTC cases. At variance, only 1/40 (2.5%)
RET-positive case had a somatic RAS mutation, indicating that RAS and RET mutations are
mutually exclusive in MTC. In the Ciampi et al. series [86], RAS mutations were present
in 69.2% (18/26) of RET-negative cases and in only 2.5% of RET-positive sporadic MTC,
confirming that activation of the RAS and RET proto-oncogenes represents alternative
genetic events in sporadic MTC tumorigenesis. Although with different prevalence, likely
due to technical and/or ethical reasons, these results have been confirmed by several
groups. It is also worth noting that RAS mutation identifies a subgroup of MTC with less
aggressive behavior when compared with cases with RET mutations [86].

https://cancer.sanger.ac.uk/cosmic
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4. Conclusions

In the last years, much progress has been made in deciphering the genetic landscape
of thyroid carcinoma. In PTC, the results of the study of the TGCA study definitively
demonstrated that genetic alterations are present in about 95% of tumors and that two
main classes of tumors (BRAF- and RAS-like), each with their own clinical and biological
behavior, can be distinguished. In addition to PTC, important achievements have also
been reached for PDTC and ATC. BRAF and RAS mutations have been confirmed to play
an important role in the pathogenesis of these tumors, and TP53 mutations have been
found to be fundamental in tumor progression. It also has been clearly demonstrated
that TERT promoter mutations and TP53 mutations are present with a high-frequency in
more advanced tumors, frequently associated with other mutations, and their presence is a
sign of aggressiveness. Similarly, the presence of several genetic alterations in the same
tumoral tissue is correlated with a higher degree of dedifferentiation and probability of a
bad outcome. As MTC are concerned, the whole-exome sequencing and target sequencing
studies confirmed that mutations in the RET gene are the most common molecular events
followed by H-RAS and K-RAS mutations. The comprehensive knowledge of the genetic
events responsible for thyroid tumorigenesis, as well as for any other human tumor, is
important to better predict the biological behavior and to better plan the therapeutic
strategy for specific treatment of the malignancy on its molecular profile.
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