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Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating
gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs,
microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma,
pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many
vital components in a wide range of cancers and acts on various cellular processes ranging from
cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating
miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant
potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed
additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of
this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential
as a therapeutic target.
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1. Introduction

MicroRNAs (miRNAs) are small noncoding RNAs of approximately 22 nucleotides;
they are intricately involved in a wide range of cellular functions, including cellular
proliferation, apoptosis inhibition, neovascularization, DNA damage response, stress
response, immunological response, and most importantly tumorigenic progression [1,2].
The human genome encodes more than 2000 mature miRNAs [3,4], and because miRNAs
require only partial complementarity of 7–8 nucleotides (nt) for binding with the target
mRNA, many coding transcripts harbor potential sites for miRNA-mediated gene
expression regulation. As such, a single miRNA can target multiple cellular mRNA
transcripts [2,5].

The biogenesis of an miRNA begins with the transcription of the initial encoding
sequence by RNA polymerase II/III to produce a primary miRNA (pri-miRNA), which
has a hairpin-like structure containing a 5′-7-methylguanosine (m7G) cap and poly(A)
tail [6,7]. The pri-miRNA is processed by intronic excision through splicing (mirtron), or
prominently by the RNase III endonuclease, Drosha, and the double-stranded RNA-binding
protein, DiGeorge syndrome critical region 8 (DGCR8), which aids Drosha in the cleaving
of the target site to release a 70 nt stem-loop precursor miRNA (pre-miRNA) with a 3′

overhang [8–10]. For further processing, the transcript is exported to the cytoplasm by
Exportin-5 and the Ran GTPase, and undergoes an endoribonucleolytic reaction via Dicer,
creating a 3′ overhang at both ends [11,12]. One strand is selected as the miRNA effector or
“guide strand” based on the thermodynamic stability of the 5′ end of the duplex; the guide
strand is loaded onto the argonaute protein 2 (Ago2) complex while the remaining strand,
called the “passenger strand (miRNA*)”, is degraded [13] (Figure 1). This process forms
general mature miRNAs.
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Figure 1. General miRNA biogenesis pathway and the related functions in cells; miRNA biogenesis
begins with transcription by RNA polymerase II/III to create a pri-miRNA and is cleaved by
Drosha/DGCR8 (cropping). The pre-miRNA is then exported to the cytoplasm via Exportin-5/Ran
GTPase for further processing by Dicer/TRBP (dicing). Of this processed miRNA/miRNA* duplex, a
“guide strand” is selected and loaded onto the Ago2 protein while the remaining passenger strand
(miRNA*) is degraded. With the formation of a miRISC complex, target mRNA can be regulated and
subsequently affect cellular and tumorigenic properties. pri-miRNA—primary microRNA, DGCR8—
DiGeorge syndrome critical region 8, pre-miRNA—precursor microRNA, TRBP—transactivation
response element RNA-binding protein, Ago2—argonaute protein 2, and miRISC—microRNA-
induced silencing complex.

Alternative forms called isomiRs, which contain variations in 5′ and mostly near the
3′ end, may arise through a shift in the Drosha/Dicer cleavage site or through Drosha-
independent or Dicer-independent pathways. Terminal nucleotidyltransferases (TENTs)
may also create variations by modifying miRNAs by extending the strand with several
nucleotides at the 3′ ends. These additional nucleotides are eventually “trimmed” or “de-
tailored” by poly (A)-specific ribonuclease (PARN) and other 3′-5′ exoribonucleases in a
final maturation step [14–16].

In general, miRNA expression is perturbed in cancer, suggesting that there may be
a link between aberrant miRNA expression and the disease. Furthermore, it is important
to note the circumstances surrounding the regulation of the miRNA in question. Studies
have highlighted how miRNA modulators can impact cancer. For example, the ubiquitin
ligase, TRIM71, suppresses tumorigenesis by modulating let-7 in the Lin28B-let-7-HMGA2
signaling pathway [17,18]. Additionally, core miRNA processors and related factors, such
as Drosha, Dicer, TRBP, and Ago2 are important in cancer progression [19]. In addition
to these miRNA modulators and miRNAs, other noncoding RNAs subtypes have also
been reported to regulate gene expression in various ways; these include circular RNAs,
Piwi-interacting RNA, Y RNA, small nuclear RNA, small nucleolar RNA, vault RNA, tRNA-
derived small RNA, and small interfering RNAs (Table 1). Accumulating evidence suggests
that direct interactions between long noncoding RNAs (lncRNAs) and miRNAs can act as
regulators in various diseases, especially in cancers, suggesting that the network of miRNA
regulation is more intricate than previously understood [20,21]. Furthermore, although
miRNAs have been primarily known to function as endogenous regulators of intracellular
gene expression, the recent identification of miRNAs in a wide range of biological fluids
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suggests that they may also act systematically as signaling messengers, and thus could be
useful as diagnostic or prognostic markers [22].

Table 1. Different types of existing noncoding RNA.

Subtype Abbreviation Size (nt) Description References

Circular RNA circRNA 100 ~ ≥4000
Functions through interaction with RNA and RNA

binding proteins; modulating stability and regulating
gene transcription

[23–25]

Enhancer RNA eRNA ≤2000 Transcribed upon activation of enhancers and affects
efficiency of enhancer activation and gene transcription [26,27]

Piwi-interacting RNA piRNA 26–31
Forms RNA-protein complexes with Piwi-subfamily

proteins and involving in epigenetic and
post-transcriptional silencing of transposable elements

[28]

Small interfering RNA siRNA 21–25
Plays a role in RNA interference through silencing of

transposons and mediating transcriptional
gene silencing

[29]

Small nuclear RNA snRNA ~150
Primarily functions in processing of pre-mRNA

or heterogeneous nuclear RNA (hnRNA)
in the nucleus

[30]

Small nucleolar RNA snoRNA ~70–250 Primarily guide chemical modification and processing
of other RNAs and also function as miRNA [31]

Telomerase RNA
component TERC 150–1300

Helps constitute telomerase activity
in tandem with TERT and acts as a template

for telomere replication
[32]

tRNA-derived small
RNA tsRNA 18–40

Regulates gene expression similarly to miRNA-
mediated RNA silencing mechanism

via interacting with Ago proteins
[33]

Vault RNA vtRNA 86–141
Associated with drug resistance and regulates

expression through miRNA-like RNA silencing
mechanism via interacting with Ago proteins

[34]

Y RNA Y RNA 84–113
Components of Ro60 ribonucleoprotein and involved
in various cellular processes such as DNA replication

and RNA quality control
[35,36]

2. MicroRNA-21 and Its Role in Cancer

Among the many miRNAs that have been associated with cancer progression,
microRNA-21 (miR-21) was among the first to be identified as an oncogenic miRNA or
“oncomiR”. Located on chromosome 17q23.2 in the intron of the transmembrane protein
49 (TMEM49)/vacuole membrane protein 1 (VMP1) gene, miR-21 was observed to have a
unique, highly conserved promoter region that is activated by activation protein 1 (AP-1)
in conjugation with the switch/sucrose non-fermentable (SWI/SNF) complex and Ets-
related protein PU.1, CCAAT/enhancer binding protein (C/EBP), nuclear factor I (NFI),
serum response factor (SRF), p53, and signal transducer and activator of transcription 3
(STAT3) [37,38]. Alteration of miR-21 expression has been linked to epigenetic factors
and the dysregulation of transcriptional and posttranscriptional regulators, whether
during biogenesis or through repression, resulting in oncogenic phenotypes (Figure 2).
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Figure 2. Epigenetic regulators of miR-21 and downstream targets of miR-21 in regards to cancer 
stemness, differentiation, cell death, and chemoresistance. Representative regulators of each cellular 
process are listed. TMEM49—transmembrane protein 49, VMP1—vacuole membrane protein 1, AP-
1—activator protein 1, Ets/PU.1—Ets family transcription factor PU.1, SRF—serum response factor, 
C/EBP—CCAAT/enhancer binding protein, NFI—nuclear factor I, STAT3—signal transducer and 
activator of transcription 3, CXCR4—C-X-C chemokine receptor type 4, SOX2—sex-determining 
region Y-box, ALDH1—aldehyde dehydrogenase 1, PDCD4—programmed cell death 4, TGFBR2—
transforming growth factor beta receptor 2, Wnt-1—wingless-integrated family member 1, JAG1—
jagged canonical Notch ligand 1, RECK—reversion-inducing cysteine-rich protein with Kazal 
motifs, PTEN—phosphatase and tensin homolog, Spry1—sprouty RTK signaling antagonist 1, 
CDK2AP—cyclin-dependent kinase 2 associated protein, Bax—Bcl-associated X protein, Bcl2—B-
cell lymphoma 2, FasL—Fas ligand, and HIF1-α—hypoxia-inducible factor 1-α. 

Pivotal driver genes and their associated mutations, which commonly lie at the hub 
of many cellular pathways, can be found across different cancer types and may lead to 
dysregulation of or be affected by miR-21. Bailey and colleagues characterized common 
mutations across at least 15 or more cancer types which include TP53, PIK3CA, KRAS, 
phosphatase and tensin homolog (PTEN), and ARID1A [39]. Some of these mutations 
have been closely associated with miR-21 and its target proteins. In non-small cell lung 
cancer (NSCLC) containing R175H- and R248Q-mutant p53, miR-21 was observed to be 
upregulated, and the patients with elevated expression of p53 mutations and miR-21 had 
a lower overall survival rate. In addition, the knockdown of miR-21 led to lower mutant 
p53 mRNA levels [40]. Furthermore, induction of miR-21 appeared to mediate disease 
progression and metastasis in p53-deficient tumor keratinocytes [41]. This was also 
evident in KRAS mutation-driven cancers such as NSCLC and pancreatic ductal 
adenocarcinoma (PDAC). Inhibition of miR-21 in transgenic KRAS (G12D)/Trp53 
null/Pdx1-cre (KPC) cell lines appeared to reduce proliferation, migration, and invasion 
compared to wild-type pancreatic epithelial cells [42]. Hatley and colleagues found that 
miR-21 overexpression in G12D-mutant KRAS mouse NSCLC models enhanced tumor 
formation, and subsequent deletion of miR-21 led to a significant decrease in total tumor 
mass in proportion to normal lung area [43]. Likewise, epidermal growth factor receptor 
(EGFR)-mutated lung cancer patients had considerably increased miR-21 expression 
compared to those without mutations [44]. In particular, EGFR is known to affect miRNA 
maturation through the posttranslational modification of Ago2, thus highlighting the 
important relationship between a cancer mutation and miR-21 status [45]. 

Various independent studies determined that miR-21 is overexpressed in pancreatic 
adenocarcinoma, breast, and colorectal cancer (CRC) [46–48]. In a large-scale study using 
540 human samples, miR-21 was found to be commonly overexpressed in lung, breast, 
stomach, prostate, colon, and pancreatic cancers [49]. MiR-21 was also found to be 
upregulated in glioblastoma [50,51]. Analysis of TCGA pan-cancer patient databases also 
reveals a similar trend across various cancers [52]. (Figure 3) 

Figure 2. Epigenetic regulators of miR-21 and downstream targets of miR-21 in regards to cancer
stemness, differentiation, cell death, and chemoresistance. Representative regulators of each cellular
process are listed. TMEM49—transmembrane protein 49, VMP1—vacuole membrane protein 1,
AP-1—activator protein 1, Ets/PU.1—Ets family transcription factor PU.1, SRF—serum response
factor, C/EBP—CCAAT/enhancer binding protein, NFI—nuclear factor I, STAT3—signal transducer
and activator of transcription 3, CXCR4—C-X-C chemokine receptor type 4, SOX2—sex-determining
region Y-box, ALDH1—aldehyde dehydrogenase 1, PDCD4—programmed cell death 4, TGFBR2—
transforming growth factor beta receptor 2, Wnt-1—wingless-integrated family member 1, JAG1—
jagged canonical Notch ligand 1, RECK—reversion-inducing cysteine-rich protein with Kazal motifs,
PTEN—phosphatase and tensin homolog, Spry1—sprouty RTK signaling antagonist 1, CDK2AP—
cyclin-dependent kinase 2 associated protein, Bax—Bcl-associated X protein, Bcl2—B-cell lymphoma
2, FasL—Fas ligand, and HIF1-α—hypoxia-inducible factor 1-α.

Pivotal driver genes and their associated mutations, which commonly lie at the hub of
many cellular pathways, can be found across different cancer types and may lead to
dysregulation of or be affected by miR-21. Bailey and colleagues characterized common
mutations across at least 15 or more cancer types which include TP53, PIK3CA, KRAS,
phosphatase and tensin homolog (PTEN), and ARID1A [39]. Some of these mutations have
been closely associated with miR-21 and its target proteins. In non-small cell lung cancer
(NSCLC) containing R175H- and R248Q-mutant p53, miR-21 was observed to be
upregulated, and the patients with elevated expression of p53 mutations and miR-21 had a
lower overall survival rate. In addition, the knockdown of miR-21 led to lower mutant p53
mRNA levels [40]. Furthermore, induction of miR-21 appeared to mediate disease
progression and metastasis in p53-deficient tumor keratinocytes [41]. This was also evident
in KRAS mutation-driven cancers such as NSCLC and pancreatic ductal adenocarcinoma
(PDAC). Inhibition of miR-21 in transgenic KRAS (G12D)/Trp53 null/Pdx1-cre (KPC) cell
lines appeared to reduce proliferation, migration, and invasion compared to wild-type
pancreatic epithelial cells [42]. Hatley and colleagues found that miR-21 overexpression in
G12D-mutant KRAS mouse NSCLC models enhanced tumor formation, and subsequent
deletion of miR-21 led to a significant decrease in total tumor mass in proportion to normal
lung area [43]. Likewise, epidermal growth factor receptor (EGFR)-mutated lung cancer
patients had considerably increased miR-21 expression compared to those without
mutations [44]. In particular, EGFR is known to affect miRNA maturation through the
posttranslational modification of Ago2, thus highlighting the important relationship
between a cancer mutation and miR-21 status [45].

Various independent studies determined that miR-21 is overexpressed in pancreatic
adenocarcinoma, breast, and colorectal cancer (CRC) [46–48]. In a large-scale study using
540 human samples, miR-21 was found to be commonly overexpressed in lung, breast,
stomach, prostate, colon, and pancreatic cancers [49]. MiR-21 was also found to be
upregulated in glioblastoma [50,51]. Analysis of TCGA pan-cancer patient databases also
reveals a similar trend across various cancers [52] (Figure 3).
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alpha (PPAR-α) axes [55]. Furthermore, miR-21 upregulation appears to disrupt 
Ras/mitogen-activated protein kinase (MAPK) signaling via downregulation of Sprouty 2 
(Spry2) leading to increased glioma malignancy [56]. MiR-21 also targets Spry2 in PDAC, 
resulting in the enhancement of epidermal growth factor-induced cell proliferation [57]. 

In NSCLC, miR-21 was found to repress the tumor suppressor PTEN, and promote 
growth and invasion phenotypes [58]. In breast cancer, programmed cell death 4 (PDCD4) 
was found to be directly regulated and repressed by miR-21 [59]. Additionally, miR-21 
appeared to target and suppress the expression of tumor suppressor tropomyosin 1 
(TPM1), mammary serine protease inhibitor Maspin, and PDCD4 in metastatic breast 
cancer, thereby affecting tumorigenicity, invasion, and metastasis [60]. 

Interestingly, Medina and colleagues reported that some cancers depend on one to 
several oncogenic genes including miR-21 called an “oncomiR addiction”. By using Tet-
off and Cre recombinase technology to modulate miR-21 expression in a cross-bred mouse 
model, the authors showed that miR-21 upregulation led to and was necessary for the 

Figure 3. CancerMIRNome analysis of hsa-miR-21-5p expression in TCGA database demonstrating
aberrant miR-21 expression across various cancer. Open circles indicate outliers. Some cancers
(DLBC, MESO, SARC, TGCT, UCS, LAML, ACC, UVM, LGG, OV, and GBM) are incomparable in
the dataset due to the lack of comparable tumor or normal samples. Significance was evaluated by
CancerMIRNome via Wilcoxon rank-sum test. ** p < 0.01, *** p < 0.001, ns; not significant. DLBC—
diffuse large B-cell lymphoma, CHOL—cholangiocarcinoma, MESO—mesothelioma, KIRP—kidney
renal papillary cell carcinoma, PAAD—pancreatic adenocarcinoma, CESC—cervical squamous cell
carcinoma and endocervical adenocarcinoma, LUAD—lung adenocarcinoma, ESCA—esophageal
carcinoma, HNSC—head and neck squamous cell carcinoma, LUSC—lung squamous cell carcinoma,
BLCA—bladder urothelial carcinoma, STAD—stomach adenocarcinoma, BRCA—breast invasive
carcinoma, LIHC—liver hepatocellular carcinoma, SARC—sarcoma, READ—rectum adenocarcinoma,
COAD—colon adenocarcinoma, THCA—thyroid carcinoma, TGCT—testicular germ cell tumor,
KIRC—kidney renal clear cell carcinoma, SKCM—skin cutaneous melanoma, UCEC—uterine
corpus endometrial carcinoma, PRAD—prostate adenocarcinoma, UCS—uterine carcinosarcoma,
LAML—acute myeloid leukemia, THYM—thymoma, ACC—adrenocortical carcinoma, UVM—uveal
melanoma, KICH—kidney chromophobe, PCPG—pheochromocytoma and paraganglioma, LGG—
brain lower grade glioma, OV—ovarian serous cystadenocarcinoma, and GBM—glioblastoma
multiforme.

Although the mechanisms linking miR-21 upregulation with other oncogenic factors
have not yet been elucidated, various reports have indicated that miR-21 could drive cancer
progression. In glioma, the β-catenin pathway was found to regulate miR-21 via STAT3,
which is a well-known oncogenic transcription factor that promotes tumor growth and
invasion [53,54]. MiR-21 also appears to be regulated by EGFR and the activation of β-
catenin and AP-1. Upon upregulation, miR-21 regulates EGFR/Akt signaling by targeting
the von Hippel–Lindau (VHL) and peroxisome proliferator-activated receptor alpha (PPAR-
α) axes [55]. Furthermore, miR-21 upregulation appears to disrupt Ras/mitogen-activated
protein kinase (MAPK) signaling via downregulation of Sprouty 2 (Spry2) leading to
increased glioma malignancy [56]. MiR-21 also targets Spry2 in PDAC, resulting in the
enhancement of epidermal growth factor-induced cell proliferation [57].

In NSCLC, miR-21 was found to repress the tumor suppressor PTEN, and promote
growth and invasion phenotypes [58]. In breast cancer, programmed cell death 4 (PDCD4)
was found to be directly regulated and repressed by miR-21 [59]. Additionally, miR-21
appeared to target and suppress the expression of tumor suppressor tropomyosin 1 (TPM1),
mammary serine protease inhibitor Maspin, and PDCD4 in metastatic breast cancer, thereby
affecting tumorigenicity, invasion, and metastasis [60].

Interestingly, Medina and colleagues reported that some cancers depend on one to
several oncogenic genes including miR-21 called an “oncomiR addiction”. By using Tet-off
and Cre recombinase technology to modulate miR-21 expression in a cross-bred mouse
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model, the authors showed that miR-21 upregulation led to and was necessary for the
malignant phenotype of pre-B-cell lymphoma, which demonstrated this hypothesis.
Importantly, the tumor regressed upon inactivation of miR-21, demonstrating the
therapeutic validity of targeting miR-21 [61].

3. Regulation of MicroRNA-21 Biogenesis

Although many miRNAs are dysregulated in cancer, Thomson and colleagues
demonstrated that pri-miRNA transcripts do not reflect the overexpression of their
corresponding mature forms [62]. The authors suggested that the primary-to-precursor
transcript turnover step in miRNA biogenesis may be disrupted in cancer. Extensive
studies have indicated that RNA-regulatory proteins, such as heterogeneous nuclear
ribonucleoprotein A1 (hnRNPA1), KH-type splicing regulatory protein (KSRP), and
ribonuclease/angiogenin inhibitor 1 (RNH1) specifically interact with the Drosha
microprocessor and facilitate miRNA maturation [63–65]. In a similar vein, members of the
DEAD-box family of RNA helicases such as DDX5, DDX18, and DDX23 appeared to
modulate miR-21 in various cancers [66–68]. The report of transforming growth factor beta
(TGF-β) and bone morphogenetic protein (BMP) to induce miR-21 expression again
highlights the importance of the Drosha microprocessor complex in miR-21 regulation.
Moreover, ligand stimulation reportedly recruits the small mothers against
decapentaplegic (SMAD) signal transducers, SMAD1/5 and SMAD2/3, with RNA helicase
DDX5 to the pri-miR-21 resulting in the rapid maturation of miR-21 [69].

There may be yet-unknown miRNA regulation factors that contribute to tumor
progression. IsomiRs of miR-21 have been found to be highly expressed in breast cancer
and CRC, indicating that these noncanonical forms may contribute to the disease
status [70,71]. Interestingly, it was recently reported that heterogeneous nuclear
ribonucleoprotein C (hnRNPC) could directly interact with pri-miR-21 to induce an
isoform shift of miR-21 in liver cancer cells. The resulting isomiR-21s were found to inhibit
growth hormone receptors and promote tumorigenesis [72]. During the biogenesis of
miR-21, it is commonly understood that the miR-21-5p strand acts as the guide strand and
miR-21-3p is degraded as the passenger strand. However, recent studies showed that
miR-21-3p is highly expressed in particular cancer cell lines, such as CRC cell lines and
PC9 lung adenocarcinoma cells. Furthermore, isoforms of miR-21-3p were reported to
show differential effects on cellular behaviors in CRC [73,74].

4. Regulation of Stemness Markers and Differentiation by MicroRNA-21

The term “cancer stem cells” (CSCs) refers to a small subpopulation of tumor cells
that possess “stemness”, which comprises the stem cell-like abilities to self-renew and
differentiate. These characteristics may be derived from the combined actions of various
stemness-related transcriptional factors that are affected by miR-21 in various CSCs.

In PDAC cell lines, for example, miR-21 was reported to modulate key stemness
factors, such as CD44, CD133, C-X-C chemokine receptor type 4 (CXCR4), and aldehyde
dehydrogenase 1 (ALDH1), and miR-21 knockout was shown to significantly
downregulate these factors [75]. Overexpression of miR-21 in CRC cells led to the
downregulation of PDCD4 and the transforming growth factor beta receptor 2 (TGFBR2).
Studies have shown that upregulation of TGFBR2 results in the downregulation of the key
CSC markers, β-catenin, c-Myc, and cyclin-D, indicating that miR-21 may be involved in
CRC differentiation [76,77]. MiR-21 was also found to suppress SOX2, a key stemness
marker, in particular subsets of glioblastoma and mesenchymal stem cells [78,79].

Other independent studies revealed a number of ways in which miR-21 affects
differentiation. The induction of Ras was found to dedifferentiate the thyroid-stimulating
hormone (TSH)-dependent rat cell line FRTL5. Upregulation of miR-21 was observed
during this process, indicating that miR-21 may also play a role in differentiation [50]. In
human monocyte-derived dendritic cells, miR-21 and miR-34a could co-regulate
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differentiation through the repression of wingless-integrated family member 1 (Wnt-1) and
jagged canonical Notch ligand 1(JAG1)-mediated signaling [80].

5. MicroRNA-21 in Cell Death

There are many forms of cell death, such as apoptosis, necroptosis, autophagy, and
the more recently identified ferroptosis, and miR-21 has been found to be involved in
almost all of them. The tumor suppressors PTEN and PDCD4, which play essential roles in
the induction of apoptosis, are likely to be modulated by miR-21 via the PI3K/Akt/mTOR
signaling pathway. Upon inhibition of miR-21, PTEN and PDCD4 were reportedly
upregulated, leading to growth inhibition and apoptosis [59,81]. Sprouty1 (Spry1), an
inhibitor of the Ras/MEK/ERK pathway, was also found to be targeted and inhibited by
miR-21, leading to decreased apoptosis in cardiac fibroblasts [82]. In glioblastoma,
inhibition of miR-21 leads to upregulation of the matrix metalloproteinase inhibitors, a
reversion inducing cysteine-rich protein with Kazal motifs (RECK), and TIMP
metallopeptidase inhibitor 3 (TIMP3), which decreases glioma motility and activates
caspases [83]. In NSCLC, miR-21 appears to inhibit Akt expression and enhance apoptosis
by interfering with the PI3K/Akt/NF-κB signaling pathway [84].

Although necroptosis is largely driven by receptor-interacting protein 1 (RIP1), RIP3,
and mixed lineage kinase domain-like (MLKL), miR-21 was found to play an indirect role
through the modulation of cyclin-dependent kinase 2-associated protein (CDK2AP) [85,86].
MiR-21 was also reported to suppress tumor suppressor genes (PTEN and FasL), and
inhibition of miR-21 could reduce acute pancreatitis [87].

MiR-21 was observed to play significant roles in autophagy across various cancers
including CRC, hepatocellular carcinoma (HCC), and glioma. In CRC, miR-21 was
suggested to regulate autophagy by acting on the PTEN/Akt/transcription factor EB
(TFEB) pathway. It inhibited VMP1 expression via phosphorylation of TFEB, which is
important for autophagosome formation [88]. In HCC, sorafenib-resistant HCC cell lines
were found to have lower levels of autophagy and elevated levels of miR-21. PTEN and
Akt activation were also restricted in this system, indicating that miR-21 inhibits
sorafenib-induced autophagy through the PI3K/Akt pathway [89]. In glioma, inhibition of
miR-21 was found to increase the autophagy and radio-sensitivity of glioma cell lines,
suggesting that miR-21 may contribute to radio-resistance by regulating autophagy [90].

Ferroptosis is a relatively new category of programmed cell death; it is defined by
iron accumulation and lipid peroxidation, with subsequent oxidative cell death [91,92].
Elevated expression of miR-21 appeared to increase reactive oxygen species (ROS) levels
across various cancers via its downstream targets STAT3, proline oxidase, and PDCD4,
leading to oxidative stress. This indicated that miR-21 could play a role in ferroptosis [93].
Interestingly, delivery of miR-21-3p to melanoma cell lines was found to promote interferon-
gamma (IFN-γ)-mediated ferroptosis by targeting thioredoxin reductase 1 and elevating
ROS generation [94].

6. MicroRNA-21 in Chemoresistance

Although cancer treatment has improved greatly over the past decades, the eventual
development of chemoresistance is a remaining major obstacle. MiR-21 has also been
shown to reduce the susceptibility of cancer cells to certain drugs. In an independent
study, upregulation of miR-21 and the subsequent downregulation of PTEN was found
to affect the sensitivity of MCF-7 breast cancer cells to doxorubicin. Conversely, this
could be overcome through the application of an miR-21 inhibitor or the overexpression
of PTEN [95]. MiR-21 was also found to contribute to cisplatin resistance in gastric cancer
cells through the downregulation of PTEN and activation of the PI3K/Akt pathway [96].
In NSCLC, miR-21 silencing reversed multidrug resistance and subsequently reduced Akt
phosphorylation to modulate the expression levels of the transcriptional factor E2F-1 and
Twist. Thus, miR-21 appears to play a key role in drug resistance [97].
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MiR-21 was linked to glioblastoma resistance against first-line treatment,
temozolomide; this was found to act through regulation of the pro-apoptotic
Bcl-2-associated X protein (Bax) and anti-apoptotic B-lymphoma 2 (Bcl-2) balance, and
caspase-3 activity [98]. MiR-21 was shown to protect pancreatic cancer cells from apoptosis
through the mediation of the FasL/Fas pathway [99], and to affect the radio-resistance of
malignant glioma cells. Indeed, circulating miR-21 serves as a good prognostic indicator
for chemoresistance in glioma patients [90,100]. Elevated miR-21 expression may indirectly
confer chemoresistance through hypoxia, which is well known to aid in tumor immune
evasion, facilitate the development of chemoresistance, and induce numerous factors that
impact tumorigenesis. Under hypoxia, hypoxia-inducible factor HIF-1α was found to
induce miR-21 and allow cancer cells to effectively bypass the hypoxia-associated
reduction in proliferation by avoiding apoptosis [101].

7. MicroRNA-21 as a Biomarker in Cancer

MiRNAs are stably detectable in the plasma and serum, and thus may be developed as
molecular biomarkers for minimally invasive tool in cancer diagnosis and prognosis [2,102].
MiRNAs can exist in biofluids as either a part of an extracellular vesicle (EV) or a non-
vesicle-associated ribonucleoprotein complex and can be used to distinguish pathologies at
various stages of disease progression [103]. Given that miR-21 is highly expressed in a wide
variety of cancers and linked to several oncogenic characteristics, it has been evaluated as a
diagnostic and prognostic cancer biomarker [104–109].

Toiyama and colleagues found that serum miR-21 levels were significantly higher
in patients with adenomas and CRC. Furthermore, high miR-21 expression in the serum
and tissues could be associated with tumor size, metastasis, and patient survival [110].
Exosomal miRNA profiling of ovarian cancer patients showed that miR-21, miR-141, miR-
200a, miR-200b, miR-200c, miR-203, miR-205, and miR-214 were significantly elevated and
could be used to distinguish patients from healthy individuals [111]. MiR-21 may even be
useful in rare cancers with few available biomarkers. In leptomeningeal metastasis (LM)
patients, miR-21 expression was monitored using EVs extracted from cerebrospinal fluid
(CSF) and found that aberrant miR-21 expression correlated with patient survival [112–114].

The potential use of miRNA as diagnostic or prognostic factors has become
increasingly important as accessibility to big data continues to improve. Databases and
tools such as Circulating MicroRNA Expression Profiling (CMEP) and CancerMIRNome
can help researchers identify miRNAs of interest in a variety of cancers and give a
preliminary picture of their clinical significance [52,115].

The use of high-throughput visualization tools, such as BioGRID, could help
researchers identify interactions between miR-21 and cellular protein partners, providing
further insight into the role of miR-21 (Figure 4) [116,117]. In addition, predictive tools
such as miRcode can be used to identify potential lncRNA-miRNA interactions, although it
should be noted that these tools require more experimental validation [20,118]. It is still
evident that there may be an underlying intricate network of mRNA-miRNA-lncRNA in
disease progression that has yet to be explored. Improvements in a sensitive and live
detection system for particular miRNAs such as miRDREL could also help illustrate a
clearer picture of the action mechanism of oncomiRs such as miR-21 [119].
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Figure 4. BioGRID protein interaction analysis of hsa-miR-21 interactome. In total, 96 protein
interactions are displayed with an arbor layout in which related nodes are spaced closer
together. Of the 96 protein interactors, 94 were found through high-throughput evidence,
while 2 were found through low-throughput. AGO2—argonaute RISC catalytic component 2,
AIMP2—aminoacyl tRNA synthetase complex-interacting multifunctional protein 2, APOBEC3B—
apolipoprotein B mRNA editing enzyme catalytic subunit 3B, ATXN2L—ataxin-2-like protein,
C1QBP—complement C1q binding protein, C9orf114—putative methyltransferase, CELF1/2—
CUGBP Elav-like family member 1/2, CPSF1—cleavage and polyadenylation specific factor 1,
CSTF3—cleavage stimulation factor subunit 3, DARS—aspartate-tRNA synthetase, DDX1/21/3X—
DEAD-box helicase 1/21/3X, DHX36/37—DEAH-box helicase 36/37, EDC4—enhancer of
mRNA decapping 4, EIF2AK2—eukaryotic translation initiation factor-2 alpha kinase 2, EPRS—
glutamyl-prolyl-tRNA synthetase, ERAL1—Era-like 12S mitochondrial rRNA chaperone 1,
ESRP1—epithelial splicing regulatory protein 1, FAM98A—family with sequence similarity 98
member A, FUS—FUS RNA binding protein, G3BP2—G3BP stress granule assembly factor 2,
HNRNPA0/A1/A2B1/A3/F/H1/H2/H3/K/L/M/R—heterogeneous nuclear ribonucleoprotein
A0/A1/A2B1/A3/F/H1/H2/H3/K/L/M/R, IARS—isoleucyl-tRNA synthetase, IGF2BP1/2/3 —
insulin-like growth factor 2 mRNA binding protein 1/2/3, KARS—lysyl-tRNA synthetase, KNOP1—
lysine-rich nucleolar protein 1, LARP7—La ribonucleoprotein 7, LARS—leucyl-tRNA synthetase,
LIN28A—lin-28 homolog A, LRPPRC—leucine-rich pentatricopeptide repeat containing, MARS—
methionyl-tRNA synthetase, MATR3—matrin 3, MSI2—musashi RNA binding protein 2,
MYEF2—myelin expression factor 2, NOL6—nucleolar protein 6, NONO—non-POU domain
containing octamer binding, NUDT16L1—nudix hydrolase 16 like 1, NUFIP2—nuclear FMR1
interacting protein 2, PAPD4—PAP-associated domain-containing protein 4, PATL1—PAT1 homolog
1, PDCD11—programmed cell death 11, PGAM5—PGAM family member 5 mitochondrial
serine/threonine protein phosphatase, PTBP1/3—polypyrimidine tract binding protein 1/3, PTCD3
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—pentatricopeptide repeat domain 3, PUF60—poly(U) binding splicing factor 60, PUM1—pumilio
RNA binding family member 1, PURA—purine rich element binding protein A, QARS—glutaminyl-
tRNA synthetase, RARS—arginyl-tRNA synthetase, RBFOX2—RNA binding Fox-1 homolog 2,
RBM10/14/17/4/4B—RNA binding motif protein 10/14/17/4/4B, RTCA/B—RNA 3′-terminal
phosphate cyclase A/B, SF3B1/2/3/4/5—splicing factor 3b subunit 1/2/3/4/5, SFPQ—splicing
factor proline/glutamine rich, SUGP2—SURP and G-patch domain containing 2, SYMPK—symplekin,
SYNCRIP—synaptotagmin binding cytoplasmic RNA interacting protein, TAF15—TATA-box binding
protein associated factor 15, TRA2A/2B—transformer 2 alpha/2 beta homolog, TRIM25—tripartite
motif containing 25, U2SURP—U2 snRNP-associated SURP domain containing, UPF1—UPF1
RNA helicase and ATPase, USP36—ubiquitin specific peptidase 36, UTP20—UTP20 small subunit
processome component, YBX1/2/3—Y-box binding protein 1/2/3, ZFR—zinc finger RNA binding
protein, and ZNF106—zinc finger protein 106.

8. MicroRNA-21-Targeted RNA Therapeutics

Various studies have explored the possibility of targeting miR-21 with RNA-mediated
therapeutics such as antisense oligonucleotides (ASO), locked nucleic acid (LNA)-anti-
miRNAs, and most recently synthetic or natural circRNA, which act as miRNA sponges
(Table 2).

Table 2. Therapeutic approaches of miR-21 targeting in cancers.

Type Target Cancers Cell Lines &
Experimental Models Phenotypes References

LNA

Colorectal
adenocarcinoma LS174T Proliferation inhibited;

apoptosis enhanced [120]

Melanoma B16F10;
C57BL/6 mice

Tumor growth and volume
inhibited; apoptosis enhanced [121]

Glioblastoma
U87MG;

Orthotopic xenograft in
athymic nude mice

Tumor growth inhibited;
apoptosis enhanced [122,123]

Non-small cell lung cancer A549;
Female nude mice

Drug sensitization;
tumor growth inhibited;

apoptosis enhanced
[124]

Breast cancer MCF-7 Proliferation inhibited [59]

ASO

Laryngeal
squamous cell

carcinoma

Hep-2;
BALB/c nude mice

Tumor growth and proliferation
inhibited; invasiveness decreased;

cell cycle arrest; apoptosis
enhanced

[125]

Non-small cell lung cancer PC9;
Female BALB/c nude mice

Proliferation inhibited;
apoptosis enhanced;

tumor growth inhibited
[126]

Glioblastoma
multiforme

LN229; U251MG;
U373MG; T98G

Drug sensitization;
cell viability decreased [127,128]

Hepatocellular
carcinoma Huh7; HepG2 Migration and invasiveness

decreased [129]

Breast phyllode
tumor

Patient-derived
breast stromal cells;
Female nude mice

Proliferation inhibited and
invasion decreased [130]

CircRNA

Gastric carcinoma NCI-N87; AGS; MKN28 Proliferation inhibited [131]

Lung cancer L132, A549; LL2;
3D multicellular spheroids

Proliferation inhibited;
migration decreased;
apoptosis enhanced

[132]

ASOs are single-stranded RNAs that are complementary to a specific target RNA,
especially miRNAs [133]. In pancreatic cancer cells, delivery of ASO-miR-21 suppressed
the epithelial-mesenchymal transition and hindered proliferation. Furthermore, co-delivery
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of ASO-miR-21 with gemcitabine, a first-line drug for the treatment of locally advanced
or metastatic pancreatic cancer acted synergistically in inducing apoptosis and growth
inhibition [134,135]. Various in vivo studies utilizing miR-21 ASOs have yielded tumor
growth inhibition in myeloma, HCC, glioblastoma multiforme (GBM), and breast cancer,
demonstrating its therapeutic potential [136–139].

LNA technology “bridges” the 2′-O and 4′-C atoms in the ribose structure of RNA
nucleotides, and is thus capable of improving the hybridization stability and specificity
of anti-miRNAs [140,141]. In CRC, the application of LNA-anti-miR-21 was shown to
effectively inhibit growth and induce apoptosis, demonstrating the clinical potential of
using LNA for miRNA-targeting therapeutics [120]. Furthermore, fully LNA-modified
phosphorothioate oligonucleotides or “tiny LNAs” (8-mer-long) were reported to target
the seed regions of Ago2-bound miR-21 [142].

Chu and colleagues demonstrated that this technology could be applied in vivo
through the systemic administration of LNA-miR-21 inhibitors to KPC mice expected to
have low-grade pancreatic intraepithelial neoplasia 1 (PanIN-1) lesions. Mice that received
LNA-miR-21 did not show disease progression, which demonstrates that LNA-miR-21
inhibitors could effectively interfere with malignant progression [42].

CircRNAs have been observed to play a variety of roles such as transcriptional
regulation through interaction with U1 snRNP, or functional regulation through protein
interactions as in the case of circFOXO3 [143,144]. Although other linear RNAs can also act
as competing endogenous RNA (ceRNA), circRNAs are advantageous in structural
stability and conservation which have led to growing interest in circRNAs in therapeutic
applications [145]. In addition, circRNAs are capable of acting as ceRNA through miRNA
sponging [146]. MiRNA sponges have also been shown to effectively regulate miR-21
in vitro [147,148]. Recently, both synthetic and natural circRNAs were found to act as
effective miRNA sponges against miR-21 [149].

In NSCLC, natural circRNA (c0001287) sponged miR-21 to upregulate PTEN and
thereby inhibit proliferation and metastasis [150]. Liu and colleagues created a synthetic
circRNA to sponge miR-21 and found that the inhibition of miR-21 through this method
could suppress gastric carcinoma cell proliferation by downregulating death
domain-associated protein DAXX [131]. Interestingly, Muller and colleagues delivered
polyethyleneimine (PEI) nanoparticles containing circular miR-21-5p decoys through
intraperitoneal injection in subcutaneous xenograft mice and found significant potency in
inhibiting tumor growth in vivo [151]. Thus, the importance of circRNA can be shown in
its therapeutic potential in cancer treatment.

Recently, Wang and colleagues developed a method to simultaneously sponge miR-
21 and deliver a chemotherapeutic drug. In this system, an oligonucleotide shell of a
spherical nucleic acid of gold nanoparticles loaded with doxorubicin was shown to capture
miR-21/miR-155, and thereby trigger the release of doxorubicin to enable tumor-specific
chemotherapy [152].

9. Conclusions and Future Perspectives

Although approaches to identifying, utilizing, and inhibiting miR-21 have become
more sophisticated over the past decade, many details remain unknown, such as how miR-
21 matures, and what drives the formation of canonical versus noncanonical isomiR forms
in certain cancers. Further understanding of these mechanisms and their consequences
would provide more insight into the role of miR-21 in cancer.

It is now widely accepted that miRNA exist and function in both the intra- and
extracellular environment. Few studies have examined the role (s) of miR-21 in intercellular
communication in the tumor microenvironment, particularly in patients or patient-derived
tumor models. Given the ability of miR-21 to target a wide variety of tumor suppressive
and oncogenic pathways, such work could reveal additional functions for miR-21 in disease
progression.
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Regarding RNA-based therapeutics, several obstacles still limit the development of an
effective anti-miR-21 for clinical use. Although multiple ASOs and LNAs have been
developed to target miR-21, several of the relevant studies have been limited to in vitro
experiments, meaning that the results may not reflect the nature of the tumor
microenvironment or provide information on potential efficacy in the face of tumor
heterogeneity. In addition, ASOs and LNAs have structural limitations that leave open
questions regarding delivery, effectiveness, and prevention of unwanted side effects in the
clinic.

Various miRNA-targeting RNA therapeutics are currently undergoing clinical trials,
such as the miR-122 inhibitor miravirsen, the miR-16 inhibitor mesoMiR-1, and miR-21
inhibitor lademirsen. Thus, despite the above-described difficulties, RNA therapeutics are
showing promise for clinical application [153].

Other methods of miR-21 inhibition can target specific steps in miRNA biogenesis.
For example, the small-molecule inhibitors diazobenzene and estradiol, have been used
to target specific steps in miRNA biogenesis such as transcription [154–156]. In other
efforts, the miRNA structure has been directly targeted by using small molecules to bind to
the G-hairpin of the hTERT-G-quadruplex-forming sequence and thereby downregulate
expression. This strategy achieved strong anticancer effects in mice [157]. However, similar
to the above-described RNA therapeutics, there remain issues with delivery, effectiveness,
and toxicity, and further research would be needed to support the development of effective
and specific miR-21 targeting inhibitors.

Current evidence demonstrates that miR-21 exerts immense influence on cancer
progression, including strong effects on cancer cell proliferation, stemness, apoptosis, and
chemoresistance. In addition, circulating miR-21 can not only be used as a diagnostic tool
but also as a targetable functional component of systemic intercellular communication in
cancers such as GBM and LM [108,112]. Although the ability to predict interactions and
create therapeutic avenues for inhibiting miR-21 has advanced significantly in the past
decade, complications related to cancer heterogeneity and the intricate web of the
microenvironment itself have become increasingly apparent. Furthermore, evidence points
to how treatment must take into account the underlying miRNA-mRNA, cellular protein
modulators, and ncRNA network to develop effective therapeutics that can overcome
recent limitations in cancer treatment. Our understanding of miR-21 and cancer has grown
in the past decade, and soon we may be able to provide an answer in the form of an
effective and safe RNA-based treatment for clinical applications.
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Ago2, argonaute protein 2; ALDH1, aldehyde dehydrogenase 1; AP-1, activator
protein 1; ARID1A, AT-rich interaction domain 1A; ASO, antisense oligonucleotide; Bax,
Bcl-associated X protein; Bcl-2, B-cell lymphoma 2; BMP, bone morphogenetic protein;
CDK2AP, cyclin dependent kinase 2 associated protein; C/EBP, CCAAT/enhancer binding
protein; ceRNA, competing endogenous RNA; circRNA, circular RNA; CMEP, circulating
microRNA expression profiling; CRC, colorectal cancer; CSC, cancer stem cell; CSF,
cerebrospinal fluid; CXCR4, C-X-C chemokine receptor type 4; DDX5/18/23, DEAD-box
protein 5/18/23; DGCR8, DiGeorge syndrome critical region 8; EGFR, epidermal growth
factor receptor; EV, extracellular vesicle; Fas, Fas cell surface death receptor; FasL, Fas
ligand; FRTL5, Fischer rate thyroid cell line; GHR, growth hormone receptor; GBM,
glioblastoma multiforme; HCC, hepatocellular carcinoma; HMGA2, high mobility group
AT-hook 2; HIF-1α, hypoxia-inducible factor 1α; hnRNPA1, heterogeneous nuclear
ribonucleoprotein A1; hnRNPC, heterogeneous nuclear ribonucleoprotein C; IFN-γ,
interferon-gamma; JAG1, jagged canonical Notch ligand 1; KPC, KRAS (G12D)/Trp53
null/Pdx1-cre; KRAS, Kirsten rat sarcoma viral oncogene homologue; KSRP, KH-type
splicing regulatory protein; LM, leptomeningeal metastasis; LNA, locked nucleic acid;
lncRNA, long noncoding RNA; m7G, 5′-7-methylguanosine; Maspin, mammary serine
protease inhibitor; MAPK, mitogen-activated protein kinase; miR-21, microRNA-21;
miRDREL, miRNA-controlled dual reporter-expressing lentivirus; miRNA, microRNA;
MLKL, mixed lineage kinase domain; mTOR, mammalian target of rapamycin; NFI,
nuclear factor I; NSCLC, non-small cell lung cancer; nt, nucleotides; oncomiR, oncogenic
microRNA; PARN, poly(A)-specific ribonuclease; PanIN-1, pancreatic intraepithelial
neoplasia 1; PDAC, pancreatic ductal adenocarcinoma; PDCD4, programmed cell death 4;
PEI, polyethyleneimine; PI3K, phosphoinositide 3-kinase; PIK3CA,
phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit alpha; PPAR-α,
peroxisome proliferator activated receptor alpha; pre-miRNA, precursor microRNA;
pri-miRNA, primary microRNA; PTEN, phosphatase and tensin homolog; RECK,
reversion inducing cysteine-rich protein with Kazal motifs; RIP, receptor interacting
protein; RNH1, ribonuclease/angiogenin inhibitor 1; ROS, reactive oxygen species; SMAD,
small mothers against decapentaplegic; SOX2, sex determining region Y-box 2; Spry1/2,
Sprouty RTK signaling antagonist 1/2; SRF, serum response factor; STAT3, signal
transducer and activator of transcription 3; SWI/SNF, switch/sucrose non-fermentable;
TRBP, transactivation response element RNA-binding protein; TENT, terminal
nucleotidyltransferase; TFEB, transcription factor EB; TGF-β, transforming growth factor
beta; TGFBR2, transforming growth factor beta receptor 2; TIMP3, TIMP metallopeptidase
inhibitor 3; TMEM49, transmembrane protein 49; TNF-α, tumor necrosis factor alpha;
TP53, tumor protein p53; TPM1, tropomyosin alpha-1; TRIM71, tripartite motif containing
71; TSH, thyroid-stimulating hormone; VHL, von Hippel-Lindau; VMP1, vacuole
membrane protein 1; Wnt-1, wingless-integrated family member 1.
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