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Abstract

We implement the Ising model on a structural connectivity matrix describing the brain at two different resolutions. Tuning
the model temperature to its critical value, i.e. at the susceptibility peak, we find a maximal amount of total information
transfer between the spin variables. At this point the amount of information that can be redistributed by some nodes
reaches a limit and the net dynamics exhibits signature of the law of diminishing marginal returns, a fundamental principle
connected to saturated levels of production. Our results extend the recent analysis of dynamical oscillators models on the
connectome structure, taking into account lagged and directional influences, focusing only on the nodes that are more
prone to became bottlenecks of information. The ratio between the outgoing and the incoming information at each node is
related to the the sum of the weights to that node and to the average time between consecutive time flips of spins. The
results for the connectome of 66 nodes and for that of 998 nodes are similar, thus suggesting that these properties are
scale-independent. Finally, we also find that the brain dynamics at criticality is organized maximally to a rich-club w.r.t. the
network of information flows.
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Introduction

Methods based on the theory of complex networks are

becoming more and more popular in neuroscience [1–3].

Moreover, the inference of the underlying network structure of

complex systems [4] from time series data is an important problem

that received great attention in the last years, in particular for

studies of brain connectivity [2,5–8]. This problem can be handled

by estimating from data the flow of information between variables,

as measured by the Transfer Entropy (TE) [9,10] which is a

model-free measure designed as the Kullback-Leibler distance of

transition probabilities. Recently, in [11], it has been shown that

TE is strongly related to Granger causality (GC) [12,13], a

powerful and diffuse model-based approach to reveal (based on

prediction) drive-response relationships in dynamical systems: if

the prediction error of the first time series is reduced by including

measurements from the second one in the linear regression model,

then the second time series is said to have a causal influence on the

first one.

In a recent paper [14] it was shown that the pattern of

information flow among the components of a complex system is

the result of the interplay between the topology of the underlying

network and the capacity of nodes to handle the incoming

information, and that, under suitable conditions, this pattern can

reveal the emergence of the law of diminishing marginal returns

[15], a fundamental principle of economics which states that when

the amount of a variable resource is increased (whilst other

resources are kept fixed) the resulting change in the output will

eventually diminish. The origin of such behavior resides in the

structural constraint related to the fact that each node of the

network may handle a limited amount of information. In [14] the

information flow pattern of several dynamical models on

hierarchical networks has been considered and found to be

characterized by an exponential distribution of the incoming

information and a fat-tailed distribution of the outgoing informa-

tion, a clear signature of the law of diminishing marginal returns.

This pattern was thus found in artificial hierarchical networks, and

in electroencephalography signals recorded on the scalp.

Brain function resides in its ability to process and store

information as time goes on. This brain dynamics is best

reproduced by neural population models when they are tuned

around criticality [16–19]. Motivated by this evidence, we planned

to investigate how the information generated by a dynamical

model flows through a network whose architecture reproduces the

structural connections of the human brain. The Ising model

displays a remarkably rich dynamics given its simple form, and

some of its properties have already been studied on network

structures [20–24]. We here implement Ising model with Glauber
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dynamics [25] on weighted, symmetrical connectivity graphs

obtained by structural measurements of the human brain and

estimated numerically the information transfer between spins.

Varying the temperature, the system susceptibility shows a peak

which is related to a phase transition occurring in the limit of large

networks [26], and thus characterized by long range correlations;

although we are dealing with a network of finite size, we will refer

to the temperature at the susceptibility peak as the critical

temperature of the system. At two different scales, we have found

that at criticality the Ising model dynamics results in the maximal

amount of total information transfer among variables and that this

information transfer is affected by the law of diminishing marginal

returns, as it can be seen by comparing the distributions of

incoming and outgoing information. The spatial modulation of

this phenomenon is analyzed by evaluating, at each node, the ratio

r between the outgoing and the incoming information. It turns out

that r is related to the in-strength of the network nodes: nodes with

high r are those more prone to become bottlenecks as the

information flow increases. We also characterize the critical state

in terms of the average time between spin flips, thus putting in

evidence the regions which are most involved in the phase

transition. Moreover we also look at how the hubs of the

information flow network among spins are connected between

them, as the temperature is varied: hubs are more likely to be

connected to other hubs than to other nodes (rich club structure) at

criticality.

Results

Figure (1) refers to results of simulating the Ising model on the

brain network at different mesoscopic scale, 66-nodes connectome

and 998-nodes connectome. Figure (1a) is showing for the 66-

nodes connectome four quantities as a function of the inverse

temperature b of the Ising model: (1) the susceptibility x, whose

peak corresponds to criticality (pseudo-transition); (2) the heat

capacity C, which also provides a signature of criticality (3) the

total information flow (the sum of the TE in all network pairs) and

(4) the ratio between the standard deviation of the distributions of

the outgoing information and the incoming information [7], R.

For symmetric interactions, the network of information flows

should be also symmetric (i.e., R~1), unless some units have a

finite capacity close to saturation: in such case the distribution of

incoming information is sharper than the one of outgoing

information. This is exactly why R is an indicator of the law of

diminishing marginal returns [14]. Notice also that R is a quantity

calculated in this case at a global level, pooling all the nodes

together. We find that around this critical state of the Ising model

the total amount of information transfer and R assume large

values; while the total transferred information is maximum at the

critical point, R is maximized for an higher temperature. At

criticality some units are close to be receiving the maximal amount

of input information. As the temperature approaches the critical

value, both the input and the output information grow, but their

ratio is maximal in the paramagnetic phase. The peak of R
approaches the peak of the susceptibility for larger networks,

suggesting a finite size effect explanation for this phenomenon.

The local modulation of the law of diminishing marginal returns

can be analyzed evaluating at each node the ratio between the

outgoing and the incoming information r (in contrast with R

which is a global network measure). Figure (1b) refers to the value

of b leading to the maximum of R, and describes r compared with

topological properties of the graph, such as the strength, the node-

efficiency and the node-betweenness; nodes have been ordered

according to growing values of the in-strength, i.e. the number of

incoming links. Thus, this is showing that other network properties

related with ‘‘hubness’’ such as efficiency (connected with the

shortest path length between neighbors of a given node) and

betweenness (accounting for the number of shortest paths passing

through a given node) are not correlated with the the r value in

each node. In [14] it was shown that r is correlated with the degree

for three models of dynamical networks: here we show for the first

time that a similar relation holds for the Ising model on the

connectome. Indeed, we observed that r is to some extent

correlated to the strength and it thus reflects an intrinsic property

of nodes, the propensity to become bottlenecks of information

(Figure 2, Pearson correlation coefficient of 0.68). There is no

correlation with other network properties (Pearson coefficients

equal to 0.05 with Efficiency and 0.04 with Betweenness

Centrality). Turning to the ratio S between the intra-hemisphere

information flow and the inter-hemispheres information flow,

measuring the segregation of the network, we find that as the

temperature is lowered (b is increased), the hemispheres become

more and more segregated.

Next, we asked whether the results found in the 66-nodes

connectome can be extrapolated to the 998-nodes connectome.

Similar to figure (1a), figure (1b) is showing the quantities x, C, TE
and R but for the 998 nodes anatomical network. The emerging

patterns are similar to those corresponding to the 66 nodes

connectome, but in this case R is also maximal close to criticality.

Similarities between figures (1b) and (1d) were also found.

However, when increasing the spatial resolution, the parameter

r is now less related to the strength (Figure (2), with Pearson

correlation coefficient of 0.44. The correlation with other network

measures remain close to zero (Pearson coefficients equal to 20.02

with Efficiency and 0.01 with Betweenness Centrality).

We have found some regions as potential bottlenecks; all of

these regions are symmetrical in the two hemispheres: Superior

Frontal Cortex, Precuneus, Superior Temporal Cortex, Medial

and Lateral Orbitofrontal Cortex, see figure (3) where the

modulation of r over the brain is shown. Some of these regions

are considered as hubs both for the structural and for the

functional connectome [27]. It is worth recalling anyway that

being a hub (in particular for incoming connections) does not

necessary imply that a node is a bottleneck of information flow.

The modulation of r over the brain for the 998-nodes connectome

appears to be consistent with the pattern corresponding to 66-

nodes connectome.

Moreover we stress that the amount of information flow

depends on the updating scheme, but the maximum is attained in

correspondence of the same coupling, c.f. figure (4a) where four

different dynamics (Metropolis, Glauber, Wolff [28] and heat

bath) are compared for the 66-nodes brain network. It is

interesting to remark that the maximization of information

transfer at criticality is not an ubiquitous property of Ising models

on networks. Implementation of the same model on a finite size

2D lattice revealed a peak in the paramagnetic phase (figure S1).

On the other hand the maximum of information transfer

approached the maximum specific heat in a deterministic scale

free network [29] (figure 4b). This particular property is thus

shared with the brain structural architecture, providing evidence

of a family of hierarchical networks supporting it. We remind that

the transfer entropy may be seen as a dynamical counterpart of the

mutual information, the static measure of statistical dependencies

among components of the whole system. It is well known that for a

large class of dynamical systems that the mutual information peaks

at the order-disorder phase transition [30,31].

Another interesting remark is that the human connectome has a

finite size and inhomogeneous topology. It follows that lowering
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PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93616



the temperature, from the paramagnetic phase, the spins will be

characterized by different average time between flips t. The

distribution of t provides, therefore, a further dynamical

characterization of the critical state of these Ising system. Close

to criticality, the regions for which t is large may be seen as

already ferromagnetic, those with t close to one as still

paramagnetic: this coexistence may justify a description of the

critical dynamics of Ising models on brain in terms of an extended

range of temperature, rather than a well-defined critical temper-

ature, thus in line with the broadband criticality studied in the

brain in [32] and explained by the theory proposed in [33]

describing critical brain behavior in terms of Griffith phases. The

regions with large t are those driving the rest of the system towards

a low-temperature phase or the other as the temperature is further

decreased.

Figure (5) shows at criticality t for both the 66-nodes and the

998-nodes connectomes; we note that close to criticality not all the

regions appear to be involved in the transition; indeed, most of the

regions are displaying a dynamics which is nearly paramagnetic.

Thus, for instance, selecting the regions with t greater than 5, close

to criticality and for the 998-nodes connectome, leads to 90

regions having relevant intersections with the DMN, the visual, the

somatosensory and the dorsal functional connectivity modules of

the resting brain. We remark that both the connectivity and

weights of the connectome determine these regions: implementing

the Ising model on a network obtained by shuffling the 998-nodes

connectome while preserving the degree distribution, the set of

Figure 1. Ising model on the different brain connectomes. a,b: 66-nodes connectome. c,d: 998-nodes connectome. a: The following quantities
are depicted versus the inverse temperature b: the susceptibility x; the heat capacity C; the total transfer entropy TE, i.e. the sum of all the information
flows in all network pairs; R the ratio between the standard deviations of outgoing and incoming information flows). b: The distribution of the node-
measure r in comparison with different topological measures such as the nodes strength (the sum of the connections weights to each node in the
connectivity matrix Aij ), the efficiency and the nodes betweenness. The values of r have been normalized to the interval [0,1]. Nodes have been
ordered according to increasing strength. Note that r is not fully explained by the strength as there are nodes with intermediate strength but with
high r. Here the value of the temperature corresponds to the one that maximized R but similar patterns are obtained varying b. c: same as in panel a
but for the 998-nodes connectome. d: same as in panel c but for the 998-nodes connectome.
doi:10.1371/journal.pone.0093616.g001
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regions which are responsible of the transition are altered (results not

shown). We also note that the pattern corresponding to 998 nodes

shows some similarities with the regions with high ROI centrality,

ROI strength and network cores of the connectome described in

[27].

It is also worth noting that the linear correlation between r and

t, at criticality for the 998 connectome, is 0.3623; this means that r
and t are significantly correlated, although they measure evidence

different features of the system dynamics.

Finally, we have investigated how the dynamics modulates the

tendency of hubs of information flow to be connected to other

hubs. This phenomenon, called rich club organization, has been

reported in the human brain structural connectome in [34]. This

has consequences for the structure of the information flow

network. We have found that the rich club coefficient at level k,

the fraction of edges that connect nodes of degree k (or higher) out

of the maximum number of edges that such nodes might share, has

a peak at criticality for at large k, see figure (6) for the 998-nodes

connectome, but a similar pattern holds for the 66 nodes

connectome (not shown). It follows that the critical state is also

characterized as the one such that hubs are maximally rich-club in

terms of communications: this is not surprising as at criticality hubs

must exchange information in order to change the organization of

the system undergoing the phase transition. Since the rich club

Figure 2. Ratio r of outgoing and incoming information per node at criticality. r is depicted as a function of the nodes strength for both 66
and 989 nodes connectome.
doi:10.1371/journal.pone.0093616.g002

Figure 3. Localization of areas which are bottlenecks of information. The value of r for each region for the Ising model on brain networks, for
the 66-nodes connectome (top) and the 998 nodes one (bottom). The size of the spheres is proportional to r, thus showing the most prone regions to
became bottlenecks of information.
doi:10.1371/journal.pone.0093616.g003

Information Transfer on the Human Connectome

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e93616



coefficient does not depend on the strength of connections, we find

the same rich club coefficient for the input flows and for the

outgoing flows.

Discussion

The study of the interplay between the brain anatomical

network and the neural processes living on it is a challenging topic

in neuroscience [35]. In recent studies [17,18,36–38] spontaneous

brain activity has been simulated implementing models of

dynamical oscillators with different levels of complexity and

biological foundation on the connectome structure, retrieving in

some cases correlation-based networks similar to those observed

from the analysis of neuroimaging data (mainly fMRI at rest), even

with models less biologically realistic such as the Ising one. The

present work extends the analysis to dynamical networks who take

into account lagged and directional influences using the Ising

model, which is easily associated with information theoretical

measures, and for which Granger causality is a good approxima-

tion to Transfer Entropy. We have shown that the critical state of

the Ising model on a brain network is characterized by the

maximal amount of information transfer among units, and that

brain effective connectivity networks may also be considered in the

light of the law of diminishing marginal returns: some units more

prominently express this disparity between incoming and outgoing

information and are thus liable to become bottlenecks of

information. This property of nodes is correlated with both the

strength and the average time between spin flips of nodes.

Recently it has been suggested [33] that the modular

organization of brain across many scales may be responsible for

an extended range of critical brain dynamics, which can be

described by Griffiths phases. It is worth mentioning that human

brain functional networks have been found to be hierarchically

modular[39]. In the present work the Ising model is implemented

on the connectome at two different scales, thus providing a study

of criticality across scales. We have found that criticality on the

connectome at the macro and the mesoscale has the same

characteristics. Further investigation are needed to assess if this is

peculiar to the connectome architecture or it holds for a generic

hierarchical modular network. We suggest that the distribution of

weights of the links, coupled to the heterogeneity, is crucial for the

connectome in order to show such characterization.

Figure 4. Ising model with different dynamics. a: Transfer Entropy
versus the inverse temperature b for the Ising model implemented on
the 66-nodes human connectome with four different dynamics
(Glauber, Metropolis, Wolff and Heat Bath). b: Transfer Entropy versus
the inverse temperature b for the Ising model implemented on an
deterministic scale free network (81 nodes) with Heat Bath and
Metropolis dynamics.
doi:10.1371/journal.pone.0093616.g004
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Figure 5. The average time between two consecutive spin flips
across the different brain areas. 66-nodes and 998-nodes
connectomes.
doi:10.1371/journal.pone.0093616.g005

Figure 6. Rich club coefficient W(k) for the network of the
information transfer as a function of b and the degree k.
doi:10.1371/journal.pone.0093616.g006
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Apart from the insights on how structure and dynamics interact

to generate brain function, the approach here described could

have more general implications revealing nodes of a network

which are particularly representative [40] or influential for the

others [41].

Materials and Methods

The anatomical connectivity matrices used in this study describe

the brain at a mesoscale (989 nodes), as well as at a macroscale (66

nodes). They are built as described in [27] from diffusion spectrum

imaging and white matter tractography and provided by one of the

authors of the original paper. They describe a weighted

symmetrical network in which the nodes are normalized cortical

regions of interest and the links between them are proportional to

the number of connections per unit surface.

The coupling connectivity of the Ising model is given by

Jij~bAij , where A is the 66|66 or the 998|998 anatomical

connectivity matrices, which correspond to undirected weighted

networks of human brains, with the weight given by the density of

connecting neural fibers. The parameter b plays the role of an

inverse temperature. Whilst in [14] we studied the diluted Ising

model on an artificial network, here we analyze the Ising model on

the structural architecture of the brain, characterized by two main

modules corresponding to the two hemispheres; we estimate the

information flow in terms of the total bivariate transfer entropy

(summing over all pairs of spins connected by a non-vanishing

interaction), which is defined as follows. Let us consider the

configurations fsi(t)gi~1,...,n of an Ising system of n spins living on

an arbitrary network. The lagged spin vectors are denoted

i(t)~si(t{1). For each pair of spins (i,j) connected by a link

in the underlying network, the bivariate transfer entropy te,

measuring the information flow i?j is evaluated as follows:

teij~
X

sj~+1

X

j~+

X

i~+1

p sj , j , i

� �
log

p sj , j

� �
p j , i

� �

p sj , j , i

� �
p j

� � , ð1Þ

where p j , i

� �
is the fraction of times that the configuration

( j , i) is observed in the data set, and similar definitions hold for

the other probabilities. teij is zero if spins si and sj are not

connected by a link in the network. We remark that direct

evaluation of the multivariate transfer entropy is feasible only for

very small systems; a promising approach, which might render

larger systems tractable, is described in [42] where transfer

entropy is expressed as a likelihood ratio. Moreover, we have also

applied the Granger causality analysis to the Ising configurations.

We briefly recall the notion of Granger causality, and refer the

reader to [43,44]. Let us consider n continuous time series

fxi(t)ga~1,...,n; the lagged state vectors are denoted

Xi(t)~ xi(t{m), . . . ,xi(t{1)ð Þ,

m being the window length. We denote X~(X1, . . . ,Xn) the

collection of all variables at hand. Let E xj jX
� �

be the mean

squared error prediction of xj on the basis of all the variables X ,

obtained by linear regression. The mean squared error prediction

of xj on the basis of all the variables but Xi, will be denoted

E xj jX\Xi

� �
. The multivariate Granger causality index d(i?j) is

defined so as to measure the variation of the error in the two

conditions, i.e.

d(i?j)~ log
E xj jX\Xi

� �

E xj jX
� � ; ð2Þ

The formalism of Granger causality is constructed under the

hypothesis that time series assume continuous values and are

Gaussianly distributed. In the case of binary variables, the

Gaussian approximation of the Ising model leads to the

approximation cij~d(i?j)=2, where d(i?j) is obtained applying

the Granger causality formalism (with m~1) to the to n spin time

series fsi(t)~+1gi~1,...,n, with the substitutions x(t)?s(t) and

X (t)?s(t{1)~ (t) [43]. Applying Granger causality to the

Ising model on the brain network, we obtain very similar results to

those from bivariate transfer entropy (it has been shown that for

Ising models Granger causality provides a good approximation to

the transfer entropy while being computationally more efficient

[43]). The total information flow is given by TE~
Pn

i~1

Pn
j~1 cij .

Samples of 104 iterations, after discarding transients of 104

iterations are used to estimate the transfer entropy; we verified that

these samples are long enough to provide robust results.

The parameter connected to the law of diminishing marginal

returns is R, the ratio between the standard deviation s of the

distributions of the outgoing information cout and the incoming

information cin [14],

R~
s(cout)

s(cin)
,

where cout (cin) is obtained by summing over columns (rows) the

matrix te~fteijg of the information flows i?j as estimated by

bivariate transfer entropy. Moreover, the modulation of the law of

diminishing marginal returns is analyzed evaluating, at each node,

the ratio between the outgoing and the incoming information:

r~
ScoutT
ScinT

:

The network measures are defined as in [2] and calculated using

the functions connected in the Brain Connectivity Toolbox

described there.

Supporting Information

Figure S1 Ising model on a 2D lattice. a: The sum of

bivariate transfer entropies for all network pairs is depicted as a

function of the inverse temperature b for the 2D Ising model on a

square lattice of size L2, with L~16,32,64, and 128. Simulations

were performed with a Glauber dynamics and periodic boundary

conditions. The vertical line corresponds to the critical point. The

curves are shown to converge for L greater than 16. b: The Ising

model on a 2D square lattice of size L2, with L~16. Two different

dynamics have been implemented: Metropolis (asterisks) and

Glauber dynamics (squares). Although it exists a rescaling in both

curves, their shape keep the same. a,b: Transfer entropies have

been evaluated averaging over 20 runs of 10000 iterations, from a

random initial condition and after stationary state convergence.

(PDF)
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