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Ionizing radiation and radioactive materials have been widely used in industry, medicine,
science and military. The efficacy of radiotherapy and adverse effects of normal tissues are
closed related to cellular radiosensitivity. Molecular mechanisms underlying
radiosensitivity are of significance to tumor cell radiosensitization as well as normal
tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for
nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its
biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review
we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis
determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free
radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation,
BH4 availability is diminished due to its oxidation, which subsequently leads to NOS
uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS
axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects
structural and functional flaws of tumor blood vessels, which enhances radiotherapy
efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular
radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of
perceived advances in treatment, but also from the potential mechanisms. These
advances have demonstrated that it is possible to modulate cellular radiosensitivity
through BH4 metabolism.
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RADIATION-INDUCED INJURIES AND
ROS GENERATION

Ionizing radiation and radioactive materials have been widely used
in industry, medicine, science and military. In addition, widespread
application of nuclear technology may increase accidental or
occupational radiation exposure, such as nuclear accidents,
terrorist attacks, etc, which finally leads to radiation-induced
injury or even mortality (1, 2). Radiosensitivity determines the
injury severity or even survival exposed to ionizing radiation.
Radiotherapy is an indispensable component of malignancy
treatment, either alone or in combination with other treatments
(3), which is applied to over 50% of all cancer patients (4). Although
the accuracy of radiotherapy is improving, normal tissues are more
or less damaged, resulting in toxicity, which may be a critical dose-
limiting complication and affect the quality of life (5–7). Numerous
approaches tomodulate radiosensitivity, including increasing tumor
response to radiotherapy andminimizing damage to normal tissues,
have been reported in the past decade (8). Unfortunately, there has
been a dearth of clinical treatments for radiation-induced injuries.
Various compounds have been identified as potential radiation
protection agents, such as free radical scavengers, antioxidants,
cytokines, etc (9, 10). Amifostine is a FDA-approved
radioprotector, an effective free radical scavenging agent (11), and
has been extensively studied and used in clinical radiotherapy (12).
It is worth noting that amifostine cannot protect all human organs
from the toxic effects of ionizing radiation (13) and it has obvious
side-effects, such as nausea and vomiting, which may cause its
discontinuation during radiotherapy (14, 15). Thus, it is essential to
uncover the mechanisms underlying cellular radiosensitivity and to
innovate alternative agents with radioprotective or/and
radiosensitization properties in clinical applications.

Ionizing radiation induces cellular damage through direct
deposition of energy and indirect oxidative damage caused by
excessive reactive oxygen species (ROS), which is the main toxic
effects of ionizing radiation (16). Radiation-induced accumulation
of ROS results in protein, lipid and DNA damage, leading to a series
of pathophysiological changes and ultimately to acute and/or
chronic damage (17). Microvascular injury is a distinctive feature
of acute and chronic radiation injury. The dysfunction of vascular
endothelium caused by ionizing radiation play a crucial role in the
occurrence and development of radiation damage (18, 19).
Radiation exposure can induce different degrees of functional and
morphological changes in vascular endothelial cells, including
apoptosis, loss of thrombus resistance and increased endothelial
permeability. Endothelial nitric oxide synthase (eNOS) plays an
important role in radiation injury. Radiation exposure impairs the
function of eNOS and inhibits the production of endothelia nitric
oxide (NO) (20). Collectively, strategies to prevent or ameliorate
post-radiation endothelial dysfunction may improve the severity of
radiation injury.

FUNCTIONAL SIGNIFICANCE OF BH4

5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for
multiple enzymes, including three aromatic amino acid
Frontiers in Oncology | www.frontiersin.org 2
hydroxylases (phenylalanine hydroxylase, tyrosine hydroxylase
and tryptophan hydroxylase) and nitric oxide synthases (NOSs)
(Figure 1). Phenylalanine hydroxylase (PAH) is first enzyme
recognized as a BH4-dependent enzyme (21). The activity of rat
liver PAH is disrupted by ionizing radiation, thereby exerting a
negative effect on BH4 activity (22, 23). Other aromatic amino
acid hydroxylases, such as tyrosine hydroxylase (TH) and
tryptophan hydroxylase (TPH), share common features with
PAH with respect to the reaction mechanism (24), to BH4 (25)
and substrate binding (26).

NOSs includes endothelial nitric oxide synthase (eNOS),
neuronal nitric oxide synthase (nNOS) and induced nitric
oxide synthase (iNOS) (27), wherein eNOS has been shown to
play a key role in radiation damage and has been emerging as a
therapeutic target (28). NOS catalyzes the conversion of L-
arginine to L-citrulline and NO (29). NOS dimers consist of
two identical monomers and each monomer consisting of a C-
terminal reductase domain and an N-terminal oxygenase
domain. The C-terminal binding flavin mononucleotide, flavin
adenine dinucleotide and NADPH. The N-terminal binding sites
containing heme, BH4, and L-arginine (20). BH4 has been
proven to regulate NOS functions at a variety of levels. BH4
enhances NOS enzyme activity by increasing heme iron levels
(30) and increases the affinity of NOS with its substrate (31). In
addition, BH4 can promote the stability of NOS dimer structure,
which is essential for NOS function (32).
BIOSYNTHESIS AND REGULATION
OF BH4

There are two distinct pathways for BH4 biosynthesis, including
de novo pathway and salvage pathway (33) (Figure 2). The
former refers to the synthesis of BH4 from guanosine
triphosphate (GTP) through three enzymatic reactions; the
latter refers to the process of converting sepiapterin as a
substrate to BH2 and further reduction to BH4 (20). The
relative contribution of the de novo and salvage pathways to
the cellular availability of BH4 varies depending on the cell type.

De Novo Pathway of BH4 Synthesis
In the de novo pathway, BH4 is synthesized from GTP by three
enzymes, namely GTP cyclohydrolase I (GCH1), 6-pyruvyl-
tetrahydrobiopterin synthase (PTPS) and methotrexate
reductase (SR). As shown in Figure 2, GCH1 is the rate-
limiting enzyme in BH4 de novo biosynthesis, which catalyzes
the formation of dihydroneopterin triphosphate (DNTP). The
first step in the synthesis of BH4 is complicated and highly
regulated at the level of transcription, translation and post-
translation (34). Next, DNTP is converted into 6-pyruvyl-
tetrahydrobiopterin by PTPS. Although the key rate-limiting
enzyme in the de novo synthesis pathway of BH4 is GCH1 in
most cells, PTPS has also been considered as a rate-limiting
enzyme in certain types of cells, especially in human liver cells
(35). After being stimulated by cytokines, LPS, hydrogen
peroxide, insulin and other immune stimuli, GCH1 expression
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FIGURE 2 | Pathways for the biosynthesis of BH4. The de novo pathway (left) is synthesized from GTP to BH4 in three steps. GCH1 is the rate-limiting enzyme in
BH4 de novo biosynthesis. The salvage pathway (right) produces BH4 from its oxidized form, starting with sepiapterin in two steps, which is essential to convert
exogenous sepiapterin into BH4.
FIGURE 1 | Enzyme cofactor activity of BH4. BH4 is an essential cofactor for multiple enzymes, including three aromatic amino acid hydroxylases (PAH, TH and
TPH) and nitric oxide synthases (NOSs). All three NOSs need BH4 to produce NO. Generally, these enzymes combine the oxidation of L-arginine with the reduction
of molecular oxygen to form NO and L-citrulline. BH4 is also the cofactor activity of three aromatic amino acid hydroxylases, which leads to the synthesis of
neurotransmitters and prevents the accumulation of phenylalanine.
Frontiers in Oncology | www.frontiersin.org August 2021 | Volume 11 | Article 7206323
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is induced and PTPS therefore becomes a rate-limiting enzyme
(35). In the final step of this pathway, SR catalyzes the
production of 6-pyruvyl-tetrahydrobiopterin to BH4. This step
involves two consecutive NADPH-dependent reduction reactions.
The side chain carboxyl of 6-pyruvyl-tetrahydrobiopterin is first
reduced and rearranged to form the intermediate 6-lactanoyl-
tetrahydrobiopterin, which is then reduced to BH4 on the second
side chain carboxyl (35).

As a key enzyme for de novo pathway of BH4 synthesis, GCH1
activity is regulated by various factors, such as transcriptional
factors, post-translational regulation, and activity regulatory
proteins. In particular, we have demonstrated that AU-rich
element RNA-binding factor 1 (AUF1) regulates GCH1
expression via its 3’UTR (36). Phosphorylation is a common
post-translational modification in organisms (37). Post-
translational regulation of GCH1 activity appears to occur by the
protein phosphorylation. It has been reported that phosphorylation
of GCH1 at serine 81 is critical in the activation of this enzyme
because it not only improves its intrinsic activity and increases its
protein expression level, but also reduces the feedback inhibition of
its regulatory protein GTP cyclohydrolase I feedback regulator
(GFRP) (38–40). The interaction between GCH1 and GFRP can
either activate or inhibit GCH1 activity (41). In the presence of
phenylalanine, GFRP interacts with GCH1 to activate the GCH1
activity (42, 43). In contrast, the binding of GCH1 with GFRP
mediates the feedback inhibition of BH4 (42).
Salvage Pathway of BH4 Synthesis
The salvage pathway generates BH4 from its oxidized forms
under the action of sepiapterin reductase (SR) and dihydrofolate
reductase (DHFR) (Figure 2). SR is a homodimer composed of
two subunits, which takes part not only in the de novo synthetic
pathway of BH4 but also in the salvage biosynthetic pathway
(44). Additionally, many non-pteridine derivatives, vicinal
dicarbonyls, monoaldehydes and monoketones are sensitive as
substrates of SR (44). It has been found that the regulation of
endothelial BH4 content is mainly accomplished through salvage
pathway (45, 46) and the decrease in SR leads to an impairment
in endothelial BH4. Similarly, an increase in SR leads to an
increase in BH4 level and NO production, and a reduction in
oxygen radical production. DHFR is an enzyme necessary for the
biosynthesis of folate in eukaryotic and prokaryotic cells (47). In
addition to crucial roles in folate metabolism, DHFR can also
reduce BH2 and thus regenerate BH4 (48). Previous studies have
shown that DHFR plays a key role in determining BH4
homeostasis, NO bioavailability and NOS coupling in
endothelial cells (49). When endothelial cells are stimulated via
angiotensin II, DHFR expression is down-regulated, BH4 level is
decreased, and NOS uncoupling is increased, which is restored
by DHFR overexpression (45). Thus, DHFR is crucial in
maintaining endothelial BH4 levels and NO bioavailability
under oxidative stress.

The salvage pathway is very essential for the conversion of
sepiapterin to BH4. Although sepiapterin is not a metabolite of
mammals, it is a key exogenous substance that enhances BH4
levels in mammals (50). Thus, supplementation of cells with
Frontiers in Oncology | www.frontiersin.org 4
sepiapterin has been a common strategy to increase intracellular
BH4 levels via the salvage pathway.
THE EFFECT OF RADIATION ON BH4
METABOLISM AND POSSIBLE
MOLECULAR SIGNALING PATHWAYS

BH4 is reductive and easily oxidized to BH2 when damaged, such as
UV-radiation and ionizing radiation. Oxidation of BH4 to BH2 and
other oxidized biopterin species causes eNOS to produce higher
superoxide levels instead of NO, a phenomenon commonly referred
to eNOS, leading to increased oxidative stress (20, 51). Ionizing
radiation oxidizes BH4. Engin et al. found that the urinary biopterin
concentration is significantly higher in radiation-exposed hospital
staff compared with the healthy subjects (52). BH4 plasma level is
significantly lower in patients with abdominal radiotherapy one
week after radiotherapy (53). Similarly, after daily exposure to 4 Gy,
the plasma BH4 level of the rats decreases significantly, which is
consistent with the downward trend of the plasma BH4 level of the
patients receiving abdominal radiotherapy. Compared with wild-
type mice, BH4 deficient mice show an increase in radiation-
induced aortic peroxynitrite in lung tissues (54). Radiation-
induced salivary gland dysfunction in mice is attributed to
increased peroxynitrite (55). All these data indicate that ionizing
radiation promotes the formation of peroxynitrite, which is likely to
be the result of reduced BH4 availability after radiation (56).

GFRP overexpression increases the interaction between
GFRP and GCH1, thereby negatively regulating the
biosynthesis of BH4 and increasing the level of oxidative stress
induced by ionizing radiation (54). The mRNA expressions of
GFRP in lung and liver of wild- type mice increase after 8.5 Gy
of total body Irradiation (TBI), suggesting that the inhibition of
GCH1 activity mediated by GFRP may be a possible mechanism
of BH4 inhibition after ionizing irradiation (54, 57).

iNOS activity is activated immediately after ionizing radiation
(within 2 h) via NF-kB pathway (58), thereby inducing NO
production, which may then interact with radiation-induced
superoxide to form peroxynitrite (56). Peroxynitrite is prone to
oxidize BH4, implying that the NF-kB pathway plays a key role
in modulating the bioavailability of BH4 after ionizing radiation
(59). Fascinatingly, coordinated activation of JAK-STAT
pathway and NF-kB pathway may be involved in radiation-
induced BH4 deficiency (56, 60).

Despite the finding that BH4 metabolism involves in NOS
uncoupling and ROS production, the effect of radiation on BH4
metabolism may have other mechanisms. It has been reported
that protein S-nitrosylation, an important post-translational
modification (61, 62), requires NO participation. Dysregulated
S-nitrosylation has been shown in multiple human diseases (63,
64). Microbiome-derived NO promotes extensive S-nitrosylation
of the host proteome to regulate miRNAs, gene expression as
well as host functions and physiology (65). BH4 production
mediated by PTPS facilitates latent TGF-b binding protein 1
(LTBP1) S-nitrosylation, thereby suppressing TGF-b secretion
and promoting tumor growth (66). Components of the
August 2021 | Volume 11 | Article 720632
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ubiquitin-proteasome system are altered by BH4-dependent NO
signaling via protein S-nitrosylation, which implicates the
widespread impact of BH4 on downstream cellular signaling
(67). Recent studies have delineated a previously unrecognized
link between BH4 metabolism and ferroptosis (68), which is
associated with radiotherapy (69). So dysregulated S-
nitrosylation may also be responsible for the reduction of BH4
after irradiation.
BH4 AND eNOS FUNCTION

NO is a potent endogenous vasodilator produced by NOS. eNOS
produces NO which is an essential regulator of endothelial
function, participating in various physiological events and is a
key regulator of endothelial cell migration, survival and
angiogenesis (70). The impaired NO production by eNOS is a
main reason for endothelial dysfunction (71, 72). Reduced NO
production in diabetic patients is associated with the
pathogenesis of endothelial dysfunction (73, 74). Multiple
studies have demonstrated that ionizing radiation inhibits the
activity of eNOS and reduces the production of endothelial NO.
Even years after radiotherapy, there is still endothelial
dysfunction in the increased expression of pro-thrombotic and
pro-inflammatory markers in irradiated blood vessels (75).
Functional eNOS oxidizes L-arginine to L-citrulline and NO in
the presence of BH4, which is an effective natural reducing agent
(76). Suboptimal levels of BH4 due to the oxidation to BH2 via
stimuli such as radiation exposure may lead to NOS uncoupling
and the subsequent generation of highly oxidative radicals,
including superoxide and peroxynitrite (77), which is the main
mechanism of impaired vascular regulation (78). When BH4 is
limited, activated NOS cannot catalyze the conversion of L-
arginine to L-citrulline and NO, but can still accept electrons
from NADPH and transfer electrons to another substrate O2,
resulting in the production of O2

- instead of NO. BH4 is oxidized
by ONOO- to BH2 and then to biopterin (B). BH2 together with
NOS causes ROS production instead of NO (20, 51). Thus,
similar to BH4, BH2 has an affinity for the pterin-binding site,
which makes it an efficient uncoupling agent for NOS (79). NOS
activity is strictly regulated by plenty of biochemical pathways
(80), including the availability of its cofactor BH4 (81). For
example, compared with age-matched females, the higher
oxidative stress of male spontaneously hypertensive rats leads
to the relative lack of BH4, leading to the decrease of renal NOS
activity and NO bioavailability (82–85).
BH4 METABOLISM AND IONIZING
RADIATION

BH4 Metabolism and Radiation-
Induced Injuries
Since BH4 reduces ROS by regulating NOS product (86–88),
BH4 has been shown to play a key role in the pathogenesis of
Frontiers in Oncology | www.frontiersin.org 5
multiple diseases characterized by increased oxidative stress,
such as diabetes, arteriosclerosis, hypertension and radiation-
induced injuries (48, 53, 89, 90). Stress-induced ROS production
may reduce the availability of BH4, which may induce NOS
uncoupling and increase the production of oxidative superoxide
radicals. NOS can catalyze the production of NO and L-valine
from L-arginine in the presence of sufficient BH4 (19, 20, 48).
BH4 is likely to be involved in free radical production and may be
related to the progression of radiogenic damage. So far, multiple
studies have focused on the biochemical and mechanistic effects
of BH4 in radiation-induced injuries and the radioprotective
effect of BH4 has been confirmed (53, 90). It has been shown that
radioprotection of BH4 through some mechanisms such as
scavenging free radicals, promoting responses to DNA damage,
and alleviating inflammatory responses, etc (53, 90).

BH4 has become a potential strategy for fibrosis and diastolic
dysfunction, which are all related to ROS (91, 92). We have
previously reported that GCH1 expression and BH4 levels in
irradiated human skin and rat skin tissues are lower than that in
the unirradiated counterparts, which impairs NO homeostasis
and enhances ROS cascade (90). Oxidative stress-responsive
transcriptional factor Nrf2 is able to transcriptionally activate
GCH1, thereby restoring cellular BH4 level and attenuating
procession of radiation-induced skin injury in vitro and in
vivo (90).

BH4 treatment can decrease oxidative stress in irradiated
cardiomyocytes, thereby reducing radiation damage and
improving myocardial function (93). NO is insufficient after
ionizing radiation, which is one of the key indicators of
myocardial fibrosis. Patients with fibrotic diseases show low
NO levels (94, 95). It has been reported that BH4
supplementation can restore NO and reduce animal
myocardial fibrosis (96). BH4 can inhibit the decoupling of
NOS and improve cardiac dysfunction (59, 79, 97–100). One
month after the aortic arch narrowing of C57 mice, NOS
decoupl ing and oxidat ive s tress occur , exogenous
administration of BH4 can improve myocardial function.
When the coronary artery is severely narrowed, perfusion of
BH4 can improve its diastolic function (101). GCH1 activity and
BH4 level are decreased in irradiated mesenteric artery and
endothelial cells. Administration of a GCH1 inhibitor DAHP
significantly aggravates vascular injury and intestinal damage,
while BH4 treatment can improve intestinal vascular injury and
ischemia induced by ionizing radiation, and restore vascular
function (53). Recent study has shown that the co-
administration of Sildenafil (SD) and simvastatin (SV), NO
donor/BH4 regulator, inhibits the cranial irradiation-induced
oxidative stress, inflammation, NO-pathway dysregulation and
neuronal apoptosis, indicating a neuroprotective effect role of
SD/SV in irradiation-induced brain injury as a possible
mechanism of its NO donor/BH4 regulatory activities (102).

GT3, a radioprotective vitamin E analog, can reduce radiation-
induced oxidative/nitrosative stress (89). GT3 regulates the
expression of GFRP and thus plays its radioprotective role in
part by regulating the BH4 availability (89). A GFRP-
overexpressing transgenic mice display reduced tissue BH4 and
August 2021 | Volume 11 | Article 720632
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blood GSH levels, indicating a higher oxidative stress (54).
Cheema et al. investigated liver metabolic changes following
irradiation in control and GFRP overexpression mice (57).
Compared with wild-type mice, GFRP transgenic mice show
reduced glutathione levels and increased levels of glycocholic
acid and N-arachidonic taurine after irradiation, suggesting the
early occurrence of metabolic dysfunction. Thus, GFRP
transgenic mice are susceptible to radiation stress and this
sensitivity may lead to increased radiation-induced injuries (54).

Collectively, ionizing radiation oxidizes BH4, which results in
NOS uncoupling and augmented radiation-induced secondary
ROS, ultimately leading to radiation-induced injuries. While
GCH1-mediated BH4 metabolism attenuates radiation-induced
ROS production to improve radiation damage (Figure 3).

BH4 Metabolism and Cancer
Radiosensitivity

We retrieved the expression of BH4 metabolic enzymes (GCH1,
PTPS, SR and DHFR) in various tumors based on the Cancer
Genome Atlas (TCGA) database (Figure 4) (44). According to
the results, GCH1 exhibits relatively higher expression levels in
the liver, endometrium and breast cancers than the tumor
adjacent tissues. PTPS is overexpressed in lung, colon and
endometrium cancers. The expression of the SPR gene is
higher in liver cancer, colorectal cancer and invasive breast
Frontiers in Oncology | www.frontiersin.org 6
carcinoma. And DHFR gene is highly expressed in
glioblastoma multiforme, invasive breast carcinoma, stomach
adenocarcinoma and uterine corpus endometrial carcinoma.
These different BH4 metabolic enzymes may be related to
specific tissue functions. In a word, BH4 metabolic enzymes
are generally overexpressed in tumor tissues than in
corresponding normal tissues, which may be due to the higher
ROS level in tumor cells (103). Therefore, BH4 metabolic
enzymes are possible hallmarks and therapeutic targets.

In addition to the radioprotective effects of BH4 and its
metabolites, some studies have shown that they can improve
the therapeutic effect of radiotherapy. Therefore, BH4 and its
metabolites are considered as radiosensitization targets in cancer
radiotherapy. It has been reported that BH4/BH2 ratio in
colorectal, breast and head and neck tumors is significantly
lower than that in normal tissues (104). In mouse spontaneous
breast cancer model, exogenous BH4 precursor sepiapterin
increases BH4/BH2 ratio, which enhances the NOS activity
and increases NO production. Sepiapterin finally leads to the
transition from pro-inflammatory/pro-survival signals to anti-
inflammatory/pro-apoptotic signals, thereby inhibiting
spontaneous tumor growth (104). In addition, in a murine
SCCVII tumor model, radiation-induced NO through increases
eNOS activity mitigates tumor hypoxia and increases
radiosensitivity (105). It is now clear that NO, which is
associated with malignancy, may exhibit a dual activity:
FIGURE 3 | Schematic representation of BH4 metabolism in radiosensitivity. Radiation oxidates BH4, which results in NOS uncoupling and augmented radiation-
induced secondary ROS, ultimately leading to radiation-induced injuries. While GCH1-mediated BH4 metabolism attenuated radiation-induced ROS production to
improve radiation damage.
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stimulating tumor growth and having the opposite anti-tumor
effect (106), which depends on the concentration of NO (107,
108). At low concentrations, NO can inhibit apoptosis and cause
mutations, which may lead to the formation of malignant growth
loci. Conversely, high concentrations of NO seem to be harmful
to malignant cells, especially when exposed to ionizing radiation
(107–109). Kashiwagi et al. (110) demonstrated that NOS activity
affects tumor blood vessels. Inhibition of NOS in glioma cells can
improve oxygen delivery and a more normal phenotype (110).
Whereas, vasculature normalization with antiangiogenics is
short-lived. Treatment of mice with the NOS inhibitor L-NNA
reduces tumor blood flow, resulting in delayed tumor growth,
but quickly lost its effect (111). On the other hand, post ionizing
radiation NOS inhibition delays tumor growth via Th1 immune
polarization within the tumor microenvironment (112). A 6-day
sepiapterin treatment in mice reduces tumor blood flow, delays
tumor growth and improves animal survival, while tumor
oxygenation continues to improve significantly after 10 days of
sepiapterin treatment and improved tumor oxygenation is
associated with increased tumor cell apoptosis (113).
Pretreatment with sepiapterin not only enhances the killing of
tumor by ionizing radiation, but also enhances the absorption of
doxorubicin. Thus, as a vascular normalizing agent, sepiapterin
can reduce tumor hypoxia, improve tumor %HbO2 and
perfusion, and prevent cancer cells from acquiring aggressive
phenotypes in the hypoxic microenvironment, ultimately leading
to radiation-induced apoptosis, thereby enhancing tumor radio-
and chemosensitivities (113, 114).

In the salvage pathway, DHFR exhibits a critical role in BH4
generation. Radiotherapy, however, tends to trigger DHFR
Frontiers in Oncology | www.frontiersin.org 7
amplification, thereby enhancing the activity of DHFR (115,
116). Enhanced DHFR activity promotes DNA replication in
cervical cancer cells, leading to reduced therapeutic efficacy
(117). The use of DHFR inhibitors, such as methotrexate
(MTX) analogues as radiosensitizers is expected to improve the
therapeutic effect (118, 119). Liang et al. (117) synthesized a
series of 2,4-diaminopteridine analogues as DHFR inhibitors for
radiosensitization. In particular, the combination of X-rays and a
compound named 2a effectively suppresses cervical tumor
growth and compound 2a has higher radiosensitization activity
than MTX. Hence, if the DHFR activity is inhibited, the
radiotherapy effect will be improved to varying degrees. The
normal tissue or cancer types associated with BH4-mediated
radiosensitivity are summarized in Figure 5.
FUTURE DIRECTIONS

Since BH4 is easily oxidated (20, 51, 120), novel approaches are
needed to protect its integrity during delivery. Nanotechnology
offers a new way to deliver drugs efficiently and specifically. It is
reported that liposome formulations can improve the therapeutic
effect of drugs with poor bioavailability (121). Liposomal BH4
has been used to reverse the loss of BH4 after ischemia-
reperfusion injury (122, 123). Similarly, targeted delivery of
BH4 nanocarriers can be used as a prophylactic treatment for
atherosclerosis (124). Thus, it is possible to use novel approaches,
such as liposomes and nanoparticles, to carry BH4 to enhance its
stability and make its clinical application more promising. In
addition, the design of ROS responsive nanomaterials based on
A B

DC

FIGURE 4 | The expression of BH4 metabolic enzymes in human tumors. The comparison of (A) GCH1, (B) PTPS, (C) SR and (D) DHFR expression in in various
tumor tissues and corresponding normal tissues. And BH4 metabolic enzymes generally overexpress in tumor tissues than corresponding normal tissues. *P < 0.05,
**P < 0.01 and ***P < 0.001, compared with the normal tissues. Gene expression data are obtained from the Cancer Genome Atlas (TCGA) database (44). BLCA,
Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM,
Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP,
Kidney renal papillary cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; STAD,
Stomach adenocarcinoma; THCA, Thyroid carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma.
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the high ROS conditions at radiation-damaged sites provides a
new approach for BH4 loading for radioprotection. Although it
has been reported that vitamin C, folic acid, etc. can enhance the
binding of BH4 to eNOS, thereby increasing the level of
intracellular BH4 (48, 125), the clinical efficacy is
compromised due to difficulties to combine with BH4. The
rescue approach of regulating BH4 synthesis through its
precursor sepiapterin may be another treatment strategy (126).

During cancer radiotherapy, the role of BH4 metabolism in
cancer cell radiosensitivity yet to be determined. BH4 on one
hand reduced radiogenic ROS, however, BH4 on the other hand
normalizes vessels, which enhances radiotherapy efficacy. Given
the rapid development of targeted therapies, specific
radiosensitizers can be used for cancer radiotherapy. Tumor cells
constantly interact with the surrounding microenvironment. Apart
from the tumor cells, the tumor microenvironment includes a
variety of cell types (endothelial cells, fibroblasts, immune cells,
etc.) and extracellular components (cytokines, growth factors,
hormones, extracellular matrix, etc.) (127). High expression of
GCH1 in cancer-associated fibroblasts stimulates breast cancer
cell proliferation and motility (128). As a critical T-cell regulator,
BH4 can be manipulated to enhance immunity and inhibit tumor
growth (129). The role of BH4 metabolism in tumor
Frontiers in Oncology | www.frontiersin.org 8
microenvironment is largely unknown. Further research on these
mechanisms will accelerate the development of radiosensitizers
based on BH4 metabolism.
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