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Objective: Diabetes mellitus (DM) is known to cause many systemic complications as well as male infertility. Astaxanthin (ASTX) is a powerful 
antioxidant that is involved in a variety of biologically active processes, including those with anti-diabetes effects. The present study investi-
gates the effect of ASTX on the spermatozoa function in streptozotocin (STZ)-induced diabetic rats. 
Methods: We divided 30 adult rats into three groups (10 rats per group), with a control group that received corn oil mixed with chow. DM was 
induced by intra-peritoneal injection of STZ. Eight weeks after the STZ injection, half of the diabetic animals were used as diabetic controls, and 
the rest were treated with ASTX for 56 days. Then the parameters and chromatin integrity of the epididymal sperm were analyzed using chro-
momycin A3, toluidine blue (TB), and acridine orange (AO) staining. 
Results: The count, viability, and motility of the epididymal sperm were decreased significantly in the STZ group in comparison with the con-
trol group (count and viability, p < 0.001; motility, p < 0.01). ASTX increased normal morphology and viable spermatozoa compared to the STZ 
group (morphology, p = 0.001; viability, p < 0.05). The percentage of abnormal chromatins in TB and AO staining was higher in the STZ group 
compared to the control group (p < 0.001). The mean percentage of TB and AO positive spermatozoa in STZ rats was significantly lower in the 
STZ+ASTX group (TB, p = 0.001; AO, p < 0.05).
Conclusion: This study observed that in vivo ASTX treatment partially attenuates some detrimental effect of diabetes. Conversely, ASTX im-
proved sperm viability, normal morphology, and DNA integrity.
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Introduction

Diabetes mellitus (DM) is a chronic disease, the prevalence of which 

has increased rapidly worldwide. The World Health Organization 
(WHO) estimated that the total number of people with diabetes is 
anticipated to progress to 366 million by 2030 [1,2]. DM is known to 
cause many systemic complications and male infertility [3]. DM 
causes molecular alterations that negatively affect sperm quality and 
function [4]. Moreover, it can disrupt endocrine control of spermato-
genesis [5].

Recent studies have shown that some conditions such as endocrine 
disorders, diabetic neuropathy, and oxidative stress may be the main 
causes of sperm damage [3]. Hyperglycemia, which directly induces 
reactive oxygen species (ROS) production and elevates the level of 
oxidative stress, plays a crucial role in the development of diabetes 
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[6]. It has been accepted that spermatozoa are vulnerable to ROS-in-
duced damage [7]. The oxidation of lipids, proteins, and other macro-
molecules such as DNA occurs during the development of diabetes 
[8]. Men with diabetes have been found to have a significantly higher 
percentage of spermatozoa with nuclear DNA damage, which subse-
quently alters male fertility, early embryonic growth, reproductive 
outcomes, and miscarriage rates [9-12].

The protective effects of exogenously administered antioxidants 
have been extensively studied in animal models of DM [13-15]. Anti-
oxidants play an important role in the maintenance of sperm motility 
and sperm DNA integrity against oxidative damage [16]. Astaxanthin 
(ASTX) is a keto-carotenoid pigment extracted from the algae Hae-
matococcus pluvialis, a species of Chlorophyta. ASTX is known to 
have antioxidant effects against various kinds of oxidative stress [17]. 
Moreover, ASTX is involved in a variety of biologically active process-
es, including those with anti-diabetes and anti-obesity effects [18-
20]. This carotenoid agent has a potential health-promoting effect in 
diabetic models by attenuating inflammation and apoptosis. ASTX is 
well known for its antioxidant properties. However, to the best of our 
knowledge, this is the first study to evaluate the protective role of 
ASTX against streptozotocin (STZ)-induced sperm damage in diabet-
ic rats [17,21]. 

An experimental animal model of DM is a useful method for study-
ing the pathogenesis and treatment of this disease [22]. STZ-induced 
DM in rats provides a relevant model for studying the complications 
of diabetes [23].

ASTX, which plays a role in a variety of biological activities, has been 
widely studied in relation to DM and diabetic complications [24,25]. 
However, whether ASTX would be able to alleviate DM-induced al-
terations in sperm quality and DNA integrity, and its precise mecha-
nisms, remains undetermined. Therefore, the present study was de-
signed to investigate the impact of 2 months of ASTX treatment on 
the sperm parameters and DNA integrity in STZ-induced diabetic 
rats. 

Methods

1. Ethics
All animal experiments were conducted in accordance with nation-

al guidelines and protocols, approved by the Institutional Animal 
Ethics Committee.

2. Animals
Thirty healthy adult male Wistar rats (200 to 250 g) were kept under 

standard conditions. As a fertility test, all male animals were mated 
with adult female rats and pregnancy was evaluated (all male rats 
were fertile). Rats were acclimatized for 1 week, under a 12 hours 

light-dark cycle at 23°C ± 2°C. The rats were fed with standard com-
mercial laboratory chow pellets and water ad libitum. The daily intake 
of animal food was monitored at least 1 week prior to the start of 
treatment in order to determine the amount of food needed per ex-
perimental animal. Thereafter, the rats were randomly selected and 
divided into three groups. Each group was comprised of 10 rats, de-
tailed as follows: the control group received chow mixed with corn 
oil. The STZ group received STZ with the equivalent volume of chow 
mixed with corn oil. The STZ+ASTX (ASTX 10%, Fuji Chemical Indus-
tries, Toyama, Japan) group received STZ plus an equivalent volume 
of chow and corn oil supplemented with ASTX (720 mg/kg body 
weight) for a period of 8 weeks (the period taken to complete a sper-
matogenic cycle in a rat) [26,27]. 

3. Induction of DM
Experimental DM was induced by a single intra-peritoneal injection 

of STZ (90 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) in a sodium ci-
trate buffer (pH 4.5) to overnight-fasted animals. Three days after the 
administration of STZ, the blood glucose level of the tail vein was 
measured in all animals with a portable glucose meter. Blood glu-
cose levels of 270 mg/dL and above were considered to indicate the 
presence of diabetes in the model. At the end of the 8th week (56 
days) after STZ injection, half of the diabetic animals were used as di-
abetic controls, and the rest were treated with ASTX for 56 days 
[21,28]. 

4. Sperm analysis
Epididymal spermatozoa were collected by dissecting the caudal 

part of the left epididymis. The spermatozoa were separated from 
the epididymal tubules by chopping the caudal part of the epididy-
mis in 5 mL of Ham’s F-10 solution (Sigma-Aldrich). The solution was 
incubated for 10 minutes at 37°C to release the spermatozoa into the 
medium. After pipetting, 100 µL of the sperm suspension was diluted 
with 900 µL of saline. The diluted sperm suspension was transferred 
into a Neubauer hemocytometer chamber and the sperm heads 
were counted [29,30]; data were expressed as the total number of 
sperm per milliliter.

In this study, the percentage of motility was evaluated for all ani-
mals. Briefly, the spermatozoa were classified as motile or immotile. 
Sperm viability was also determined by using Eosin staining (Sigma-
Aldrich) as described previously [29]. Eosin penetrated non-viable, 
dead spermatozoa with disrupted membranes, which stained red. 
The percentage of normal morphology of 100 spermatozoa per rat 
was assessed by light microscopy (400 × , Zeiss, Munich, Germany) as 
described previously [29,31]. One experienced technician blinded to 
the study performed all analyses.
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5. Evaluation of sperm nuclear chromatin
1) Chromomycin A3 staining

The epididymal sperm samples were fixed in Carnoy’s solution 
(methanol/glacial acetic acid 3:1) at 4°C for 5 minutes. Each slide was 
treated for 20 minutes with 100 µL of chromomycin A3 (CMA3) solu-
tion (C2659, Sigma-Aldrich) (0.25 mg/mL in a McIlvain buffer: 7 mL 
citric acid 0.1 M+32.9 mL Na2HPO4 · 7H2O 0.2 M, pH 7.0, containing 10 
mM MgCl2). The slides were then rinsed in buffer and mounted with 
buffered glycerol (1:1). Microscopic analysis of the slides was per-
formed on a Olympus fluorescence microscope (Zeiss), with the ap-
propriate filters (460 to 470 nm). Evaluation of CMA3 staining was 
carried out by distinguishing between spermatozoa with bright yel-
low staining (CMA3 positive) and spermatozoa with dull yellow stain-
ing (CMA3 negative), expressed as a percentage [30,32].

2) Toluidine blue staining
For toluidine blue (TB) staining, the air-dried smears of spermato-

zoa were fixed in fresh 96% ethanol-acetone (1:1) at 4°C for 30 min-
utes, and finally hydrolyzed in 0.1 N HCl at 4°C for 5 minutes. The 
slides were then rinsed twice in distilled H2O for 2 minutes, and finally 
stained with 0.05% TB (Merck, Darmstadt, Germany) for 10 minutes. 
The staining buffer was composed of 50% citrate phosphate (McIl-
vain buffer, pH 3.5). Two different scores were applied: normal chro-
matin (light blue) and abnormal chromatin (dark blue) [32-35].

3) Acridine orange staining
Sperm DNA integrity, the smears were air-dried for 1 hour and then 

fixed overnight in methanol/acetic acid. Each sample was stained for 
10 minutes in freshly prepared acridine orange (AO; 0.19 mg/mL, 
Sigma-Aldrich) in McIlvain phosphate-citrate buffer (pH 4) for 5 min-
utes. Smears were evaluated on the same day using a fluorescent 
microscope with a 460 nm filter. The percentage of 100 green (nor-
mal double-stranded DNA) and orange/red (abnormally denatured) 
fluorescence spermatozoa per sample was calculated as described 
previously [30,32].

4) Statistical analysis
Statistical analysis was performed by using the SPSS for Windows 

ver. 16.0 (SPSS Inc., Chicago, IL, USA). First, the Kruskal-Wallis test was 
used for the presence of statistical significance in each value. Then, 
one-way analysis of variance was applied for comparison between 
groups following Tukey’s post hoc test. The p-values less than 0.05 
were regarded as indicating significance.

Results

1. Sperm parameters
Table 1 shows the effect of DM and ASTX treatment on epididymal 

sperm characteristics. The total count of the sperm extracted from 
the epididymis decreased significantly (108.75± 4.8) in the STZ group 
when compared with the control group (148.6 ± 12.3, p < 0.001). The 
mean percentage of sperm motility decreased significantly in the 
STZ group (43.5 ± 5.3) when compared with the control group 
(57.6 ± 5.6, p = 0.004). In addition, the mean percentage of sperm vi-
ability decreased significantly in the STZ group (17.5 ± 6.4) when 
compared with the control group (60.2 ± 4.0, p < 0.001). Treatment of 
diabetic animals with ASTX increased normal morphology and viable 
spermatozoa compared to the STZ-induced group (normal sperm 
morphology, p < 0.001; viability, p = 0.03) (Table 1).

2. Sperm nuclear chromatin 
1) AO staining

AO determines the susceptibility of sperm nuclear DNA to in situ ac-
id-induced denaturation by the shift of AO fluorescence from green 
(nondenatured DNA) to orange-red (denatured DNA) (Figure 1).

Figure 2 indicates that the mean percentage of red spermatozoa 
was increased in STZ-induced rats (29.5 ± 4.2) compared to the con-
trol group (12.3 ± 0.57, p < 0.001).

Treatment with ASTX significantly decreased the mean percentage 
of AO-positive spermatozoa in the STZ+ASTX group (21.6 ± 2.8) in 
comparison with the STZ-induced rats (29.5 ± 4.2, p = 0.03) (Figure 2).

2) CMA3 staining
CMA3 binds to DNA in protamine-deficient spermatozoa and sperm 

appears bright yellow (CMA3-positive), while in normal spermatozoa, 
CMA3 cannot bind to DNA and therefore spermatozoa appear dull 

Table 1. Sperm parameters 			 

Parameter Control STZ STZ+astaxanthin

Total sperm count (per milliliter) 148.6 ± 12.3 108.7 ± 4.8a) 123.0 ± 10.3b)

Normal morphology (%) 67.4 ± 3.1 60.7 ± 1.7 80.6 ± 8.5b,c)

Viability (%) 60.2 ± 4.0 17.5 ± 6.4a) 26.7 ± 2.4a,d)

Motility (%) 57.6 ± 5.6 43.5 ± 5.3b) 35.7 ± 2.9a)

Values are presented as mean ± standard deviation.			 
STZ, streptozotocin; STZ+ASTX, streptozotocin+astaxanthin.			 
a)p < 0.001, b)p < 0.01 vs. Control group; c)p = 0.001, d)p < 0.05, vs. STZ group.			 
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yellow (CMA3-negative) (Figure 1).
Figure 2 represents the percentage of CMA3-positive spermatozoa 

in the experimental groups.
The mean percentages of CMA3-positive spermatozoa were 4.6% 

± 2.7%, 9.7% ±1.7%, and 7% ±1.8% in the control, STZ, and STZ 
+ASTX groups, respectively. A declining trend was seen in the STZ 
+ASTX group compared to the STZ group, but it was not significant.

3) TB staining
TB measures the rate of sperm nuclear chromatin condensation by 

binding to the phosphate groups of DNA strands (Figure 1). As 
shown in Figure 2, the percentage of abnormal chromatins in TB 
staining increased in the STZ group (38.7% ± 7.5%) compared to the 
control group (10.6±5.6, p< 0.001). ASTX attenuated these abnormal 
chromatins compared with the STZ group (p=0.001) (Figure 2).

Discussion

We have embarked on this study to determine the detrimental ef-
fect that the progression of DM has on sperm parameters and DNA 

integrity, and whether ASTX could attenuate the complications of di-
abetes. This investigation indicated that ASTX-treated diabetic rats 
have significantly higher normal sperm morphology and viability. 
Analyses of sperm chromatin integrity by AO and TB staining illus-
trated that ASTX could improve sperm DNA integrity.  

An increasing experimental and clinical body of evidence indicates 
that diabetes and high plasma glucose levels pose a threat for sper-
matozoa function and can increase the risk of infertility [36,37]. DM 
might pose problems for the male reproductive system as a result of 
its effect on the endocrine control of spermatogenesis, steroidogen-
esis, sperm maturation, and impairment of penile erection [38].

Hyperglycemia results in the increased production of free radical-
triggered oxidative stress and consequently alters sperm parameters 
and DNA integrity [39]. ROS can initiate DNA fragmentation during 
the early stage of DM [21]. Many antioxidant agents and Chinese 
medicinal herbs have been investigated for their role in diminishing 
ROS activity in the cauda epididymis of male animals, but an exact 
remedy has not yet been identified [40]. 

Antioxidant molecules, especially carotenoids, play an important 
role in the control of the oxidative process. Carotenoids are strong 
antioxidants due to their double-bonded structure, allowing the de-
localization of impaired electrons [41]. ASTX, a photo-protective red 
pigment belonging to the carotenoid family, is recognized as having 
anti-oxidant, anti-cancer, anti-diabetic, and anti-inflammatory prop-
erties and is present in many dietary supplements. ASTX antioxidant 
capabilities are about 10 times greater than that of other carotenoids 
and 100 times greater than that of α-tocopherol [19,42].

Considerable evidence points to the defensive role of ASTX against 

Figure 1. Evaluation of the sperm nuclear chromatin integrity. (A) 
Chromomycin A3 (CMA3), bright yellow stained spermatozoa were 
considered as CMA3 positive or protamine deficient (arrow) while 
green stained spermatozoa were considered to be CMA3 negative, 
with a normal amount of protamine. (B) Toluidine blue staining, dark 
blue stained (arrow) were abnormal spermatozoa and unstained or 
pale blue stained were normal spermatozoa. (C) Acridine orange 
(AO), orange-red stained (arrows) were abnormal spermatozoa (de-
natured DNA) while green stained spermatozoa were considered to 
be AO negative (non-denatured DNA) ( × 1,000).

A B

C

Figure 2. The percentage of abnormal sperm chromatin. Results of 
chromomycin A3 (CMA3), toluidine blue, and acridine orange staining 
in control, spermatozoa function in streptozotocin (STZ) and STZ+ 
astaxanthin (ASTX) groups. a)p <0.001 vs. control group; b)p <0.05 vs. 
control group; c)p<0.05 vs. STZ group; d)p=0.001 vs. STZ group. 

50

45

40

35

30

25

20

15

10

5

0

Pe
rc

en
ta

ge
 o

f a
bn

or
m

al
 sp

er
m

s

	 Control	 STZ	 STZ+ ASTX

Acridine orange
CMA3
Toluidine blue

b)

a)

b,c)

a)

d)



� http://dx.doi.org/10.5653/cerm.2016.43.2.90

� Clin Exp Reprod Med 2016;43(2):90-96

94

DM. The anti-apoptotic and anti-inflammatory role of ASTX in liver, 
neuronal, and epithelial cells in diabetic animals has been reported 
[43,44].

Under stressful conditions such as diabetes, normal sperm mor-
phology and viability is reduced [3,10] and ASTX treatment could en-
hance normal sperm morphology and viability [45]. However, our 
data showed that ASTX did not improve sperm count or motility in 
diabetic rats. The observations of the present study might indicate 
that the extent of oxidative stress has a negative effect on the treat-
ment function of ASTX. Another explanation could be based on the 
dose-dependent role of ASTX on sperm function, or on how this 
might relate to oxidative stress, strictly defined. Dona et al. [46] found 
that ASTX has a dose-response curve for human sperm and an ele-
vated dose of improved sperm parameters such as the acrosome re-
action. We intend to consider other important factors such as time of 
treatment and pre- and post-treatment protocols (i.e., which pre-
treatment is more effective) in more detail in future work.

However, though many reports have established ASTX as a pre-
treatment supplement [47,48], our investigation introduced ASTX as 
a treatment itself; the appropriate duration and dosage of ASTX re-
main to be determined.

 Aitken et al. [49] reported that induction of ROS contributes to 
DNA fragmentation in sperm nuclei. It has been widely accepted that 
DM inevitably damages the sperm DNA integrity [50]. The present 
study specified that ASTX could reduce sperm DNA damage, which 
was detected by AO or TB staining in STZ-induced rats. On the other 
hand, ASTX treatment did not show significant differences among 
the experimental groups with CMA3 staining. Instead, the distinc-
tions among the experimental groups was the same as with AO and 
TB staining. During spermiogenesis, histones are replaced by prot-
amines. CMA3 staining was used to determine protamine deficiency 
[51]. As a result, this staining indicated that DM has no effect on DNA 
protamines. It seems that other antioxidants such as vitamins and 
herbal supplements have no effect on histone-protamine replace-
ment [51,52], and ASTX also failed to improve the level of protamines 
in comparison to the STZ or control groups.

In conclusion, taken together, the current study showed that in vivo 
ASTX treatment could partially improve sperm viability, normal mor-
phology, and DNA integrity. However, there are some unresolved 
problems concerning the precise effect of ASTX on sperm function, 
for which more clarification is needed through future studies. There-
fore, further studies should assess testes and epididymis tissues, and 
determine oxidative stress markers such as lipid peroxidation, ad-
vanced protein oxidation products, nitric oxide, glutathione, or the 
activity of superoxide dismutase and catalase in the sperm and sex 
organ tissues.
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