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Abstract: The C3-like toxins are single-domain proteins that represent a minimal mono-ADP-ribosyl
transferase (mART) enzyme with a simple model scaffold for the entire cholera toxin (CT)-group.
These proteins possess a single (A-domain) that modifies Rho proteins. In contrast, C2-like toxins
require a binding/translocation partner (B-component) for intoxication. These are A-only toxins that
contain the E-x-E motif, modify G-actin, but are two-domains with a C-domain possessing enzymatic
activity. The N-domain of the C2-like toxins is unstructured, and its function is currently unknown.
A sequence-structure-function comparison was performed on the N-terminal region of the mART
domain of the enzymatic component of the CT toxin group in the CATCH fold (3.90.210.10). Special
consideration was given to the N-domain distal segment, the α-lobe (α1–α4), and its different roles
in these toxin sub-groups. These results show that the role of the N-terminal α-lobe is to provide a
suitable configuration (i) of the α2–α3 helices to feature the α3-motif that has a role in NAD+ substrate
binding and possibly in the interaction with the protein target; (ii) the α3–α4 helices to provide the
α3/4-loop with protein-protein interaction capability; and (iii) the α1-Ntail that features specialized
motif(s) according to the toxin type (A-only or A-B toxins) exhibiting an effect on the catalytic activity
via the ARTT-loop, with a role in the inter-domain stability, and with a function in the binding and/or
translocation steps during the internalization process.

Keywords: mono-ADP-ribosylation toxins; C3-like toxins; C2-like toxins; ADP-ribosylation; CT-toxins;
target substrate motifs; N-terminal α-lobe

Key Contribution: The role of the α-lobe in CT-group bacterial mono-ADP-ribosyltransferase
toxins is to provide a scaffold for (i) the α2–α3 helices that feature the α3-motif involved in NAD+

substrate binding and protein target interaction; (ii) the α3–α4 helices that provide the α3/4-loop with
protein–protein interaction capability; and (iii) the α1-Ntail in the T-segment that features specialized
motif(s) according to the toxin type (A-only or A-B toxins). These elements participate in the catalytic
activity via the ARTT-loop; inter-domain stability; and play a role in the binding and/or translocation
steps during the host cell intoxication process.

1. Introduction

Bacterial mono ADP-ribosyl transferase toxins (mART toxins) belong to a family of toxins that
catalyzes the covalent transfer of an ADP-ribose moiety from NAD+ to a protein or DNA target in a
host cell, changing target activity and impairing target cell function and survival [1]. This toxin family
includes diverse members such as exotoxin A (ExoA) from Pseudomonas aeruginosa, pertussis toxin
(PT) from Bordetella pertussis, and cholera toxin (CT) from Vibrio cholerae. Members of this family are
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steadily increasing and are classified as either CT-group (after “Cholera toxin”) or DT-group (after
“Diphtheria toxin”).

All bacterial mART toxins share a common structural fold composed of ~100 residues with low
sequence homology formed by a core scaffold of two perpendicular β-sheets, flanked by variable helical
sub-structures and exposed-loops that constitute a cleft for the binding of the NAD+ substrate. The
SCOP2 database [2] assigns mART toxins (SCOP2: 56400) to the α + β class of proteins (SCOP2: 53931)
and to the “unusual” ADP-ribosylation fold (SCOP2: 56398). This fold is shared with eukaryotic
mART proteins, Ecto-ARTs (SCOP2: 82814), and with the C-terminal domain of poly (ADP-ribose)
polymerases known as PARPs (SCOP2: 56398), among others ADP-ribosylating proteins (for a review
see Fieldhouse, 2008 [3]).

The CT-group of mART toxins is a large group of A-only toxins (containing the catalytic component
only, e.g., C3bot1, Vis, ExoS) [4–6], and binary A-B toxins (A: catalytic, B: cell binding/translocation
components in distinct proteins, e.g., iota, and CT) [7,8] and A/B (A and B components in the same
polypeptide, e.g., Certhrax [9–11] with low sequence identity but containing three conserved regions
with the consensus (Y/F)R (Underline refers to conserved residues) (Region 1), (Y/F)xSTS (Region 2),
and the catalytic (Q/E)xE (Region 3) motifs, with either NAD+-binding or catalytic function (for reviews
see Fieldhouse, 2010 [12]). The CT-group of toxins is classically divided into ExoS-like, C2-like,
C3-like, and CT/PT-like subgroups of toxins, based mainly on the catalytic motif (Region 3), subunit
organization, and macromolecule targets.

Exoenzyme S (ExoS) (UP: Q51448) (UP: UniProtKB accession number) from P. aeruginosa is an
A-only, four-domain, bi-functional toxin/effector with a C-terminal mART domain; it requires factor-
activating ExoS (FAS) for activation [13]. Three additional ExoS-like toxins have been identified:
ExoT toxin (UP: Q9I788) from P. aeruginosa [6], the single-domain VopT toxin (UP: Q87G19) from
V. parahaemolyticus [14], and AexT toxin (UP: Q93Q17) from Aeromonas sp. [15]. ExoS-like toxins are
secreted into target cells via the type III secretion system (T3SS), possess the ExE catalytic motif and
target the RAS family of G-proteins (except for AexT which targets G-actin) (for a review see Barbieri,
2004 [6]).

C2 is a mART toxin (UP: D4N871) from Clostridium botulinum [16] and is an A-B multi-unit
exotoxin whereas its C2I mART subunit (A-component) requires the C2II receptor-binding subunit
(B-component) to facilitate cell entry of the catalytic A-subunit. The A-component is a bi-domain
protein with both halves structurally, but not functionally equivalent. The C-terminal domain harbors
the mART activity, while the N-terminal domain interacts with the B-component. The C2- like subgroup
includes members such as iota toxin (UP: Q46220, Ia subunit) from Clostridium perfringens type E [17],
CST toxin (UP: O06497, SA subunit) from Clostridium spiroforme [18], VIP toxin (UP: G8C882, VIP2
subunit) from Bacillus cereus [19], CDT toxin (UP: Q9KH42, CDTa subunit) from Clostridium difficile [20];
and the newly discovered CPILE toxin (UP: X512D7, CPILE-a subunit) from Clostridium perfringens
W5052 strain [21]. C2-like toxins contain the catalytic ExE motif, form an AB7 oligomer to gain cell
access, and ADP-ribosylate G-actin (for reviews see Tsuge 2017 [22]).

The C3 exotoxin (UP: P15879) from C. botulinum [23] (C3bot1) is a single-domain (A-only) mART
toxin. Eight other members of C3-like toxins have been described so far: C3bot2 (UP: Q00901) from
C. botulinum [24], C3lim (UP: Q46134) from C. limosum [25], C3cer (UP: Q8KNY0) from B. cereus [26],
C3larvin (UP: W2E3J5) and Plx2A (UP:M9V3B7) from Paenibacillus larvae [27,28], and three isoforms
C3stau1(UP: P24121), C3stau2 (UP: Q8GAX6), and C3stau3 (UP: Q8VVU2) produced by Staphyococcus
aureus [29,30]. C3-like toxins harbor the catalytic QxE signature and modifies RhoA, B, and C, among
others GTPases (for reviews see Vogelsgesang, 2007 [31] and Tsuge, 2017 [22]).

The CT-like subgroup (after cholera/pertussis toxins) is a more heterogenous group in terms of
the unit organization, catalytic motif, molecular target, and modified residues. This group includes CT
(UP: P01555, A-subunit) and Chelt toxins (UP: A2PU44, A-subunit) from V. cholera [12,32], PT toxin
(UP: P04977, A-subunit) from Bacillus. pertussis [33], human LT (UP: P43530, A-subunit) from Eshcerichia
coli [34], Scabin toxin (UP: C9Z6T8) from S. scabies [35], among others.
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However, there are other mART toxins that do not clearly match with any of the previous
classification schemes for the CT group. In these “ungrouped” toxins are the following: SpyA toxin
(UP: Q1J858/ Q1JN57) from Streptococcus pyogenes [36], which is structurally similar to C3-like toxins
(A-only) and with a secretion signal-sequence, but harbors the ExE motif and ADP-ribosylates vimentin
among other substrates [37], and Plx2A toxin (UP: M9V3B7) from P. larvae [28]. These proteins are
related to C3-like toxins (single-domain A-component with QxE catalytic motif that ADP-ribosylate Rho
proteins) but also show features of C2-like toxins (require a binding/translocation partner, B-component)
for intoxication. SpvB toxin (UP: P555220) from Salmonella enterica [38], VahC toxin (UP: Q49TP5)
from Aeromonas hydrophila [39], and Photox toxin (UP: Q7N9B1) from Photorhabdus luminescens [40]
possess the ExE motif, ADP-ribosylate G-actin, and are two-domains toxins (C-domain has mART
activity). AexU toxin (UP: A0FKE5) from A. hydrophila [41] has a domain organization like AexT
and is secreted into target cells by using the type III secretion system and harbors the catalytic QxE
motif rather than the ExE motif characteristic of ExoS- like toxins. Certhrax toxin (UP: Q4MV79) from
B. cereus strain G9241 [9] is a two-domain A/B toxin with its catalytically C-domain homologous to
C3-like toxins (QxE motif), but its N-domain is homologous to the PA-binding domain of the anthrax
lethal factor from Bacillus anthracis. Vis toxin (UP: A3UNN4) from Vibrio splendidus strain 12B01 [5] is a
single-domain A-only toxin homologous to C3-toxins with an N-terminal secretion signal peptide. Vis
harbors the ExE motif, although Vis does not covalently modify conventional C2-like nor ExoS-like
substrates. Mav toxin (UP: AOQLI5) from Mycobacterium avium strain 104 [12] is a tetra-domain A/B
toxin with the mART activity in the C-terminal domain that contains the ExE catalytic motif. EFV toxin
(UP: Q838U8) from Enterococcus faecalis strain V8583 [12] is a bi-domain protein with the mART activity
in the C-terminal domain and an ExE catalytic motif that targets actin (unpublished results).

The CATH database [42] assigns the closely related codes 3.90.176.10 for C2-, C3-, and ExoS- like
subgroups, and 3.90.210.10 for the CT/PT-like subgroup of CT-group of mART toxins. The enzymatic
component of the CT-group (CATCH fold, 3.90.176.10) at the N-terminal region, i.e., upstream of the
strand β1 of the β-core scaffold, is well structured with a similar fold, albeit not much attention has been
given to this section. In the present work, we performed a sequence-structure-function comparison of
the N-terminal region of CT-group mART toxins in the CATCH 3.90.176.10 category (non-CT/PT-like
toxins), with special emphasis on the N-most distal segment (a putative helix-coil structure) and its
different roles in these toxins.

2. Results and Discussion

2.1. The Overall Structure of the N-Terminal α-Lobe

The C3-like toxins are single-domain proteins that represent a minimal mART enzyme with a
simple scaffold that serves as the model for the entire CT-group. The N terminus is a helical region
formed by four consecutive α-helices, α1–α4 (Figure 1). This region shares a lower average similarity
for those residues in structured elements (~68%, from 52% to 88% pairwise) than with the set of
β-strand residues that form the β-core superstructure (~73%, from 59% to 99% pairwise). Structurally,
this N-terminal region consists of a conserved fold configured within a compact lobe, the “α-lobe”,
with a high degree of overlap among the C3-like toxins (average RMSDα = 2.4 Å; Figure 1).
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Figure 1. The α-lobe in C3-like toxins. Superposition of six C3-like toxins showing a compact N-

terminal substructure that encompasses four α-helices. The ARTT loop (ADP-ribosyl-turn-turn) is a 

catalytic region that is responsible for the target substrate recognition and is shown at the bottom 

right of the overlaid structures. The superposed structures include C3 exotoxin (PDB:1G24) and 

C3bot2 (PDB:1R45) from C. botulinum, C3lim (PDB:3BW8) from C. limosum, C3cer (PDB:4XSG) from 

B. cereus, C3larvin (PDB:4TR5) from P. larvae, and C3stau2 (PDB:1OJQ) produced by S. aureus. 

This α-lobe is packed following a V−L−αα-corner topology (Figure 2), which encloses the βII 

sheet and its connecting loops/turns according to: (i) an open V-shaped α1–α2 superstructure that 

surrounds the catalytic ARTT loop followed by (ii) an L-shaped α2–α3 superstructure that exposes the 

α2/3-turn and the key α3-motif (defined later) to the NAD+-binding pocket and to the protein target; 

and finally, (iii) an α3–α4-corner superstructure. The loop that links helices α3 and α4, the “α3/4-loop”, 

offers the flexibility required to form an αα-corner superstructure with a longer connection by 

turning the inertial axis of helix α4 orthogonal to both the α3 and the plane formed by the α2 and α3 

axes. As a result, α4 is in a transverse orientation in relation to the βII sheet, increasing the contact 

surface between the α-lobe and the βII sheet.  

 

Figure 1. Theα-lobe in C3-like toxins. Superposition of six C3-like toxins showing a compact N-terminal
substructure that encompasses four α-helices. The ARTT loop (ADP-ribosyl-turn-turn) is a catalytic
region that is responsible for the target substrate recognition and is shown at the bottom right of the
overlaid structures. The superposed structures include C3 exotoxin (PDB:1G24) and C3bot2 (PDB:1R45)
from C. botulinum, C3lim (PDB:3BW8) from C. limosum, C3cer (PDB:4XSG) from B. cereus, C3larvin
(PDB:4TR5) from P. larvae, and C3stau2 (PDB:1OJQ) produced by S. aureus.

This α-lobe is packed following a V−L−αα-corner topology (Figure 2), which encloses the βII

sheet and its connecting loops/turns according to: (i) an open V-shaped α1–α2 superstructure that
surrounds the catalytic ARTT loop followed by (ii) an L-shaped α2–α3 superstructure that exposes the
α2/3-turn and the key α3-motif (defined later) to the NAD+-binding pocket and to the protein target;
and finally, (iii) an α3–α4-corner superstructure. The loop that links helices α3 and α4, the “α3/4-loop”,
offers the flexibility required to form an αα-corner superstructure with a longer connection by turning
the inertial axis of helix α4 orthogonal to both the α3 and the plane formed by the α2 and α3 axes.
As a result, α4 is in a transverse orientation in relation to the βII sheet, increasing the contact surface
between the α-lobe and the βII sheet.
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Figure 2. The α-lobe topology in C3-like toxins. Depiction of the V–L–αα-corner topology of the α-
lobe. The green arrows correspond to the inertial axes of the α-helices. The βII sheet is shown in
yellow ribbons with β3, β5, and β6 strongly interacting with the elements of the αα corner. The PN
(phosphate-nicotinamide) loop is an NAD+ substrate-binding loop and it is indicated along with the
N-terminus (N-terminal tail) of the domain.
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In addition, C3-like toxins are characterized by an unstructured N-terminal segment, the “Ntail”,
of variable length (Figure 2). Furthermore, the C3-like α-lobe is a well-structured, globular motif
and is topologically identical or similar to: (i) the N-terminal helical region of the single-domain
enzymatic component of the A-B binary Plx2 and Larvin toxins (Plx2A, PDB:5URP); (ii) the N- terminal
helical region of the catalytic C-domain, “C2C-domain” of the A-component of the binary C2 toxin
(Figure 3), C2I (PDB: 2J3Z), and C2-like toxins such as Vip2 (PDB: 1QS1), iota Ia (PDB: 1GIQ), CdtA
(PDB: 2WN4), and SA component of the CST toxin (HM2). In these toxins, the N-terminal region of
the non-catalytic N-domain, “C2N-domain”, interacts with the binding/translocation component (see
later), shows a similar topology and superposes well with the C3-like α-lobes; it also possesses an
additional well-defined helix (α4a) connecting α3 and α4; (iii) the helical region of the Certhrax toxin
C-terminal domain (PDB: 4GF1)–Certhrax toxin has a significantly longer α3/4-loop than most C3- and
C2-like toxins; and (iv) the helical region of the VahC C-terminal domain (PDB: 4FML) and SpvB (PDB:
2GWM). The first two crystallographically ‘solved’ helices in these toxins superpose well with the α2

and α3 helices of the α-lobe. There is also a 20-residue long helix-loop insertion between the second
(equivalent to α3) and third (equivalent to α4) solved helices in these toxins. Additionally, the mART
domain of Photox toxin reveals a high sequence homology with VahC and SpvB toxins; consequently,
homology models of Photox show the canonical α2–α4 topology; and finally, (v) the N- terminal
segment of Vis toxin (PDB: 4XZJ) which has a longer α1 helix with a slightly different orientation.
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Figure 3. Topology of the A-component of the C2-like toxins. Structure of C2I toxin (PDB: 2J3Z) as a
representative member of the C2-like class, showing the “adaptor” N domain (in cyan ribbons) and the
“catalytic” C domain (in fuchsia ribbons). The T-segment of each domain is colored in yellow ribbons.
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There is no X-ray structure for any member of the ExoS-like group. However, Sun et al. reported
homology models of the N-terminal mART domains of ExoS and ExoT toxins, based on Ia toxin as
a template; these models superpose well with the C3-like α-lobe [43]. On the other hand, for the
enzymatic component of the CT/PT-subgroup (e.g., CT, LT-A/IIB, PT, and Scabin toxins, among others)
there is no structural equivalent to the C3-like α-lobe. Instead, certain coils, helices, and strands (and
their connecting loops) of the βII sheet occupy the same location within the α-lobe without significant
overlap with other elements—only the backbone structure of the α3-motif is roughly traced by an
active-site helix or loop.

2.2. Stability of the α2−α4 Superstructure

In C3-like toxins, the α2−α4 superstructure of the α-lobe is clustered and is in contact with the
rest of the protein by a network of hydrophobic interactions centered in three key residues: Tyr in α2

(Tyrα2), Leu in α3 (Leuα3), and Leu/Ile/Phe in α4—one in each helix (Figure 4). In addition, an aromatic
residue is present in the β2/3-turn, (Tyr/Phe)β2/3 (not shown). Effectively, Tyrα2 is the center of a
cluster of interactions, “clusterI”, that cements the whole α2−α4 segment with the rest of the structure
(Figure 5). The structural relevance of this hydrophobic and polar cluster of residues is evidenced by
the large number of conserved and similar residues (including an invariant Leu in β6, see Figure 5)
and the significant overlap of their side-chains. The reduced mobility of these residues as reported by
their crystallographic B-factors reveals the mutually imposed constraint within the compact structure
of the α-lobe. Tyrα2 is conserved in Plx2A in the C2C-domains, in most of the C2N-domains, and even
in most of the toxins of the CT-group with known α-lobe topology. Compatible with its structural role,
Tyrα2 is conservatively replaced with a Phe in Vis toxin, and with Leu in C2IN and Vip2N domains.
However, Tyrα2 might also play an “active-site” role as its side-chain hydroxyl bridges the conserved
Serβ3 (part of the STS motif) with Asnα3 (part of the NLR or α3-motif, see later); these are two critical
residues involved in NAD+ substrate binding. The substitution of Tyrα2 with Hisα2 in HopU1 toxin is
still compatible with the suggested role, particularly considering that HopU1 has a longer α2/3-link
that might assist in the binding of NAD+ [44].
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Figure 4. Theα-lobe stability. α2–α4 superstructure of C3larvin (PDB: 4TR5), showing three hydrophobic
clusters (depicted as green spheres) centered at three key residues. The structural “clusters” for the
α2–α4 superstructure are designated as I, II, and III and the superstructure is framed by three α helices
(α1, α2, and α3).
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Figure 5. Interactions in ClusterI of the α2–α4 superstructure. The cluster of residues around the
conserved Tyrα2 (circled label; grey residue) is shown in this set of six overlaid C3 structures. The side-
chains are shown for Tyr/Pheβ2,3 (black), Serβ3 (mauve), Leuβ6 (green), Leu/Ileα4 (blue), Ile/Phe/Tyrα3

(red), Ala/Serα3 (brown), and Asnα3 (orange).

In C3-like toxins, the conserved Leuα3 is part of the (NLR)α3 motif and is the center of a second
cluster of hydrophobic interactions, “clusterII” that links α3 and α4 and connects them to other elements
(Figure 6). In this cluster, Leuα3 interacts with (Leu/Ile)α4, with some residues in the α3/4-loop, and with
two other regions that act as hinges between both β-sheets–the conserved Tyr β2/3 and the conserved
Arg β6/7 (part of the (LPR) β6/7 motif). This cluster is structurally well defined in C3-like toxins as
evidenced by superposing the structures on Leuα3 (grey residue in Figure 6). It is remarkable how
identical this configuration (i.e., same side-chain torsion angles) is for these clustered residues. Leuα3

is conserved in Plx2A, the C2-like toxins (C2C-domains, but not the C2N-domains) and in most of the
non-PT-like toxins (except, for example, the TccC3 and TccC5 toxins) [45]. This observation suggests an
active role for Leuα3 in the stability of the α3-motif, which is relevant for the binding of the NAD+

substrate, rather than serving a pure structural role in the lobe stability.
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Figure 6. Interactions in ClusterII. The cluster of residues around the conserved Leuα3 (circled label)
in ClusterII is shown in this set of six overlaid C3 structures. The side-chains are shown for Arg β6/7

(dark blue), Tyr β2/3 (mauve), Leuα3 (grey), Ile/Phe/Tyrα3 (light blue), Leu/Pheα3,4 (cyan) and Ile/Valα4

(green). The residue nomenclature is as follows: the superscript refers to the alpha or beta secondary
structure followed by the strand or helix number in the C3bot1 structure (PDB:1G24).
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A hydrophobic residue at the N terminus of α4, either Leu or Ile, is the center of the “clusterIII” in
C3-toxins and most non-PT-like toxins (not shown). The central (Leu/Ile)α4 contacts the conserved
(Tyr/Phe)β2/3 (Figure 6) and the conserved Leu β6 (Figure 5) in most toxins of the CT-group (an exception
is HopU1 toxin) [46]. It is important to highlight (Tyr/Phe)β2/3 (Figure 6); this residue welds (coordinates)
the three hydrophobic clusters in all the catalytic domains with the α-lobe configuration, even in the
C2N-domains, which reaffirms the important structural role of this aromatic motif. Moreover, the
presence of (Tyr/Phe)β2/3 as part of the (Y/F)xSTS motif in the toxins of the CT-group [3,12] reveals a
structural role in preserving the N-terminal configuration, regardless of whether this region has the
α-lobe topology in contact with the β-scaffold.

2.3. The α3-Helix and the α3-Motif

The α3-helix is defined in all the C2/C3-like toxins and most of the CT-like toxins with the α-lobe
topology. In C2/C3-like toxins, the α3 helix harbors the α3-motif, Yα2

−(IN−LR)α3 (Figure 5), which
includes residues from both the α2 and α3 helices. The spatial orientation of the α3-motif along the
α3 inertial axis offers a recognition surface aligned with the long axis of the bound pose of the NAD+

substrate; hence, functionally, the α3-motif binds the NAD+ substrate and contacts the target protein
substrate. Thus, the α2/3-loop (N-terminal end), the conserved Asnα3 (at the center), and the semi-
conserved Argα3 (at the C-end) of the α3-motif, all point their side-chains towards the binding cavity
and contact the bound NAD+ and/or the target protein substrate. In effect, in the complexes of C3bot1
(PDB: 2C8F) and C3stau2 (PDB: 1OJZ) with NAD+, the NH of Asnα3 H-bonds the NAD+ A- phosphate,
and Argα3 stacks with the NAD+ adenine ring. The relevance of these two residues in NAD+ binding is
evidenced by their absence in the non-catalytic C2N-domains (see later). However, Asnα3 is absolutely
conserved in all the non-PT-like toxins, while Argα3 is less conserved (e.g., an Ile residue in certain
C2-toxins). The role of Tyrα2 and of Leuα3 in this motif was already discussed above.

2.4. Role of the Ntail-α1 Segment in C3- and C2-Like Toxins

Contrary to the conservation seen in the α2−α4 region, the Ntail-α1 of C3-like toxins is a variable
segment. The length of the unstructured Ntail is variable, being non-existent in C3larvin to 20 residues
in C3stau(s) and C3cer. Likewise, α1 is 15 residues in C3lim, but is only eight residues in both C3cer
(which superposes with the N-terminal half of C3lim α1) and C3larvin (which superposes with the
C-terminal half of C3lim α1).

The eight known C3-like toxins do not possess a specialized cell binding/translocation component
or domain for access/entry into their target host cells, and the details on the mechanism and molecular
determinants involved in the toxin internalization await further characterization (for a recent review
see Rohrbeck, 2016 [47]). This is relevant for all C3-like toxins except C3stau toxins (C3stau1, C3stau2
and C3stau3), since S. aureus infects the host cell and releases the toxins into the cell cytoplasm [29].
Thus, C3bot1, C3bot2, C3lim, C3cer, and C3larvin toxins will be referred to collectively as “C3-etoxins”
(with “e” after extracellular).

Due to the relatively high concentrations and long incubation times required for C3-etoxins to
enter the target host cells, it was previously suggested that these toxins gain host access by non- specific
pinocytosis [25]. Also, C3-etoxins have a basic α1 helix; basic peptides have been shown to interact with
charged phospholipids on the outer layer of the cell membrane of host cells, causing destabilization of
the lipid bilayer [48]. In fact, a short “transport” peptide fused to the C terminus of C3bot1 enabled
chimeric toxin entry into the cytoplasm by a receptor-independent mechanism [49]. However, C3bot1
and C3lim may be selectively internalized into the cytoplasm of macrophage-like murine cells likely by
a specific endocytotic mechanism [50]. Indeed, Rohrbeck and colleagues [51] identified a membrane
partner that binds C3bot1, and vimentin (rod domain) was established as the cellular receptor in
neuronal and macrophage cell lines. A more recent study showed the 88-RGD-90 sequence in C3bot1
functions as a vimentin binding-motif in neuronal cells [52]. Effectively the RGD motif is unique in
C3-etoxins; however, it should be noted that this Arg residue (at β1) is an invariant residue in all
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CT-like toxins (the signature “R”) involved in the binding of the NAD+ substrate. The conserved Arg
residue is buried in the NAD+-binding pocket and is stabilized by strong salt-bridges with the Asp in
this motif in the apo structures. The fact that C3stau harbors RLL, instead of the RGDβ1 motif, and
only weakly intoxicates HT22 cells [53], would suggest that there is a concerted participation of the
residues involved. In addition, because of the highly buried nature of the RGDβ1 motif (e.g., Arg88
is only partially exposed to solvent), we envisage that other residue(s) that form the NAD+-binding
interacting surface might participate in the recognition motif for vimentin. In this sense, the RGDβ1

motif is close to the conserved Rα3 of the signature α3-motif (Arg51 in C3bot1), and to the RxE motif
located in the β

2 strand (residues 127–129 in C3bot1) of the C3 group, (Figure 7). The RGDβ1 motif
along with the RxE β2 motif and Rα3 form an ‘electrostatic clamp’ with complementary charges and
H-bond capabilities in C3-etoxins (Figure 7).
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Figure 7. Putative vimentin binding motifs in C3bot1. Depiction of Arg88 and Asp90 of the RGD motif,
the Arg127 and Glu129 of the RxE motif, and the conserved Arg51 in the signature α3 motif.

Interestingly, monomeric (soluble) vimentin is reported to be ADP-ribosylated by SpyA in the
head domain of the protein [36,37]. This implies that vimentin must not bind into the NAD+-binding
pocket of SpyA in order to behave as a protein substrate for the transfer reaction. Incidentally, SpyA
lacks the RGDβ1 motif (RYVβ1 instead), lacks Rα3 (Dα3 instead), and lacks the RxEβ2 motif (YxKβ2).
Additionally, no C2-like toxin exhibits these motifs without also binding vimentin. Plx2A harbors
RGTβ1, Rα3 and LxEβ2 and enters mouse macrophages in the absence of the Plx2B protein [28].
Therefore, the Rα3 and Eβ2 residues may play a key role in the binding of the vimentin rod domain.

Notably, the RxE motif (TxE in C3cer) is only present in the C3-etoxins. Thus, active-site residues,
RGD (and likely also Rα3 and RxEβ2), while important for interaction with NAD+ for catalysis, have
the role of binding vimentin on the membrane surface of the host cell. This dual function may be
rationalized because these two activities are manifested in different compartments (i.e., the cytoplasm
for enzymatic activity and the extracellular space for the vimentin recognition) and in different stages
of the intoxication process. Therefore, considering that C3-like toxins correspond to a “minimal” toxin,
then Asp90 and Arg127 (in C3bot1) may have evolved to use the invariant Arg51, Glu129, and Arg88
residues to bind a required membrane component for toxin internalization. Validation of the role of
these residues in protein–protein interactions lies in the crystal contacts of a C3larvin fragment—of a
symmetrically related molecule–docked into the NAD+-binding pocket in the C3larvin crystal structure
(PDB: 4TR5) (Figure 8).
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Figure 8. Protein–protein interactions in C3larvin. Depiction of the docking of a segment of C3larvin
(green backbone) into the NAD+-binding pocket of another C3larvin molecule in the crystal structure
(PDB: 4TR5). The residues correspond to the motifs presented in Figure 7.

There is additional evidence to suggest that the helical α-lobe might be part of the binding
machinery with specific membrane component(s). In principle, the Rα3 signature fulfills this proposal
since Rα3 is in the α-lobe. However, C3larvin fails to enter vimentin-expressing mouse macrophage
cells [27] despite harboring RGDβ1, Rα3, and RTEβ2. Notably, C3larvin possesses a truncated α1;
a chimeric construct formed by adding 18 N-terminal residues (Ala1-Trp18) from the α1 helix of C3bot1
achieved cell penetration [27].

Inspection of the short α1 in C3larvin reveals a negative residue at the N-terminus, Glu2, which is
unique for this position (consensus Asn in C3-like toxins and Lys in C2-like toxins) and remarkably
represents the only difference with the entire sequence of the Plx2A toxin, which shows excellent
cell binding and penetration [28]. This Glu residue at one end and a cluster of basic residues at the
other end of α1 confer a significant dipole-moment to the helix and suggest an electrostatic mode of
interaction for this element. Notably, the calculated protein dipole moment for C3larvin points in a
direction perpendicular to C3bot1 and C3lim dipole vectors (Figure 9); however, the protein dipole
moment for the in silico C3bot118NC3larvin chimera is practically aligned to the dipole vectors of
C3bot1 and C3lim toxins. Thus, it seems that not only the net charge, but also the charge distribution
may be important determinants for cell internalization.

The apparent role of the Ntail-α1 in mediating toxin cell entry may not be exclusive to C3-etoxins.
In the enzymatic component of binary C2-like toxins, the N- (adaptor) and C- (catalytic) domains face
one another, so there is an obstruction in the central cleft (NAD+-binding pocket) of the N-domain,
rendering it inactive (Figure 3). The N-domain of C2I toxin is considered a specialized structure that
interacts with the binding/translocation protein partner (B-component) [54], and studies of chimeric
fusion proteins with C2 toxin have revealed the αN-lobe of this toxin mediated cell entry. In effect,
a construct formed by fusing the C2IN-domain with the C3lim toxin (C2INC3lim construct) was able to
intoxicate mammalian cells in the presence of the activated C2II protein (B-component) [55]. Moreover,
the N-terminal α-lobe of the C2IN-domain (residues 1–87) alone was enough to facilitate uptake of
the C2IN

87NC3bot1 fusion protein [56]. Furthermore, a construct of C2IN without the first 29 residues
and the C3bot1 toxin, C2IN

∆29NC3bot1, failed to enter into enter HeLa cells [57]. Notably, the C3-like
Ntail-α1 element is preserved in the two domains of all C2-like toxins, and it is comparable in structure
and relative location in each of them.
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Plx2A toxin resembles C3-like toxins in the sense that its A-component is a single domain mART
enzyme. Accordingly, the α-lobe of Plx2A is highly like the α-lobe of C3-like toxins, e.g., it possesses a
small α3/4-loop (or α4a helix), and the Ntail-α1 is a terminal structure. However, at the same time, Plx2A
resembles C2-like toxins because it requires a B-component, Plx2B, as a binding/translocation partner
for the cell internalization [28,58]. In this sense, the advent of Plx2A offers an invaluable opportunity
to assess the “properties” encoded in the terminal Ntail-α1 segment of the C2- and C3-like toxins.

Sequence-function analysis of the T-segment—a structure-based, multiple-sequence-alignment
(MSA) enhanced with the pattern of molecular interactions—was performed for the Ntail-α1 segment of
the C3-like toxins, Plx2A, and the C2N- and C2C-domains (Figure 10). With the previous alignment and
taking Plx2A toxin as the “master” sequence because it has the shortest Ntail among the aforementioned
toxins, the “T-segment” (“T” after terminal) was identified that comprises five residues of the Ntail,
the α1 helix, and the α1/2-turn (Figure 10). Subsequently, a cluster analysis based on the similarity of
the T-segment residues was performed on this toxin group, excluding C3larvin because it lacks the
Ntail and has a truncated α1 (Figure 11).
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Figure 10. The T-segment motif. Multiple sequence alignment of the Ntail-α1 segment of C3-like toxins
(#1–#8), Plx2A toxin (#9), and C2-like toxins (#10–#19), and definition of the T-segment (translucent
green box). The functional motifs are shown in color: purple, S-motif; green, C-motif; yellow and cyan,
I-motif; light brown, B-motif; and gray, T-motif. Non-synonymous substitutions are highlighted in red
text. Certhrax toxin (#20) is included for comparison.
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Figure 11. T-segment similarity. Cluster analysis of C3-like toxins (except C3larvin), C2-like toxins
(N- and C-domains), and Plx2A, based on T-segment similarity.

Three noteworthy features of the T-segment include: (i) C3staus are unique from other
domains/toxins; (ii) single-domain C3-etoxins cluster closer with C2N-domains than with the catalytic
C2C-domains of C2-like toxins; and (iii) single-domain Plx2A toxin clusters with C2N-domains, rather
than with the single-domain C3-etoxins or with the catalytic C2C-domains.

The T-segment in C3-etoxins can be defined by the consensus sequence (The long hyphen “–“
corresponds to any number of residues; like Xn),

TC3-segment: EFITN–(E/D)EA–WIIG–(Y/F)III–KYIV

which comprises four (numbered as I to IV) highly conserved aromatic residues. Likewise,
the T-segment of the N-domain of C2-like toxins can be defined by the

TC2N-segment: DFI–K–D–(A/G)–(K/R)–WII–K–E–K
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and the T-segment of the C-domain of C2-like toxins can be defined by
TC2C-segment: DFI–K(N/D)D–A–WIIG–YIII–(Y/W)IV

−K
Thus, combining the three previous definitions, along with the T-segments of Plx2A, the following

consensus sequences arise:

(S1) FI–A–WIIG–(Y/F)III–(Y/W)IV, in Plx2A, and C3-etoxins,
(S2) DFI–D–(A/G)–WIIG–YIII–WIV

−K, in Plx2A, and C2C domains, and
(S3) DFI–K–D–(K/R)–A–WII–(K/R)−E–K, in Plx2A, and C2N domains.

In turn, four sequence motifs emerge:
(1) The “S-motif”, FI–(A/G)–WII, which is contained in the three S1−S3 consensus sequences

motifs (fuchsia residues in Figure 10). The S-motif appears in all T-segments (including C3staus) and
therefore likely participates in stabilizing the T-segment and neighboring regions (“S” after structure).
In effect, PheI (Cys in C3cer) stabilizes the coiled Ntail segment with β1 in a β-like configuration. In turn,
(Phe/Cys)I along with Ala/Gly and the conserved TrpII orient the α1 helix of the α-lobe by means of
a network of hydrophobic and H-bond interactions (Figure 12). In particular, the interaction of the
S-motif residues with both semi-conserved (Iso/Leu)PN in the PN-loop, and with (Tyr/Phe) β5 in the
ARTT-loop (Figure 13) is relevant and will be discussed later.
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Figure 12. S-motif residues. Important residues that cluster around the two aromatic cornerstone
residues of the S-motif. The cornerstone residues include Phe (mid-green) and Trp (black) and are
surrounded by a cluster of residues, Gln (light green), Tyr (cyan), Leu (orange), Val/Ile (brown) and
Asp/Glu (dark green).
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appears in the “terminal” T-segment of the binary toxins A-component—Plx2A and C2N-domains. 

Figure 13. S-motif key interactions with PN- and ARTT-loops. Depiction of the interactions of the two
aromatic residues (FI and WII) of the S-motif with PN- and ARTT-loop residues (Y/F and I/L).

(2) The “C-motif”, G–(Y/F)III–(Y/W)IV is found in the S1 and S2 consensus sequences and features
residues not found in the S-motif (green residues in Figure 10). This motif only appears in catalytic
domains/toxins, including C3stau’s (with Ile instead of (Y/F)II) and C3larvin, and therefore might
be related to the stabilization of catalytic residues (“C” after catalytic). In effect, the conserved Gly
residue fits into a small space and interacts/stabilizes the conserved Tyrβ5 (Phe in C2IC) adjacent to the
ARTT-loop by a H-Pi-type H-bond (Figure 14). The last two aromatic residues in the motif, (Tyr/Phe)III

and (Tyr/Trp)IV, in addition to stabilizing the α1–α2 superstructure, interact with conserved residues
at or adjacent to the ARTT-loop (not shown). Thus, the C-motif might have evolved along with the
ARTT-loop and any key determinant might have been lost in the co-evolution of the C2N-domains
with the “atrophy” of catalytic signatures in the ARTT-loop.
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green) of the C-motif and the conserved Tyr/Phe residue (cyan) in the ARTT-loop in C3-like toxins.
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(3) The “B-motif”, D–(K/R)–D–(K/R)–(K/R)−E−K, appears only in the S3 consensus sequence and
includes residues not present in the S- or C- motifs (orange residues in Figure 10). This unique motif
appears in the “terminal” T-segment of the binary toxins A-component—Plx2A and C2N-domains.
Incidentally, no other basic or acidic residue located in any helix displays this degree of conservation in
these toxins/domains (C2N-domains, Plx2A) but shows no consensus in the rest of toxins/domains
(C3-like toxins and C2C-domains). The length/flexibility, exposure, electric charge, and H-bond
capability of the B-motif residues qualify it as a candidate for the binding of the B-component and/or
to mediate the translocation of the complex into the cytoplasm (“B” after binding). The B-motif is
remarkable, since it confirms that Plx2A shares elements with binary C2N-domains that might be
implicated in the host cell internalization process.

(4) The “I-motif”, D–K(N/D), has residues in the TC2C-segments that are not included in the
previous motifs (yellow and cyan residues in Figure 10) and this motif participates in the inter-domain
stabilization (“I” after interdomain). This motif can be defined by three positions (p1...p3) according to
Dp1–Kp2(N/D)p3. The p1 and p2 positions of the I-motif might have evolved along with a residue in the
β3N-strand (additional position p0) and a residue in the β4C-strand (additional position p4), to form a
quaternary cluster, [Dp0]N−[Dp1

−Kp2
−Rp4]C that stabilized both domains (Figure 15). In agreement

with the previous assertion, Aspp0 is conserved in β3N and does not appear in β3C; Argp4 is invariant
in β4C and does not appear in β4N. Incidentally, Aspp0 and Argp4 are absent in equivalent elements
(strands β3 and β4, respectively) of single-domain toxins. In addition, the 3rd position of the I-motif,
(N/D)p3, makes effective contacts with the α3/4-loop in the C2N-domains (α3/4N-loop) to stabilize both
domains (see the next section).
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Figure 15. Inter-domain interactions. Depiction of the inter-domain interactions between the N-domain
(Dp0) and the C-domain (Dp1KP2–Rp4) residues of the I-motif that stabilize the structure of C2-like toxins.
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(5) The “T-motif” E–TN–(E/D)E–K contains residues that are unique in the TC3-segments and are
not found in the previous motifs (gray residues in Figure 10). The role of this motif might be related
to the translocation (“T” after translocation), consistent with the previous section. Accordingly, the
increased toxicity observed for C3bot1 and C3lim when the pH is reduced from 7.4 to 5.5 correlates
with the increase in both the protein net charge and dipole moment (Figure 16). Furthermore, assessing
the pH-dependence of the cellular toxicity, the calculated pKas for Asp90 and Glu129 (the two acidic
residues in the proposed binding-motifs of C3bot1) are 2.5 and 2.8, respectively—these are too low to
be responsible for the pH response. However, Glu8 and Asp13 (both in the T-motif of C3bot1) have
calculated pKa values of 4.6 and 3.8, respectively. C3lim exhibits a higher pH- dependence than C3bot1
in intoxicating macrophage cells [59]. Incidentally, C3lim has four acidic residues in its T-segment,
with pKa values that range from 3.7 to 4.0, while the acidic residues of the interacting motifs possess
lower pKas of 2.6 and 1.4, respectively. Obviously, the alkaline nature of the T-segment is enhanced by
the protonation (neutralization) of the acidic residues.
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Figure 16. pH-dependence of the protein dipole-moment of C3 toxins. The pH profile of the electrical
dipole-moment is shown for three C3-like toxins and for the chimeric protein consisting of the fusion of
the N-terminus of C3bot1 with C3larvin toxin.

2.5. The Putative Role of the α3/4-Loop

In the single-domain Plx2A, and C3-like toxins, the segment that connects helices α3 and α4,
the “α3/4-loop”, is either short and unstructured (e.g., C3bot1) or contains a small 310-helix configuring
a loop-helix-loop motif (e.g., C3lim), called the LHL-motif that protrudes from the α-lobe [60]. In the
C2C-domains, the α3/4C-loop is also short and unstructured (e.g., Vip2) or harbors a small α-helix
(e.g., CdtA). In most of these toxins/domains, there is an abundance of Asn, Gly, and Pro residues,
which imply a structural role in allowing the αα-corner that connects α3 with α4 (Gly and Pro allow the
turns, while the uncharged, but polar Asn, is either exposed or buried). However, the presence of both
charged and hydrophobic residues in the turn of the α3/4-loops of some C3-like toxins (e.g., C3bot1
and C3bot2), along with their solvent exposure, makes the α3/4-loop a probable interacting motif in
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these toxins. Indeed, even the short LHL-motif of C3bot1 mediates the non-enzymatic interaction of
the toxin with the RalA GTPase [60].

On the other hand, the α3/4N-loop is longer than its counterpart in C3-like toxins and C2C-domains
and harbors an invariant Phe as well as other polar and hydrophobic residues. Interestingly, in Ia,
CdtA, and SA toxins, the α3/4N-loop and α4N are highly conserved with an average identity of 80.3%
(90.2% similarity), and the Ia α3N−α4N superstructure may be involved in the interaction with Ib
(iota B-component) [61]. In effect, the segment responsible for the binding/internalization in Ib of iota
toxin is not located at the N-terminus (TC2N-segment), likewise in C2I toxin (see previous section).
Alternatively, in Ia toxin, this segment is more centrally located (residues 62–257), arising from α3/4N

(in the αN-lobe) to α3C (in the αC-lobe) including both elements [61]. This postulate is reasonable if
the α3/4N-loop can be considered part of the C2C-domain according to distance and packing criteria
(Figure 17), such that the spatial proximity between helix α1C and the α3/4N-loop may have a functional
role. Notably, short segments defined by residues 42–177 (which includes α3N- and α4N-helices)
and 222–257 (α1C−α2C of the αC-lobe) may control binding to the Ib protein with a C3-like toxin
chimera [61]. In addition, the (N/D)p3 residue of the I-motif interacts with the enlarged α3/4N-loop to
stabilize the inter-domain architecture (see the previous section) with an invariant Ile residue in α4aN

(in α4N for Vip2N).
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Figure 17. Inter-domain motif proximity. Identification of domains based on geometric criteria by the
MOE 2018 algorithm, where the α3 and α4a helices of the N-domain (in red ribbons) are part of the
C-domain (in blue ribbons) in C2-like toxins. The yellow oval highlights the special proximity of the α1

of the C-domain with the α3/4-loop of the N-domain.

2.6. The T-Segment in Other CT-Toxins

Certhrax toxin from B. cereus (PDB: 4GF1) is a bi-domain A-component toxin with the catalytically
C-domain homologous to the C3-like toxin or the C2C-domain, but with the N-domain homologous to
the PA-binding domain of anthrax lethal factor from B. anthracis [9]. Accordingly, Certhrax T-segment
fulfills the S- and C-motifs of the canonicalα1 configuration and catalytic ability (Figure 10). Incidentally,
Certhrax T-segment lacks the T-(C3-like translocation) and B-(C2N-like binding/translocation) motifs;
it exhibits inter-domain interactions via a modified I-motif. Thus, Certhrax clusters with the
C2C-subgroup based on T-segment similarity (not shown), which is compatible with its catalytic
non-terminal T-segment.
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The X-ray structure of the mART domain of SpvB (PDB: 2GWM), a single-component
actin-ADP-ribosylating toxin from Salmonella spp, lacks atomic coordinates of the region corresponding
to the T-segment (i.e., upstream in the first “solved” helical structure, α2), and lacks the S- and C-motifs.
Accordingly, an estimate of the secondary structure of this segment by the PSIPRED server predicted a
coiled structure for this region, and several in-house homology models of the full-length SpvB from
S. typhimurium report an extended coil for the T-segment.

Another mART actin-modifying toxin with known structure is VahC from A. hydrophila [39].
Unfortunately, the N-terminal truncated structures (PDBs: 4FML and 3NTS) lack the coordinates
corresponding to the T-segment (i.e., upstream α2). The sequence of the VahC T-segment is highly like
the corresponding segment in SpvB, and both segments harbor a poly-proline sequence. Likewise,
Photox toxin from P. luminescens [40], has a T-segment that is highly similar and unstructured as found
in both VahC and SpvB toxins. Interestingly, SpvB, VahC, and Photox lack the conserved Tyrβ5, which
is part of the canonical α1 configuration with catalytic ability (i.e., C3-like and C2C-like toxins, including
Plx2A, and Certhrax). The phenol side chain of Tyr β5 is the H-acceptor from the conserved Gly
(backbone) in the α1-motif (Figure 14). Thus, the G α1

−Tyr β5 pair is involved in the mutual stability of
α1 and the ARTT-loop. Notably, VahC, SpvB, and Photox do not show GH activity [7,39,40,43] which
might be related to an unstructured T-segment that does not enclose the ARTT-loop (see later).

Vis toxin from V. splendidus (PDB: 4XZJ) is a special case. The elongated α1 of Vis toxin follows a
V-shaped configuration of the α1−α2 superstructure like C2/C3-toxins, although in a slightly ‘altered’
orientation (Figure 18). Accordingly, Vis has the aromatic WII in its T-segment and does not fully
qualify as an S-motif that would stabilize helix α1 in the canonical α-lobe configuration. Rather, the
stabilization of α1 is achieved by an Arg residue in the Ntail that forms a salt-bridge with a Glu in the
PN-loop and an Asp in the ARTT-loop (see later). Although it possesses some aromatic residues in
the T-segment, Vis does not possess a C-motif and is unique in having the small, polar Ser residue
replacing the conserved Gly. Notably, this Ser residue interacts in a similar manner with a residue
(Thrβ5, also a unique substitution in Vis) proximal to the ARTT-loop as observed for Gly in the C-motif.
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α2 helix (gray ribbons) showing three conformation clusters for the α1 helix. These clusters are the
canonical conformation in green, the altered conformation of Vis in cyan, and the folded conformation
of HopU1, Art2.2, and ExoT (HM) in ochre.
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In contrast, the HopU1 toxin from Pseudomonas syringae (PDB: 3UOJ) has α1 with an orientation
diametrically opposed to the canonical conformation: an α1−α2 forming an αα-corner rather than the
V-shaped configuration (Figure 18). The αα-corner configuration between α1 and α2 is facilitated by a
long α1,2-loop (termed L1) [44] and is stabilized by a hydrophobic cluster of aromatic residues in the
C-terminus of the T-segment (not shown). Although four aromatic residues are found in its T-segment,
all the motifs in the canonical T-segment are absent in this toxin; notably, HopU1 lacks the S-motif that
anchors α1 to the βI strand and lacks the catalytic C-motif. Nevertheless, in HopU1 the N-end of the
ARTT-loop (the end linked to strand β5) is stabilized by the αα-corner configuration, while the C-end
of the ARTT-loop (the end linked to strand β6) is left partially exposed.

3. Conclusions

In summary, the role of theα-lobe is to provide a suitable configuration (location and orientation) of
(i) theα2–α3 helices to feature theα3-motif that has a role in NAD+ substrate binding and possibly in the
interaction with the protein target; (ii) the α3–α4 helices to provide the α3/4-loop with protein–protein
interaction capability; and (iii) the α1-Ntail, defined in the T-segment, that features specialized motif(s)
according to the toxin type (A-only or A-B toxins) exhibiting an effect on the catalytic activity via the
ARTT-loop, with a role in the inter-domain stability, and with a role in the binding and/or translocation
steps during the internalization process.

The canonical (C3-like) α-lobe configuration has the α1 helix forming a V-shape with α2 that
surrounds the ARTT-loop. This configuration is stabilized by the ubiquitous S-motif in the T-segment of
C3-like, C2-like (N- and C-domains), Plx2A and Certhrax toxin. Accordingly, other non-PT-like toxins
(e.g., Vis and HopU1 toxins) with known structures show the canonical α2–α4 configuration. However,
the α1 helix in an alternative configuration consistent with the lack of the S-motif in its T-segment.

The presence of the catalytic signature on the ARTT-loop is not enough to guarantee GH-
activity—the contrary is true—no catalytic residues in the ARTT-loop means no GH-activity. In
non-PT-like toxins, GH-activity requires a stabilized ARTT-loop conformation, and this is achieved in
toxins with the canonical α-lobe in the V-shape configuration of the α1–α2 helices, and specifically by
the C-motif of the T-segments. In particular, the Gα1

−Tyrβ5 pair is involved in the mutual stability of
α1 and the ARTT-loop. Incidentally, C3larvin, which has a truncated α1, still has the C-motif and Tyrβ5

and exhibits GH activity [27]; also, Certhrax has the canonical α1 configuration, Tyrβ5, and C-motif
and shows GH activity [9]. Accordingly, the alternative α1 conformation of Vis toxin encloses the
ARTT-loop and shows GH activity [5]. On the contrary, VahC, SpvB, and Photox lack both the Tyrβ5

and the C-motif (their T-segments are likely unstructured) and do not show GH activity [7,39,40,43].
HopU1 has an alternative α1 conformation and shows GH activity (unpublished data).

The specialization of the A-component of binary toxin classes (i.e., C2-like toxins) likely involves
selective forces related to the intoxication mechanism that may dictate the composition of the T-segment.
The bi-domain constitution might have arisen by gene duplication of an ancestral ADP-ribosyl
transferase [62]; consequently, the TC2N- and TC2C-segments evolved to harbor residues appropriate
for their location and roles. The TC2N-segment features the S- and B-motifs. In effect, the inability
of the C2N domain to bind NAD+ must have forced the atrophy of the C-motif and the ARTT-loop
(a required motif in the single-domain catalytic precursor), and instead, the TC2N-segment evolved to
interact with the B-component. On the other hand, the TC2C-segment features the S-, C-, and I- motifs.
In effect, the TC2C-segment might have evolved according to (a) a higher specialization of its ancestral
kinetic role. Accordingly, the C-motif is better defined in the C2C-domains (G–YIII–WIV, with only the
YIV variation in C2IC-domain) than in the single-domain toxins with the general definition; and (b)
possesses an emerging structural role associated with the bi-domain topology—the I-motif. The I-motif,
along with specific substitutions in the β3N and β4C strand, and with the α3/4N-loop, participates in
inter-domain stabilization.

It has been reported that the α-lobe of the C2IN domain for C2 toxin and the RxG motif
(possibly along with Rα3 and the RxE motif) for C3bot1 may be the minimum sub-structure/motif
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necessary to stably bind to the membrane component—C2II and vimentin, respectively. In addition,
the N-terminal T-segment may also participate in the process of internalization of both toxin groups
into the host cell; it be involved in the translocation step from the early endosome to the cytoplasm.
Accordingly, C3-like toxins feature the T-motif with acidic residues that might trigger the conformational
changes required for membrane translocation; while C2-like toxins feature the B- motif. In this sense,
the B-motif may bind to the B-component and/or to mediate the translocation into the cytoplasm.
Intoxication experiments that monitor phenotypic alterations of the host cell do not distinguish which
event is abolished when working with a toxin. Thus, in agreement with the translocation role of the
B-motif, a construct of C2IN without the first 29 residues and the C3bot1 toxin, C2IN

∆29NC3bot1, failed
to be transported into HeLa cells, although binding of the construct to C2II on cell membranes was still
observed [57]. Also, it is feasible that the α3/4N-loop is the sub-structure needed for binding (as has
been observed in Ia toxin), while the B-motif is needed for the translocation step.

4. Materials and Methods

4.1. Ensemble of X-Ray Protein Structures

X-ray structures entries were downloaded from the Protein Data Bank (PDB). The datasets include
high resolution (1.57 to 2.70 A) X-ray structures mainly of WT proteins in apo forms. However, in some
cases proteins in different liganded states and diverse catalytically altered variants were also included
for comparative purposes. When multiple molecules were presented in the asymmetric unit of some
crystal forms, the most complete molecule was selected.

4.2. Force-Field Settings and Structure Preparation

Protein preparation and molecular mechanics (MM) calculations were performed using the
computational suite Molecular Operative Environment (MOE) release 2018.10 (Chemical Computing
Group Inc, Montreal, CA, USA). The force field employed was the MOE Amber12: EHT, with AMBER12
parameters set (ff12) for protein, and parameters calculated from the Extended Hückey Theory for
the NAD+ molecule and co-solvents. For the implicit solvent model, the Generalized Born-Volume
Integral (GB/VI) formalism was employed, with dielectrics εpro = 2 for the interior of the protein.

When short sections of X-ray structures were missing in the PDB data files, the peptide segments
were crafted by using built-in homology model procedures in MOE. Then, the full X-ray structures
were protonated using the MOE Protonate3D module to assign the ionization states and tautomers
of protein side-chains and to orient crystallographic water molecules (CWMs) at T = 300 K, pH 7.4
and 0.1 M of ionic strength, along with the GB-VI (Generalized Born-Volume Integral) solvation
model and MMFF94 partial charges. The protonated structures were initially geometry-optimized by
keeping backbone coordinates fixed, tethering all other heavy atoms with a 100 kcal/mol force constant
(0.25 Å buffer), and then energy-minimized until an RMS gradient ≤0.001 kcal/mol/Å2.

4.3. Others

The multiple sequence alignments (MSA) were also performed using MOE 2018 software and
based on the overall matching of secondary and tertiary structural elements. For a higher resolution
alignment of short segments, the procedure was enhanced from the pattern of common molecular
interactions. All protein structures were rendered in MOE 2018 software.
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