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Editorial on the Research Topic

Cortical Maps: Data and Models

In our original solicitation for papers on the topic of cortical maps, we posed a number of
currently unanswered questions. How widespread are maps in the cortex? Are there, for example,
ordered representations of speech-related properties in Broca’s area? Are there maps of some
kind in frontal cortical areas? To what extent are map details dependent on innate, genetically
programmed mechanisms, or on patterns of neural activity resulting from sensory experiences and
motor behaviors? Despite the interest they have aroused, might maps be epiphenomena with no
real function (Horton and Adams, 2005)? These issues, among others, are addressed by the articles
in this collection. They range from reviews (Grossberg, Ibbotson and Jung, and Sereno), modeling
studies (Grossberg, Tanaka et al.), descriptive advances in the classification of pathways and areas
(Johnson et al., Wojtasik et al., and Choi et al.) and experimental and modeling studies of critical
period plasticity (Tanaka et al., Thomas et al.).

Sereno et al. address the issue of the ubiquity of maps by showing that the most basic kinds
of topographic map: retinotopic, somatotopic and tonotopic, cover half the cortical surface in
humans. The authors also point out that patchy local connectivity has been found in many cortical
areas, including those where the evidence for topographic maps is limited or lacking. Patchy
local connections seem a very strong indicator of fine scale columnar organization of functional
properties, given that connected sets of neurons are likely to share functional properties. Hence
even if some types of map are absent in some species, maps and columns in general appear
to be ubiquitous features of cortical organization. The article by Grossberg shows how maps
and columns may enable computations based on canonical wiring rules such as Gaussian, or
difference of Gaussian, interactions mediated in the space of the cortex by branching axons. Rules
of this nature have the consequence of reducing the developmental demands on the axonal wiring
involved—not just the lengths of the wires but in making fewer demands on genetic instructions.
More importantly, Grossberg’s article provides a valuable summary of almost half a century of
modeling work done by himself and his colleagues. The various models unite low-level facts of
cortical anatomy and physiology with cognitive operations in a way that is rarely attempted. The
models are ambitious but they provide a firm foundation for future tests and development that may
be exceedingly valuable.

As Grossberg’s article makes clear, maps provide a context which makes studying the functions
that are carried out in themmuch easier. The existence of maps has also made many developmental
processes more accessible to study: for example the dramatic change in the widths of ocular
dominance stripes demonstrated by Hubel et al. (1977) followingmonocular deprivation was surely
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much more informative than the corresponding change in the
shape of the ocular dominance histogram. Maps have also
highlighted and simplified the understanding of critical periods
in development, since structural map plasticity is often a key
indicator of these periods. Two papers in the collection deal with
this problem. Thomas et al. study the consequences of auditory
map plasticity induced by rearing rat pups in an environment
where a continuous 7KHz tone was audible, resulting in an
increase in the area of themap devoted to that frequency. There is
evidence that this kind of alteration may contribute to conditions
such as tinnitus and sensitivity to loud sounds. Tanaka et al.
combine modeling and experimentation to study plasticity of
orientation maps. The maps have a critical period and in general
the experimental and modeling data agree beautifully well.

Like many previous modelers, Tanaka et al. employ
stimulation with oriented gratings to produce correlated
activity in cortical neurons which then leads to the development
of an orientation map. Until recently, this might have been
considered an unrealistic assumption as there is good evidence
that orientation selectivity and orientation maps are present at
birth in monkeys (Wiesel and Hubel, 1974) as well as shortly
after birth in visually deprived cats (Crair et al., 1998) and
it has been presumed that visual stimulation can only occur
after birth, and if the eyes are open. However it is becoming
clear that environmental visual stimulation can occur in
utero (Del Giudice, 2011) and that the human fetus, whose
eyes open before birth, is responsive to visual stimuli (Reid
et al., 2017). If this is true for humans, it is likely to be even
more so for other mammals, who do not wear clothes and
have very much thinner uterine and abdominal walls. So the
assumption that vision (beyond the limited patterns provided
by retinal waves) cannot be present before birth, and which
has colored work on map development for decades, may
be wrong.

Comparative studies of maps in different species almost
always seem to be illuminating, especially since maps have been
studied in only a handful of species. The article by Ibbotson
and Jung reviews the factors that might determine the presence
or absence of ordered orientation maps. Although phylogeny is
currently the best predictor, an alternative, more directly related
to visual system function, is the ratio of central and peripheral
ganglion cell densities. This idea is consistent with existing data
as well as more recent findings that the agouti (a large rodent)
lacks maps (Ferreiro et al., 2021) and that wallabies have them
(Jung, 2020).

Finally, an important aspect of work on maps involves
the description of new areas and making the descriptions
accessible. Three articles in the collection address this issue.
Sereno et al. provide a downloadable annotation and parcellation
of 115 human cortical areas with topological maps in the
FreeSurfer fsaverage surface. Johnson et al. provide a DTI atlas for
the cat available at https://ecommons.cornell.edu/handle/1813/
58775.2 Four new cytoarchitectonically defined areas of human
orbitofrontal cortex are described by Wojtasik et al. and are
available at a number of sites given in the article.
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