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Abstract 

Background:  N6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal roles 
in gastric cancer (GC) progression. The emergence of immunotherapy in GC has created a paradigm shift in the 
approaches of treatment, whereas there is significant heterogeneity with regard to degree of treatment responses, 
which results from the variability of tumor immune microenvironment (TIME). How the interplay between m6A and 
lncRNAs enrolling in the shaping of TIME remains unclear.

Methods:  The RNA sequencing and clinical data of GC patients were collected from TCGA database. Pearson correla‑
tion test and univariate Cox analysis were used to screen out m6A-related lncRNAs. Consensus clustering method was 
implemented to classify GC patients into two clusters. Survival analysis, the infiltration level of immune cells, Gene set 
enrichment analysis (GSEA) and the mutation profiles were analyzed and compared between two clusters. A com‑
peting endogenous RNA (ceRNA) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 
were applied for the identification of pathways in which m6A-related lncRNAs enriched. Then least absolute shrink‑
age and selection operator (LASSO) COX regression was implemented to select pivotal lncRNAs, and risk model was 
constructed accordingly. The prognosis value of the risk model was explored. In addition, the response to immune 
checkpoint inhibitors (ICIs) therapy were compared between different risk groups. Finally, we performed qRT-PCR to 
detect expression patterns of the selected lncRNAs in the 35 tumor tissues and their paired adjacent normal tissues, 
and validated the prognostic value of risk model in our cohort (N = 35).

Results:  The expression profiles of 15 lncRNAs were included to cluster patients into 2 subtypes. Cluster1 with worse 
prognosis harbored higher immune score, stromal score, ESTIMATE score and lower mutation rates of the genes. 
Different immune cell infiltration patterns were also displayed between the two clusters. GSEA showed that cluster1 
preferentially enriched in tumor hallmarks and tumor-related biological pathways. KEGG pathway analysis found that 
the target mRNAs which m6A-related lncRNAs regulated by sponging miRNAs mainly enriched in vascular smooth 
muscle contraction, cAMP signaling pathway and cGMP-PKG signaling pathway. Next, eight lncRNAs were selected by 
LASSO regression algorithm to construct risk model. Patients in the high-risk group had poor prognoses, which were 
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Introduction
Gastric cancer (GC) is the fifth most lethal tumor and 
estimated to be the third most common cause of can-
cer-related death [1, 2]. Accumulating researches have 
suggested that epigenomic alterations acted as a crucial 
role through activation of oncogenes or tumor suppres-
sor genes in the gastric carcinogenesis [3, 4]. Presently, 
N6-methyladenosine (m6A) is the most common RNA 
modifications, which was found not only in mRNAs, 
but also in ncRNAs, such as microRNAs (miRNAs), 
long non-coding RNAs (lncRNAs) and circular RNAs 
(circRNAs) through modulating the splicing, stability 
and translation of ncRNAs [5]. Intriguingly, non-coding 
RNAs were also demonstrated to have regulatory role for 
the expression of m6A regulatory proteins. Therefore, the 
interaction between m6A and noncoding RNAs exerts a 
synergistic effect on carcinogenesis and provides novel 
cancer treatment strategies [6–8]. To note, according to 
the previous researches, the interplay models between 
m6A modification and lncRNAs in tumor were diverse 
and complex. For instance, miR503HG promoted the 
degradation of HNRNPA2B to inhibit HCC migration via 
reducing the stability of p52 and p65 mRNA [9]. GATA3-
AS acted as a guide lncRNA promoting the m6A modi-
fication of GATA3 pre-mRNA by KIAA 1429, thereby 
down-regulating the expression of GATA3, which con-
tributed to the growth and the metastasis of HCC [10]. 
Recently, with the increased understanding of the diver-
sity of tumor microenvironment (TME), cross-talk 
between tumor cells and surrounding cells plays a cru-
cial role in the tumor progression [11]. Meanwhile, m6A 
modification was reported to be critically associated 
with tumor immune microenvironment (TIME) pattern 
and PD-L1 expression in GC, colon cancer and head and 
neck squamous cell carcinoma [12–14]. However, the 
underlying regulatory biological process between m6A 
and lncRNAs in GC, especially their clinical applications 
in predicting prognosis and immune therapy response 
remain elusive.

In the present study, we attempted to comprehen-
sively evaluate the correlations of m6A-related lncR-
NAs with prognosis, immune cell infiltrating level 
and response to immune checkpoint inhibitors (ICIs) 

therapy in GC patients. These associations were ana-
lyzed multidimensionally, patients with GC were clus-
tered into distinct subtypes characterized by different 
expression patterns of m6A-related lncRNAs, and then 
patients were also categorized into high-risk group or 
low-risk group with the construction of prognostic 
model. Moreover, our study revealed that m6A-related 
lncRNAs played a non-negligible role in shaping TIME 
and predicting responses to ICIs therapy.

Materials and methods
Data collection and processing
RNA sequencing data and clinical information were 
downloaded from the TCGA database via the GDC 
data portal (https://​portal.​gdc.​cancer.​gov/​repos​itory) 
and the raw counts of 375 GC samples and 32 normal 
samples were collected. Raw counts were converted 
into transcripts per million (TPM) for subsequent 
analysis. Raw counts were also transformed to log2 
(TPM + 1) when the following analysis was required. 
Next, we obtained a total of 14,086 lncRNAs accord-
ing to the Ensemble IDs of the genes for further analy-
sis. Additionally, corresponding clinical information of 
GC patients in TCGA database were obtained from Liu 
et al. [15]. Four commonly used clinical outcome end-
points (OS: overall survival, DSS: disease specific sur-
vival, DFI: disease-free interval, PFI: progression-free 
interval) were analyzed. Patients with missing survival 
status or time information of OS were excluded. Ulti-
mately, 371 GC patients with lncRNA expression data 
and clinicopathological information including age, 
gender, grade, stage and TNM staging were selected 
in the final cohort for analysis. A total of 371 patients 
were randomly assigned into the training or valida-
tion cohort at the ratio of 7:3 using the “caret” R pack-
age. The baseline characteristics of the included TCGA 
dataset were summarized in Table 1. Continuous vari-
ables were converted to categorical variables for fur-
ther analysis. Microsatellite Instability (MSI) status and 
immunophenoscore (IPS) for each sample in TCGA 
were downloaded from The Cancer Immunome Data-
base (TCIA) (https://​tcia.​at/​home).

consistent in our cohort. As for predicting responses to ICIs therapy, patients from high-risk group were found to have 
lower tumor mutation burden (TMB) scores and account for large proportion in the Microsatellite Instability-Low (MSI-
L) subtype. Moreover, patients had distinct immunophenoscores in different risk groups.

Conclusion:  Our study revealed that the interplay between m6A modification and lncRNAs might have critical role in 
predicting GC prognosis, sculpting TIME landscape and predicting the responses to ICIs therapy.

Keywords:  N6-methyladenosine, Long non-coding RNAs, Tumor immune microenvironment, Prognosis, Immune 
checkpoint inhibitors therapy, Gastric cancer
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Identification of the prognostic m6A‑related lncRNAs
Based on previous publications, expression matrixes 
of 23 m6A-related genes were extracted according to 
the mRNA expression data in TCGA, including expres-
sion data on writers (METTL3, METTL14, METTL16, 
WTAP, VIRMA, ZC3H13, RBM15 and RBM15B), read-
ers (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 
HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP1, 
IGFBP2, IGFBP3 and RBMX) and erasers (FTO and 
ALKBH5). Subsequently, m6A-related lncRNAs were 
first filtered using Pearson correlation analysis with cor-
relation coefficient > 0.4 and p < 0.001 based on the trans-
formed TPM values (log2 (TPM + 1)) of 14,086 lncRNAs 
and 23 m6A-related genes. Co-expression network 
graph was plotted by the “igraph” R package. Then uni-
variate Cox regression analysis was conducted to screen 
the prognostic m6A-related lncRNAs with the criterion 
of false discovery rate (FDR) < 0.05. Wilcoxon test was 
applied to examine the expression differences of lncR-
NAs between GC tissue and normal adjacent tissues.

Identification of m6A‑related lncRNAs subgroups 
by consensus clustering method
To further explore the underlying biological charac-
teristics of the m6A-related lncRNAs, 371 GC patients 
were clustered into different subtypes using the 

“ConsensusClusterPlus” R package with iterations of 50 
and resample rate of 0.8 based on the transformed TPM 
data of the selected m6A-related lncRNAs after con-
ducting univariate Cox regression analysis. The optimal 
k value (k = 2) was determined to obtain stable clusters. 
Kaplan Meier survival method and log rank test were 
used for subgroup analysis of clinicopathological factors 
between two clusters.

Analysis of the correlations of different clusters with TIME
Scores of immune, stromal and ESTIMATE were cal-
culated using ESTIMATE algorithm by the “estimate” R 
package. Immune, stromal and ESTIMATE scores were 
compared between 2 clusters by Wilcoxon test. MIX-
TURE algorithm with LM22 signature [16] was imple-
mented to estimate the immune infiltrate with TPM 
value. We conducted Wilcoxon test to compare the abun-
dance of immune infiltrating cells between 2 clusters.

GSEA was conducted to investigate the biological path-
ways that patients in cluster1 enriched in compared with 
those in cluster2 with random sampling of 1000 permu-
tations, setting the criteria of FDR < 0.05.

Construction and validation of the risk model and its 
association with clinicopathological features and immune 
infiltrating cells
The least absolute shrinkage and selection operator 
(LASSO) COX regression algorithm was implemented 
to further select the m6A-related lncRNAs most associ-
ated with OS in the training cohort using the “glmnet” R 
package. Thereafter, the expression level of the identified 
lncRNAs and their corresponding coefficients obtained 
from the LASSO regression algorithm were used to 
establish the risk model. The risk score calculating for-
mula is:

Where Coefk refers to the coefficient of each lncRNA 
and Xk refers to the TPM value of each m6A-related 
lncRNA.

Patients were divided into high-risk group and low-
risk group in both training and testing groups accord-
ing to the median risk score. To evaluate the prognosis 
prediction accuracy of the risk model, receiver operating 
characteristic (ROC) was applied in both training and 
validation cohorts. Kaplan Meier survival method and 
log rank test were implemented to detect the OS differ-
ence between low-risk group and high-risk group. Subse-
quently, subgroup survival analysis of clinicopathological 
features were utilized in different risk groups. Univariate 
and multivariate Cox regression analysis were conducted 

Risk score =

n∑

k=1

coef k ∗ xk

Table 1  Clinical characteristics of GC patients in TCGA database

Characteristics Total TCGA​
(N = 371)

Age (years) ≦65 159

>  65 208

unknown 4

Gender Male 134

Female 237

Stage Stage I-II 164

Stage III-IV 184

unknown 23

Grade Grade 1–2 146

Grade 3 126

unknown 9

T T1–2 99

T3–4 264

unknown 8

M M0 327

M1 26

unknown 18

N N0 114

N1–3 242

unknown 15
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to evaluate whether the risk score was independent prog-
nostic factor. Wilcoxon test was implemented to further 
explore the risk score differences with regard to clinico-
pathological factors, immune score, TMB scores, IPS and 
two clusters. Pearson correlation test was implemented 
to evaluate the relationship of risk scores with the abun-
dance of immune infiltrating cells and TMB scores.

Null distribution analysis
To verify the robustness of classification of GC patients 
with different prognostic outcomes, we performed addi-
tional classifications based on randomly selected genes 
and tested whether the randomly generated molecular 
signatures were also correlated with OS of GC patients. 
A set of 50 genes were extracted from transcript data of 
GC samples in TCGA, the samples were classified into 2 
categories based on principal component analysis (PCA). 
Finally, we selected a random subset of samples to match 
the number of samples in classifications based on m6A-
related lncRNAs. This process was repeated 5000 times. 
Hazard ratio and p value were generated each time. The 
detailed method of null distribution analysis can be 
referred to Rocha et al. [17].

Calculation of TMB scores
We calculated the mutation frequency with number of 
variants/the length of exons (38 million) for each sample 
via Perl scripts based on the JAVA platform. To acquire of 
somatic mutation data, we downloaded “Masked Somatic 
Mutation” data and used VarScan software to process 
it. We implemented “maftools” R package to analyze 
and visualize the Mutation Annotation Format (MAF) 
of somatic variants. Wilcoxon test and Pearson correla-
tion analysis were conducted to analyze the relationship 
between TMB and risk score.

Construction of the ceRNA network
The miRcode database was used to predict the poten-
tial target miRNAs with which the 15 candidate lncR-
NAs might interact [18]. Thereafter, target mRNAs of 
these miRNAs were retrieved based on miRTarBase [19], 
miRDB [20], and TargetScan database [21]. Next, the 
lncRNA-miRNA-mRNA ceRNA network was established 
and visualized with the Cytoscape v.3.5.1 [22]. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis of the target mRNAs was performed 
using the “clusterProfiler” R package.

External validation in clinical samples
We collected tumor samples and adjacent normal sam-
ples from 35 GC patients with surgical resection from the 
Affiliated Hospital of Nantong University. Fresh tumor 
and adjacent normal tissue were stored at − 80 °C. This 

research was approved by the Clinical Research Ethics 
Committee of the Affiliated Hospital of Nantong Univer-
sity (2021-L018). For evaluating the expression level of 
the selected 8 m6A-related lncRNAs, total RNA from 35 
gastric cancer samples and their adjacent normal tissues 
were extracted by using MolPure Cell RNA Kit (YEASEN 
Biotech Co., Ltd). cDNA synthesis was carried out by 
using Hifair III 1st Strand cDNA Synthesis SuperMix for 
qPCR (YEASEN Biotech Co., Ltd). The relative lncRNA 
expression levels were calculated with 2–ΔΔCT method, 
GAPDH was served as an internal control, the sequences 
of qPCR primers were presented at Table S1. Risk score 
was calculated by the above constructed formula, median 
risk score was determined as the cut-off value. Then uni-
variate and multivariate Cox regression analysis, Kaplan 
Meier analysis, time-dependent ROC curve and calibra-
tion curve were conducted for the validation of prognosis 
value in the external cohort (N = 35).

Results
Identification of m6‑related lncRNAs in GC patients
The study flowchart is shown in Fig.  1. The expression 
matrixes of a total of 14,086 lncRNAs and 23 m6A-
related genes were extracted from TCGA-STAD RNA 
sequencing dataset. The value of Pearson correlation 
> 0.4 and p value < 0.01 were set as the criterion for pre-
liminarily selecting m6A-related lncRNAs. Four hun-
dred ninety-one lncRNAs were found to be significantly 
correlated with m6A-related genes. The co-expression 
network graph was shown in Fig.  2A. Subsequently, 
15 lncRNAs were obtained by univariate Cox regres-
sion analysis (FDR < 0.05) when the prognostic informa-
tion was integrated. The forest plot showed that 7 of the 
screened lncRNAs were risk factors with Hazard Ratio 
(HR) > 1 and others were protective factors with Hazard 
Ratio (HR) < 1 (Fig. 2B). The heatmap (Fig. 2C) and box-
plot (Fig. 2D) presented the 15 lncRNAs expression pat-
tern in the GC tissues and normal tissues.

Consensus clustering identified two clusters of GC samples 
with distinct prognoses based on m6A‑related lncRNAs
Based on the similarity of the expression of the 15 lncR-
NAs in GC samples, consensus clustering method was 
applied to cluster the samples to further elucidate the 
biological discrepancies among subgroups. The CDF 
curves of consensus matrix indicated that when k = 2, 
the interference between subgroups is minimal and the 
distinction is significant (Fig. 3A-C, Fig. S1A-G). A total 
of 371 GC patients were separated into cluster1 (n = 266) 
and cluster2 (n = 105). As illustrated in the survival plots, 
patients in cluster1 had worse OS and DSS than those in 
cluster2 did (Fig.  3D-E), while no significant differences 



Page 5 of 19Wang et al. BMC Cancer          (2022) 22:316 	

were observed in DFI and PFI between two subgroups 
(Fig. 3F-G).

The association of the two clusters and GC patients’ 
prognoses was further explored by comparing the OS 
of the two clusters in different clinical subgroups. The 
survival plots were drawn (Fig. S2A-G) and the results 
showed that the OS of 2 clusters had significant differ-
ences in age >   65 (p < 0.001), female (p = 0.003), G1–2 
(p = 0.003), M0 (p = 0.010), N1–3 (p = 0.043), stage III-
IV (p = 0.038) and T3–4 (p = 0.012). More importantly, 
the consensus clustering method performed better than 
83% of the classifications based on random sets of genes, 
suggesting that the classification based on m6A-related 
lncRNAs could serve as a robust prognostic indicator.

Tumor immune microenvironment (TIME) and mutation 
profile of two clusters
TIME as a crucial cellular milieu for immune cells, stro-
mal cells and extracellular matrix molecules has predom-
inant impact on the tumor progression. To get deeper 
insights into the interplay between m6A-related lncRNAs 
and immune activity, the distribution differences of the 
estimated proportion of immune and stromal between 

the 2 clusters were calculated by ESTIMATE algo-
rithm. As shown in Fig. 4A-C, cluster1 harbored higher 
immune score (p < 0.001), stromal score (p < 0.001) and 
ESTIMATE score (p < 0.001). These findings revealed 
that larger amount of immune and stromal components 
in TIME of GC were associated with worse survival 
outcome.

For investigating the biological mechanism of contrib-
uting the heterogeneity of the two clusters, GSEA was 
implemented. We found that several tumor hallmarks 
were dynamically enriched in the cluster1 compared 
with cluster2, including cell cycle pathway (normalized 
enrichment score [NES] = 2.01, FDR q value = 0.006), 
citrate cycle (TCA cycle) pathway (NES = 2.18, FDR q 
value = 0.013), and P53 signaling pathway (NES = 1.91, 
FDR q value = 0.001) (Fig.  4D-F) [23–25]. Aforemen-
tioned multiple signaling differences between the two 
clusters indicated the potential role of m6A-related lncR-
NAs in gastric carcinogenesis.

To elucidate the specific immune cells distribution 
pattern in two subtypes, the fraction of 22 immune 
cell types were analyzed by MIXTURE algorithm 
(Fig. 5). We discovered that cluster2 enriched in CD8+ 

Fig. 1  Study flow chart of this study
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T cells (p = 0.037) and M0 macrophages (p = 0.009). 
Conversely, cluster1 enriched in M2 macrophages 
(p = 0.008), resting mast cells (p = 0.019) and eosino-
phils (p = 0.037). Furthermore, cluster2 also exhibited 
higher expression level of PD-L1 (p < 0.05) (Fig. 6A) and 
CTLA4 (p < 0.01) (Fig. 6B) than cluster1. CD69 acts as a 
costimulatory molecule for T cell activation and prolif-
eration while TIM-3 has the opposite function. There-
fore, we further explored the status of T cell in different 
clusters, and found that cluster1 had higher expression 
level of TIM-3 (p < 0.01) (Fig. 6C) but lower expression 
level of CD69 (p < 0.001) (Fig.  6D), indicating that the 
status of CD8 T cell was probably more active in clus-
ter2 than that in cluster1.

Finally, we evaluated the association between mutation 
profiles and two clusters. The mutation profiles of each 
sample in 2 clusters (cluster1: 84.59%, cluster2: 91.21%) 
were presented respectively (Fig.  6E and F). We found 
that the mutated genes had substantially different fre-
quencies in two clusters.

Construction of the ceRNA network and functional 
enrichment analysis
We attempted to further explore the underlying biolog-
ical processes the 15 candidate m6A-related lncRNAs 
might take part in by sponging miRNAs and regulating 
mRNA expression. First, we extracted 6 m6A-related 
lncRNAs (SENCR, AL139147.1, AP000873.4, 
AC005586.1, and AL033527.3) from miRcode database 
and 221 pairs of interaction between the 6 lncRNAs 
and 152 miRNAs were identified. Then, we searched 
three databases (TargetScan, miRDB, and miRTarBase) 
to found target mRNAs based on the identified 152 
miRNAs, and 209 mRNAs were included consequently. 
The ceRNA network among the 6 lncRNAs, 152 miR-
NAs, and 209 mRNAs was constructed accordingly 
(Fig. 7A). Finally, the 209 mRNAs were selected to con-
duct KEGG enrichment analysis. The results of KEGG 
analysis demonstrated that the m6A-related lncRNAs 
in GC mainly enriched in vascular smooth muscle 
contraction, cAMP signaling pathway and cGMP-PKG 
signaling pathway (Fig. 7B) [23–25].

Fig. 2  The lncRNAs significantly correlated with m6A-related genes. A Co-expression network of m6A-related genes and lncRNAs. B Forest plot of 
the prognostic ability of the 15 m6A-related lncRNAs with FDR < 0.05. C, D Heatmap (C) and expression value (D) of the 15 m6A-related lncRNAs in 
32 normal tissues and 375 tumor tissues. * p < 0.05, ** p < 0.01, *** p < 0.001. FDR: False Discovery Rate
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Construction and validation of a risk score model for GC 
patients based on m6A‑related lncRNAs
As assessed by the univariate Cox regression analy-
sis, 15 differentially expressed m6A-related lncRNAs 
were found significantly associated with OS. To identify 
the most powerful prognostic m6A-related lncRNAs, 

LASSO regression analysis was performed. A total 
of 8 lncRNAs containing AL139147.1, AL590705.3, 
AC022031.2, LINC00106, AC005586.1, AL355574.1, 
AP000873.4 and AL512506.1 were finally identified 
(Fig.  8A-C). Based on the regression coefficients and 
expression values of the 8 lncRNAs, a risk model was 

Fig. 3  Differential survival outcomes of GC in cluster 1/2 subtypes. A Consensus score matrix of all samples when k = 2. B The cumulative 
distribution functions (CDF) for k = 2 to 9. C Relative change in area under CDF area for k = 2 to 9. D-G Kaplan-Meier curves for OS (D), DSS (E), DFI 
(F) and PFI (G) in cluster 1/2 subtypes. OS: overall survival, DSS: disease specific survival, DFI: disease-free interval, PFI: progression-free interval
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constructed. The following formula was present: risk 
score = 1.515 * expression (AL139147.1) + 0.380 * expres-
sion (AL590705.3) + 0.243 * expression (AC022031.2) 
- 0.017 * expression (LINC00106) – 0.107 * expres-
sion (AC005586.1) - 0.142 * expression (AL355574.1) 
- 0.267 * expression (AP000873.4) – 0.322 * expression 
(AL512506.1). According to the median value of the risk 
score. GC patients were divided into high-risk group and 
low-risk group. We found that both in training cohort 
and validation cohort, GC patients from high-risk group 
had worse survival outcome (P < 0.001) (Fig.  8D and E). 
The ROC curves were utilized to evaluate the progno-
sis prediction performance of risk model, and the area 
under the ROC curve (AUC) for OS was 0.718 in the 
training cohort (Fig. 8F) and 0.661 (Fig. 8G) in the vali-
dation cohort. Moreover, the distribution of risk scores 
and survival statuses of patients in the both training and 
validation cohort were displayed in Fig. 8H and I. These 
figures indicated that with the increase of risk score, the 
mortality rate was increased and the survival time was 
decreased. The heatmap presented the distinct expression 

patterns of the 8 lncRNAs between different risk groups. 
Taken together, our results suggested that the risk scores 
based on the 8 m6A-related lncRNAs had optimal pre-
diction ability of the prognosis of GC patients.

Risk score based on the m6A‑related lncRNAs 
was an independent prognostic factor for GC patients
We performed subgroup analyses for GC patients with 
different risk groups from different subgroups stratified 
by age, gender, grade or stage, most of subgroups had 
significant survival differences in different risk groups 
(Fig. S3A-L). Then we performed univariate and mul-
tivariate Cox regression analysis to determine whether 
the risk model based on the m6A-related lncRNAs could 
independently predict the prognosis of GC patients. The 
results of univariate Cox regression analysis showed that 
OS was evidently associated with age, grade, stage and 
risk score in the training cohort, and OS was significantly 
associated with stage and risk score in the validation 
cohort. After adjusting the effects of clinicopathologi-
cal factors such as age, gender, grade and stage in the 

Fig. 4  ESTIMATE analysis and GESA in cluster 1/2 subtypes. A-C Comparison of immune score (A), stromal score (B) and ESTIMATE score (C) in 
two subtypes. D-F GSEA showed that cell cycle, citrate cycle (TCA cycle) and P53 signaling pathway are differentially enriched in cluster1. NES, 
normalized enrichment score; NOM p-val, normalized p value; FDR q value: False Discovery Rate q value
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multivariate Cox regression analysis, age (HR, 1.058; 
95%CI, 1.031–1.086, p < 0.001), grade (HR, 1.754; 95%CI, 
1.080–2.846, p = 0.023) and stage (HR, 1.483; 95%CI, 
1.085–2.027, p = 0.014) and risk score (HR, 1.798; 95%CI, 
1.484–2.179, p < 0.001) acted as the powerful prognos-
tic factors in the training cohort, and stage (HR, 1.813; 
95%CI, 1.281–2.565, p < 0.001) and risk score (HR, 1.872; 
95%CI, 1.723–2.098, p = 0.04) acted as the powerful 
prognostic factors (Fig. S4A-D) (Table 2) in the validation 
cohort.

Prognostic risk score was associated 
with clinicopathological factors and immune infiltrating 
cells
First off, we further evaluated the relationship between 
risk score and the 8 prognostic m6A-related lncRNAs. As 
expected, it could be concluded from the heatmap that 
all the 8 prognostic m6A-related lncRNAs had relatively 
different expression values in patients from different risk 
groups (Fig.  9A). Next, it can be also referred from the 
heatmap and the scatter diagrams (Fig.  9B-E) that sta-
tistical differences of risk scores existed in the different 
clusters (p < 0.001), T1–2 vs T3–4 (p = 0.049), stage I-II 

vs stage III-IV (p < 0.001) and grade1 + grade2 vs grade3 
(p = 0.028). Collectively, these facts strongly indicated 
that risk score established on m6A-related lncRNAs 
exhibited valuable clinical information and had crucial 
clinical implication values.

Risk score was associated with biomarkers for predicting 
response to ICIs therapy
We attempted to further excavate the value of the risk 
model constructed based on the 8 m6A-related lncR-
NAs in predicting patients’ immunotherapeutic out-
comes. Higher TMB was characterized by favorable 
responses to ICIs therapy. In our study, high TMB was 
correlated with lower risk score calculated by Wil-
cox test (p < 0.01) (Fig. 10A). Risk score was negatively 
associated with TMB (R = − 0.84, p < 0.001) (Fig. 10B). 
We also analyzed the distribution differences of MSI 
between low-risk group and high-risk group. As pre-
sented in Fig. 10C, low-risk group showed higher pro-
portion of MSI-H (35% vs 9%) and lower proportion of 
MSS (58% vs 61%) and MSI-L (7% vs 30%) compared 
with high-risk group (Fig.  10C). Similarly, MSI-H 
group exhibited markedly lower risk score than MSI-L 

Fig. 5  The fraction of 22 types of infiltrating immune cells in cluster 1/2 subtypes
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group (p < 0.001) and MSS group (p < 0.001). The risk 
score of MSI-L group was statistically higher than that 
of MSS group (p < 0.001) (Fig. 10D). We also observed 
that high-risk group was positively associated with 
the abundance of M2 macrophages (p = 0.035) and 
negatively associated with abundance of CD8 T cells 
(p = 0.023) (Fig.  10E-F). Patients from low-risk group 
tended to have active immune status with significantly 
higher CD69 expression (p < 0.001) and lower TIM-3 
expression (p = 0.002) than those from high-risk group 
(Fig. 10G-H).

Immunophenoscore was a predictor of response to 
anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and 
anti-programmed cell death protein 1 (anti-PD-1), 
the relationship between risk score and immunophe-
noscore was explored. The results showed that differ-
ent risk groups tended to have different ICIs therapies 
(anti-CTLA-4 therapy, anti-PD-1 therapy or combina-
tion of both therapy) responses (Fig.  10I-L). Our find-
ings strongly indicated that m6A-related lncRNAs had 
superior values in optimizing patients selection for 
ICIs therapy and predicting patients’ outcomes of ICI 
therapy.

External validation of the 8 m6A‑related lncRNAs based 
risk model in the clinical dataset
We collected 35 GC patients from the Affiliated Hospital 
of Nantong University as the external validation cohort. 
First, we quantitated the relative expression levels of the 
8 lncRNAs in 35 tumor tissues and adjacent normal tis-
sues by quantitative RT-PCR, the results demonstrated 
that the expression pattern of the 8 lncRNAs in our 
cohort was consistent with TCGA dataset. Three lncR-
NAs (AL139147.1, AL590705.3 and AC022031.2) were 
generally up-regulated in tumor tissues, while the other 
five lncRNAs (AL355574.1, AL512506.1, LINC00106, 
AP000873.4 and AC005586.1) were mainly down-regu-
lated in tumor tissues (Fig. 11A). Based on the expression 
level of each lncRNA, we calculated the risk score of each 
patient and divided total cohort into high-risk group and 
low-risk group using median risk score as the cutoff value 
and the baseline clinical information of patients from 
different risk groups were displayed in the Table  3. We 
found that TIM-3 was highly expressed in the high-risk 
group, while CTLA4, PD-L1 and CD69 had lower expres-
sion levels in the high-risk group (Fig. 11B). Patients from 
high-risk group had worse OS compared with those from 
low-risk group (p = 0.034) (Fig.  11C). Univariate and 

Fig. 6  Frequently mutated genes and expression of immune related genes in cluster 1/2 subtypes. A-D The gene expression pattern of PD1, CTLA4, 
TIM-3 and CD69 in cluster 1/2. E, F Waterfall plots display the frequently mutated genes in 2 clusters of gastric cancer. The left panel shows the 
genes ordered by their mutation frequencies. The right panel shows different mutation types
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multivariate cox analysis confirmed that the risk score 
was an independent prognosis predictor (Table  2). To 
further identify the prognostic value of the risk model, 
the ROC of the risk score for predicting OS of the exter-
nal clinical cohort was 0.746 (Fig.  11D). Additionally, 

time-dependent ROC analysis was applied, and the AUC 
ranged from 0.731 to 0.876 (Fig.  11E), demonstrating 
a satisfactory prognostic value. Finally, the calibration 
curve for the risk score showed good agreement between 
prediction and actual OS status (Fig. 11F).

Fig. 7  Construction of ceRNA network. A The ceRNA network of the six m6A-related lncRNAs (orange) and their target miRNAs (green) and mRNAs 
(blue). B KEGG pathway enrichment of target mRNAs
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Discussion
The interaction pattern between m6A and lncRNAs can 
be separated into two subtypes. On one hand, m6A mod-
ification on lncRNA acted as a structural switch to facili-
tate RNA-protein interactions. M6A could also mediate 
the function of lncRNAs by increasing the stability of 

the transcript of lncRNAs via ceRNA model [7, 26]. For 
instance, HNRNPC could bind to MALAT1, which was 
a conserved lncRNA whose upregulation was correlated 
with carcinogenesis, thereby influencing RNA expression 
and alternative splicing [27]. On the other hand, IncR-
NAs could also regulate the m6A regulatory proteins to 

Fig. 8  Construction of the GC prognostic risk model based on 8 m6A-related lncRNAs. A, B Least absolute shrinkage and selection operator 
(LASSO) regression was performed, the penalization coefficient λ in the LASSO model was tuned using 10-fold cross-validation and minimum 
criterion for the selection of m6A-related lncRNAs. C Barplot of the coefficients of selected lncRNAs. D, E Kaplan Meier analysis showed that high-risk 
group exhibited worse survival outcome than low-risk group in the training (D) and validation cohort (E). F, G Receiver operating characteristic 
(ROC) curves of risk model for predicting survival in the training (F) and validation cohort (G). H, I Distribution of risk score, survival statuses of GC 
patients and expression levels of the 8 m6A-related lncRNAs in high-risk group and low-risk group in the training (H) and validation cohort (I)
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promote their functions. It was recently reported that in 
glioblastoma stem-like cells (GSCs), ALKBH5 as a m6A 
eraser could demethlyse FOXM1 nascent transcripts and 
enhanced FOXM1 expression. Meanwhile, the FOXM1-
AS which was a lncRNA antisense to FOXM1 acted as a 
promoter for the interaction of ALKBH5 and FOXM1, 
contributing to the overly expressed FOXM1 and GSC 
proliferation [28]. Collectively, the sophisticated regula-
tory network between m6A and lncRNAs provides new 
possibility in exploring the biological features of carcino-
genesis and clinical application roles. In our study, we 
found that the m6A-related lncRNAs were closely asso-
ciated with the prognosis of gastric cancer through par-
ticipating in multiple signaling pathways. Among these 
signaling pathways, cAMP and cGMP-PKG signaling 
pathways were reported to be aberrantly regulated in the 
multiple cancers [29–32]. A recent study found that FTO 
as a m6A regulator could inhibit the self-renewal of ovar-
ian cancer stem cell through blocking cAMP pathway 
[33]. cAMP is also known to suppress the T-cell immune 
function [34], which may explain the mechanism of m6A 

modification in shaping the immune environment of GC. 
Our results provide new insights that m6A modification 
may mainly modulate cAMP and cGMP-PKG signaling 
pathways in the tumorogenesis of gastric cancer through 
the interaction between m6A and lncRNAs. The explora-
tion of epigenetic reprogramming in gastric cancer gives 
us some clues for designing new drugs.

We additionally explored the relationships of m6A-
related lncRNAs and clinical characteristics in GC 
patients, indicating that two subtypes characterized 
by distinct expression patterns of lncRNAs had sig-
nificantly different OS outcomes. Besides, the risk 
score constructed by 8 prognostic m6A-related lncR-
NAs were also remarkably related with OS outcome. 
In this regard, it’s not surprising to find that cluster 1 
were correlated with high-risk group. This demon-
strated that the risk model constructed based on m6A-
related lncRNAs was a robust and reliable GC clinical 
indicator. More importantly, the risk score model was 
satisfactorily validated in the external cohort, which 
confirmed its prognostic value.

Fig. 9  Prognostic risk score correlated with clinicopathological features and cluster1/2 subtype. A Heatmap of clinicopathological features, immune 
score and different lncRNAs expression pattern in high/low risk group. B-E Comparison of risk score distribution in the cluster1/2 (B), T1–2/T3–4 (C), 
stage I-II/III-IV (D) and G1–2/G3 (E). * p < 0.05, *** p < 0.001. G1–2: Grade1–2, G3: Grade3
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Several studies have revealed that m6A modification 
had diverse functions in shaping TIME. YTHDF1 deple-
tion in dendritic cells could enhance the cross-presen-
tation of tumor antigens and cross-priming of CD8+ T 
cells [35]. In melanoma, FTO could not only promote 
tumor progression but also lead to anti-PD1 resistance. 
LncRNAs are also crucial in mediating the development 
of diverse immune cells [36]. For example, LncRNA 
UCA1 elevated the expression of PD-L1 via direct inter-
action with miRNAs in GC [37]. Recently, a new method 
called ImmLnc pipeline was invented to identify critical 
lncRNAs involved in TIME, and this method exhibited 
satisfactory performance in non-small cell lung cancer 
[38]. Together, although many studies have indicated the 
separate biological function of m6A or lncRNA enrolling 
in the TIME, the integrated analysis of regulatory net-
work of them in TIME is still obscure. In our study, we 
divided GC samples from TCGA into two classes based 
on the expression pattern of m6A-related lncRNAs. 
Despite high immune score usually being associated 
with better survival outcomes in multiple cancer types 

[39, 40], the subpopulation we identified here showed 
the opposite trend. This contradictory result may be 
explained by the varying characteristics of immune 
cells. The cluster2 we identified here had higher CD8 T 
cell infiltration and M0 macrophages infiltration, more 
intriguingly, we also found that cluster2 had more acti-
vated T cells status. In this regard, cluster2 might be 
more sensitive to immunotherapy.

Immunotherapy has revolutionized the oncology land-
scape, especially the ICIs therapy has gained enormous 
success in multiple solid tumors [41]. However, only a 
subset of GC patients can benefit from this novel ther-
apy due to the heterogeneity of immune microenviron-
ment [42]. Therefore, comprehensive analysis of TIME is 
mandatory for recruiting patients for ICIs therapy. TIME 
plays a pivotal role in mediating tumor progression by 
inducing epithelial mesenchymal transition (EMT) in 
the tumor cells. Stromal cells in the surrounding envi-
ronment are recruited to the area where the tumor cells 
localize and promote the distant metastasis [11, 43]. 
Previous studies investigated the correlation of immune 

Fig. 10  The associations between risk score and immunotherapy. A The expression levels of tumor mutation burden in low-risk group and high-risk 
group. B The correlation of risk score and tumor mutation burden. C The distribution of microsatellite status in different risk groups. D The risk score 
in patients with different microsatellite statuses. E-F The abundance of M2 macrophages infiltration and CD8 T cells infiltration in high-risk group 
and low-risk group. G-H The expression pattern of CD69 and TIM-3 in high-risk group and low-risk group. I-L The relationship between different risk 
groups and immunophenoscores
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Fig. 11  External validation the expression levels of the 8 m6A-related lncRNAs and their prognostic values in 35 GC patients. A The heatmap 
showed the expression pattern of 8 m6A-related lncRNAs in 35 GC tissues and adjacent normal tissues. B The heatmap showed the expression 
pattern of immune related genes in different risk groups. C Survival analysis of 35 GC patients in different risk groups. D Receiver operating 
characteristic (ROC) curves of risk model for predicting survival in 35 GC patients. E Time dependent AUC analysis where the solid and dashed lines 
depict the AUC and its 95% CI respectively. F The calibration curves of risk score for the prediction of survival
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cells in the TIME with GC prognosis. They found that 
memory T cells, cytotoxic CD8+ and Natural Killer 
(NK) cells were associated with better survival outcome 
[44, 45]. It is worth noting that stromal cells secreted 
growth factors responsible for the activation of Wnt 
signaling in the nucleus. Wnt ligands secreted by tumor 
cells would drive the phenotype of tumor associated 
macrophage towards M2 subtype which is considered 
anti-inflammatory via the Wnt signaling pathway, result-
ing in the tumor progression [46]. Consistent with the 
above descripted tumor-stromal-immune cell cross-talk, 
we found cluster1 with worse prognosis enriched in M2 
subtype which is considered anti-inflammatory, further-
more, the expression level of M2 subtype was positively 
correlated with the risk score. Previous study reported 
tryptase-positive mast cells contributed in angiogenesis 
in the primary tumor of GC [47], however, our study 
found that resting mast cell was associated with worse 
prognosis. This opposite trend reflected that the ability of 
producing cytotoxic cytokines leading to the tumor deg-
radation might also be stimulated [48]. To further unveil 
the potential role of m6A-related lncRNAs in guiding 
ICI therapy, we investigated the relationship of various 
biomarkers including TMB, MSI and IPS with our con-
structed risk model. TMB has evolved as an effective bio-
marker for recruiting patients who possibly respond to 
ICI therapy and patients with high TMB could gain better 
survival outcome from immunotherapy. MSI is a molecu-
lar indicator of defective DNA mismatch repair (MMR). 

MSI-H was correlated with favorable survival outcomes 
compared with MSS and MSI-L in GC [49]. MSI was 
demonstrated to be a robust indicator for immune check-
point blockade therapy in the KEYNOTE studies [50, 
51]. In our study, patients with low risk had higher TMB 
and accounted for larger proportion of MSI-H subtypes, 
which is consistent with the research conducted by Chal-
mers et al. [52]. Thus, the result suggested that patients in 
low-risk group more likely benefited in ICI therapy.

However, there are several limitations in our study. 
First, the efficacy of our model needs to be further vali-
dated in the external cohort with larger patient num-
bers. Second, since these selected m6A-related lncRNAs 
have never been reported in GC, the functions of these 
selected m6A-related lncRNAs should be confirmed fur-
ther with functional experiments. Finally, the specific 
regulatory network between m6A and lncRNA, and their 
mutual roles of shaping TIME should be further unveiled.

Conclusion
We conducted an in-depth bioinformatic analysis of the 
regulatory mechanisms of m6A-related lncRNAs in GC. 
M6A-related lncRNAs were screened out when integrat-
ing prognosis information. Two subtypes of GC patients 
(cluster1 and cluster2) based on different lncRNAs expres-
sion pattern were distinct in TIME characteristics, gene 
variants and OS. Moreover, prognostic m6A-related lncR-
NAs based risk score were highly associated with two sub-
types, clinicopathological features and immune infiltrating 
cells. In addition, patients from cluster2 or low risk group 
were more likely to benefit from ICI therapy. The prog-
nostic value of the risk model was validated in the external 
clinical cohort. These results provided new insights in GC 
evolutionary and development of immunotherapy.
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