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Evaluating the influence of land 
use and land cover change on fine 
particulate matter
Wei Yang1* & Xiaoli Jiang2

Fine particulate matter (i.e. particles with diameters smaller than 2.5 microns,  PM2.5) has become 
a critical environmental issue in China. Land use and land cover (LULC) is recognized as one of the 
most important influence factors, however very fewer investigations have focused on the impact of 
LULC on  PM2.5. The influences of different LULC types and different land use and land cover change 
(LULCC) types on  PM2.5 are discussed. A geographically weighted regression model is used for the 
general analysis, and a spatial analysis method based on the geographic information system is used 
for a detailed analysis. The results show that LULCC has a stable influence on  PM2.5 concentration. 
For different LULC types, construction lands have the highest  PM2.5 concentration and woodlands 
have the lowest. The order of  PM2.5 concentration for the different LULC types is: construction 
lands > unused lands > water > farmlands >grasslands > woodlands. For different LULCC types, 
when high-grade land types are converted to low-grade types, the  PM2.5 concentration decreases; 
otherwise, the  PM2.5 concentration increases. The result of this study can provide a decision basis for 
regional environmental protection and regional ecological security agencies.

With the rapid development of China’s economy and society, its rate of urbanization is accelerating. China’s 
industrial scale is also expanding rapidly, and the problem of air pollution is becoming increasingly serious, which 
has a tremendous impact on the environment, economic development, and even people’s  health1. Fine particulate 
matter (i.e. particles with diameters smaller than 2.5 microns,  PM2.5) is considered a crucial protagonist among 
the various air pollution  factors2. As a significant health hazard,  PM2.5 is highly associated with an increased 
probability of respiratory  diseases3,4, cardiorespiratory  problems5,6, mutagenic  diseases7 and increased mortality. 
Therefore, it is of vital significance to understand  PM2.5 pollution clearly, especially its distribution characteristics 
and influence factors, which are helpful for reducing pollution and protecting human health.

As a severe air pollutant, the concentration of  PM2.5 is influenced by meteorological  factors8–10, human 
 activities11, and the surrounding  environment12.  PM2.5 is emitted mainly from anthropogenic sources, such 
as from  traffic13 and industrial  production14. The spatial and temporal distributions of  PM2.5 are impacted by 
meteorological and environment  factors15–17. Previous research has revealed that  PM2.5 is severely affected by 
meteorological factors at the macro-scale18 in terms of  temperature19,  precipitation20, wind  conditions21,22, etc., 
while at the micro-scale,  PM2.5 is strongly associated with land use and land cover (LULC)  type23. Optimizing 
LULC type may reduce  PM2.5 pollution at the community or city  level24,25. Land use and land cover change 
(LULCC) is the embodiment of human activities, which also has an obvious effect on  PM2.5  distribution26. To 
mitigate pollution, it is significant to explore the effects of LULC and LULCC on  PM2.5 pollution.

To conduct research on the relationship between LULCC and  PM2.5, relevant data are required. Remote sens-
ing based LULCC research has a long history and is relatively  mature27,28, which has become an effective method 
to obtain LULCC data. Conventional methods of obtaining  PM2.5 data employ monitoring stations at fixed sites, 
whose effective monitoring distances range from 0.5 to 4  km29, and which can provide accurate point-source 
data. The area among the monitoring sites can not been represented by this data. Due to the discontinuous 
spatial distribution of sites monitoring  PM2.5 data, several methods have been employed to solve this problem, 
including spatial  interpolation30, chemical transport  models31, land-use regression  models32 and aerosol optical 
depth (AOD) based statistical  models33. However, as the use of a single approach leads to large uncertainties, 
some researchers have sought to integrate different methods to improve the  PM2.5 estimation accuracy, such as 
a combination of chemical transport models and satellite-derived  AOD34,35.
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At present, researches on the relationship between  PM2.5 and land use mostly focus on city  scale36,37. Due to 
atmospheric transport,  PM2.5 distribution is not only affected by local emissions, but also regional  transport38. 
Regional land use changes can directly or indirectly affect  PM2.5 distribution. There is an insufficient amount 
on research at regional scale. Moreover, most of the existed researches focus on the influence of landscape 
patterns on  PM2.5 pollution but not LULCC  types39,40. And the  PM2.5 data used in these studies was station 
monitoring data which is spatially discontinuous and cannot reveal the spatial relationship between  PM2.5 and 
LULCC types. Therefore, in this paper we analyze the relationship between dynamic  PM2.5 and LULCC type. To 
avoid the spatial discontinuity of station monitoring  PM2.5 data, the spatially continuous  PM2.5 data from the 
Atmospheric Composition Analysis Group (ACAG) are used. A geographical weighted regression model and a 
spatial analysis method are employed to identify the response mechanism between dynamic  PM2.5 and LULCC 
type. The results of this study can provide a decision basis for regional environmental protection and regional 
ecological security agencies.

Methodology
Study area. Shanxi Province is located in the middle of China (Fig. 1), which is the most important energy 
bases in the country and whose coal output was ranked first before 2016, and second thereafter. Due to the abun-
dance of coal resources in Shanxi Province, its energy structure is focused on coal, which accounts for 72% of its 
total energy consumption. Shanxi Province is not only an important coal exporter, but also an important power 
exporter. The power plants in Shanxi Province are mainly coal-fired, which produce considerable amounts of 
emissions. Additionally, coking and steel industries are pillar industries in Shanxi Province, which also produce 
vast amounts of emissions. This economic structure based on energy consumption causes serious air pollution. 
Several cities in Shanxi Province, such as Taiyuan, Linfen, Jincheng, etc., contain the worst air pollution of all cit-
ies in China. Meanwhile, Shanxi Province had experienced obvious LULCCs, such as urban expansion caused by 
fast urbanization and an increase of green land owing to the growth of the ‘Grain for Green’ project. Therefore, 
Shanxi Province was selected as the study area to analyze the relationship between LULCC and  PM2.5.

Data acquisition and preparation. PM2.5 data. The  PM2.5 data provided by ACAG were generated 
based on a combination of a chemical transport model, satellite observations and ground-based  observations41. 
The data have been validated in North America, which have been shown to have higher accuracy than purely 
geoscience-based  estimates35. However, the accuracy of the ACAG data of China has not been validated; there-
fore, in this work we estimated its accuracy (see Sect. 3.1).

Ground-based data from 58 state-controlled air quality monitoring stations from 2018 were used in the 
validation (Fig. 1). The ACAG  PM2.5 data from 2000 to 2018 were downloaded from (http:// fizz. phys. dal. ca/ 

Figure 1.  The location of Shanxi Province in China and the location of air quality monitoring stations in Shanxi 
Province.

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140%E3%80%822014
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~atmos/ marti n/? page_ id= 140% E3% 80% 822014). The initial data were reprojected and resampled to a 1-km 
spatial resolution (Fig. 2).

Pearson’s correlation coefficient and the root mean square error (RMSE) were calculated in the validation as:

where Xi represents a  PM2.5 value from the ACAG, and Yi represents a  PM2.5 value from monitoring stations.

Land use and land cover data. The China multi-period land use land cover data set (CNLUCC) was used. The 
CNLUCC data were generated with a visual interpretation method based on Landsat remote-sensing data. The 
data set was provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sci-
ence (http:// www. resdc. cn). Data in 2000 and 2018 were used (Fig. 3). The data consist of six classes: farmlands, 
forests, grasslands, water, construction lands, and unused lands. The data were shown to have an accuracy of 
88.95%, which meet the needs of this study.

Geographical weighted regression model. Geographical weighted regression (GWR) models are a 
powerful tool to explore the heterogeneity of spatial  relations42. As a local spatial regression model, GWR can 
effectively solve the nonstationarity of variable space, which has been widely used in the spatial analyses of differ-
ent geographic  elements43. The essence of GWR is locally weighted least squares, where the ‘weight’ is a distance 
function of spatial position between the point to be estimated and other observation points. The expression of 
GWR is as follows:

where y is the dependent variable, x is the explanatory variable, (ui, vi) is the coordinates of the ith point in space, 
ak(ui, vi) is a realization of the continuous function ak(u, v) at point i, and εi is the error term.

To identify the spatial relationship between LULCC and  PM2.5, a 3 × 3 km grid map (Fig. 2) was generated of 
the study area. The variations of  PM2.5 between 2000 and 2018 were calculated in each grid, where the results were 
considered as the dependent variable in Eq. (3). The changing area of each different land type in each grid was also 
calculated and considered as the explanatory variable. Four main land types, farmlands, woodlands, grasslands 
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Figure 2.  3 × 3 km grid map and ACAG PM2.5 concentration data of Shanxi Province in 2000 and 2018 (units: 
μg/m3).
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and construction lands, were selected as the explanatory variables because their combined area accounted for 
nearly 99% of the total area.

Analysis framework. A GWR analysis was used to determine the overall characteristic between the 
LULCC and  PM2.5 dynamics. After that, based on the spatial analysis tools in ArcGIS 10.2, a detail analysis was 
conducted from two aspects: (1)  PM2.5 distributions for the different LULC types, and (2)  PM2.5 dynamics for the 
different LULCC types. The analysis process is shown in Fig. 4.

Results
Validation of the  PM2.5 data. As mentioned above, station monitoring data can represent a scope from 
0.5 to 4 km. Thus, a 4-km buffer from each monitoring station was generated. In the buffer, the mean values of 
the  PM2.5 data from ACAG were calculated and validated according to the station monitoring data. The results 
(Table 1) show an RMSE of 7.05 and a Pearson’s correlation coefficient of 0.82, which show that the ACAG  PM2.5 
data have high consistency with the ground-based observational data.

GWR analysis. The GWR analysis showed that  R2 reached 0.94 which implies a good fitting effect. 93.56% 
of the standardized residuals were between − 2 and 2, which demonstrates that the model fitting was  stable44. 
The results show that there was a stable relationship between  PM2.5 and LULCC. As shown in Fig. 5, the local  R2 
values were between 0.01 and 0.93. In contrast with the LULCC data, the high values of the local  R2 were distrib-
uted in places where the LULCC showed an obvious dynamic while the low local  R2 values were distributed in 
LULCC areas that did not change. The result indicated that dynamic  PM2.5 had a significant response to LULCC.

Effect of the LULC type on  PM2.5. To further investigate the relationship between the  PM2.5 dynamics 
and the different LULC types, a spatial analyze based on ArcGIS was conducted. The results (Table 2) show that, 
for all LULC types, the mean  PM2.5 concentrations significantly increased from 2000 to 2018. Among them, 
unused lands had the largest increase. Woodlands and grasslands had the largest increasing rates, 86.02% and 
81.00%, respectively. Construction lands had the lowest increasing rate of 20.92%. The rates of increase of other 
the LULC types were relatively close, with a scope of 38.45% and 47.99%. The increasing trends indicate that 
the  PM2.5 pollution situation worsened during the study period. The standard deviations (SDs) all increased, 
meaning that the spatial difference of  PM2.5 pollution was increased. Indeed, the whole study area is faced with 
a seriously  PM2.5 polluted situation.

Furthermore, for the different LULC types, in 2000, woodlands had the lowest mean  PM2.5 concentration, 
although that of the grasslands was very similar. Construction lands had the highest mean  PM2.5 concentra-
tion. In 2018, the mean  PM2.5 concentrations of the woodlands and grasslands were still very close, and were 

Figure 3.  The land use and land cover data in 2000 and 2018.
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still the lowest values. The  PM2.5 concentration of the construction lands was still the highest. In both 2 years, 
the order of  PM2.5 concentration for the different LULC types was the same: construction lands > unused 
lands > water > farmlands > grasslands > woodlands, meaning that the LULC type had an important influence 
on the  PM2.5 concentrations.

Effect of the LULCC type on  PM2.5. LULCC matrix. As showed in Table 3, in 2000, the main land type 
in Shanxi Province was farmland, whose area was 6.12 ×  104  km2, accounting for 39.09% of the total area. Next 
in total area were grasslands and woodlands, accounting for 29.16% and 28.01% respectively. Construction lands 
covered 0.42 ×  104  km2, accounting for 2.67% of the total area. The areas of water and unused lands were very 
little, accounting for just 0.97% and 0.10% respectively. In 2018, although farmlands still covered the largest area, 
its area reduced to 5.78 ×  104  km2, accounting for 36.91% of the total area. The area of woodlands increased, ac-
counting for 28.36% of the total area, and became the second largest land type. The area of grasslands decreased 
by 0.16 ×  104  km2 and became the third largest land type. The area of construction lands increased dramatically, 
and its proportion increased to 5.56%, which was two times greater than in 2000. Water and unused lands still 
covered very little area, accounting for 0.94% and 0.08% of the total, respectively.

From the perspective of land being converting from one type to another, there was a large conversion of farm-
lands to other land types, roughly 2.29 ×  104  km2. Grasslands, woodlands, and construction lands underwent the 
largest amounts of change, accounting for 53.47%, 23.07%, and 20.91% of the total converted area, respectively. 
On the other hand, the other land types that were converted to farmlands accounted for 1.95 ×  104  km2, which 
significant decreased the total area of farmlands. The main conversion types of woodlands to other land types 
were grasslands, farmlands and construction lands. The sources of woodlands were mainly grasslands and farm-
lands. It was seen that the amount of woodlands converted to other types, and those converted to woodlands, 
were nearly equivalent in total area. Grasslands showed a similar trend as seen for the woodlands, which also 
showed a relatively stable state. Construction lands were mainly converted to farmlands, which accounted for 
82.51% of the total converted area. The total area of construction lands that were converted to other types was 
0.22 ×  104  km2. The main conversion sources of construction lands were farmlands, grasslands, and woodlands, 
and the total conversion area was 0.67 ×  104  km2, which was caused by fast urbanization.
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Figure 4.  Analysis framework used in this study.

Table 1.  Validation of the  PM2.5 data (units: μg/m3).

PM2.5 Max Min Mean SD RMSE Pearson correlation

Station monitoring 84.03 30.42 58.18 12.01
7.05 0.82

ACAG 74.40 32.20 59.78 11.19
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Figure 5.  Local  R2 values from the GWR analysis.

Table 2.  PM2.5 concentrations of different the LULC types (units: μg/m3).

LULC type

2000 2018

Min Max Mean SD Min Max Mean SD

Farmlands 0 75.90 25.34 14.40 1.00 72.90 37.50 14.60

Woodlands 0 62.10 10.87 9.45 0.40 65.70 20.22 11.71

Grasslands 0 60.80 15.21 11.51 0.40 68.90 27.53 12.71

Water 0 72.30 29.78 16.04 1.80 73.10 41.23 15.16

Construction lands 0 75.60 33.92 13.58 1.70 74.40 43.95 14.45

Unused lands 0 68.50 30.21 14.92 2.50 63.80 43.45 14.11

Table 3.  LULCC in Shanxi Province between 2000 and 2018 (units:  km2).

2000

2018

TotalFarmlands Woodlands Grasslands Water Construction lands Unused lands

Farmlands 38,293 5281 12,243 542 4788 41 61,188

Woodlands 4984 31,572 6572 118 584 8 43,838

Grasslands 12,058 7341 24,791 260 1162 25 45,637

Water 574 85 182 507 153 23 1524

Construction lands 1798 98 253 26 2005 4 4184

Unused lands 58 15 19 12 14 31 149

Total 57,765 44,392 44,060 1465 8706 132 156,520
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PM2.5 dynamics. As water and unused lands covered only 1% of the total area, we only considered the other 
four land types (farmlands, woodlands, grasslands, and construction lands) to ascertain the influence of the 
LULCC types on the  PM2.5 dynamics. As discussed above, the  PM2.5 concentrations considerably increased 
from 2000 to 2018 for all land types, which indicated that there would be a  PM2.5 concentration increase for 
non-LULCC areas. The increase was mainly caused by increased pollution levels, not by LULCC. This would 
bring disturbance to our analysis. To avoid this disturbance, the range of  PM2.5 concentration variations in non-
LULCC areas was calculated first (Table 4) and set as the reference variation range when analyzing the  PM2.5 
concentration variations in the LULCC areas.

As showed in Table 4, the  PM2.5 dynamics in the different LULCC types showed two opposing trends, increas-
ing and decreasing. The largest increase was for woodlands converted to construction lands, while the larg-
est decline was for farmlands converted to woodlands. When farmlands were converted to woodlands and 
grasslands, the  PM2.5 concentrations declined, but when they were converted to construction lands, the  PM2.5 
concentration increased. Increasing trends were seen when woodlands were converted to the other three land 
types. Conversely, declining trends were found when construction lands were converted to the other land types. 
When grasslands were converted to woodlands, a declining trend was witnessed, but when they were converted 
to the other two land types, increasing trends were seen.

As discussed above, the  PM2.5 concentrations for the four land types showed similar trends in both years: 
construction lands > farmlands > grasslands > woodlands. Therefore, according to the  PM2.5 concentrations, the 
four land types were divide into four grades: highest (construction lands), high (farmlands), medium (grasslands) 
and low (woodlands). As showed in Table 5, when high-grade land types are converted to low-grade types, the 
 PM2.5 concentrations decrease, and when low-grade land types are converted to high-grade types, the  PM2.5 
concentrations increase.

Discussion
As an important energy base, the economic development of Shanxi Province has been mainly based on energy 
consumption, which continues to generate large quantities of harmful  emissions45. Therefore, human activities 
were considered as the most important influence factor of  PM2.5  pollution11. However, LULC types were also 
representative of different human  activities46. Different to previous studies, which mainly focused on discussing 
the relationship between land use type and  PM2.5 concentrations at urban  scales37,47, in this study we discussed the 
impact of land use on  PM2.5 concentrations from two aspects: different LULC and LULCC types at regional scales.

The different LULC types indicated the different intensities of human activities. Construction lands rep-
resented the highest intensity because of the high population density, traffic flow, industrial and commercial 
activities, etc., therein. All of these generate large quantities of air pollutants and caused the highest  PM2.5 

Table 4.  Dynamic  PM2.5 concentrations in the non-LULCC areas (units: μg/m3).

LULCC type

PM2.5 
concentration

Reference variation range2000 2018

Farmland to farmland 27.98 40.46 12.48

Woodland to woodland 10.16 18.79 8.63

Grassland to grassland 14.85 27.33 12.48

Construction land to construction land 35.58 50.67 15.09

Table 5.  Dynamic  PM2.5 concentrations in the LULCC areas (units: μg/m3).

LULCC type

PM2.5 concentration

Variation range Reference variation range Variation trendBefore change After change

Farmland to woodland 15.58 26.11 10.53 12.48 − 1.94↓

Farmland to grassland 18.73 30.74 12.01 12.48 − 0.47↓

Farmland to construction land 31.30 45.52 14.22 12.48 1.74↑

Woodland to farmland 16.00 26.57 10.57 8.63 1.95↑

Woodland to grassland 9.69 21.99 12.30 8.63 3.68↑

Woodland to construction land 16.28 28.81 12.53 8.63 3.90↑

Grassland to farmland 18.76 31.48 12.26 12.48 0.24↑

Grassland to woodland 9.77 21.87 12.09 12.48 − 0.39↓

Grassland to construction land 18.82 33.82 15.01 12.48 2.52↑

Construction land to farmland 33.71 47.32 13.61 15.09 − 1.47↓

Construction land to woodland 20.31 34.48 14.18 15.09 − 0.91↓

Construction land to grassland 20.69 35.25 14.56 15.09 − 0.53↓



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17612  | https://doi.org/10.1038/s41598-021-97088-8

www.nature.com/scientificreports/

 concentrations48. Farmlands were also intensively affected by human activities, which caused relatively high 
 PM2.5 concentrations. Firstly, straw burning in farmlands can result in a sharp increase of  PM2.5 concentra-
tion within a short  time49. Secondly, as a great agricultural country, the use of fertilizer in China is pervasive, 
and emissions arising from the manufacturing and use of fertilizer have a strong relationship with  PM2.5

50. For 
example, fertilizer liberated from the soil can be converted into a precursor of  PM2.5

51. Thirdly, heating activities 
in rural areas in winter mainly consist of burning coal, which generates large quantities of air pollutants and has 
an important impact on the  PM2.5 concentration in  farmlands52,53. Vegetation covered area, including woodlands 
and grasslands, had relatively low  PM2.5 concentrations. These areas were less influenced by human activities, as 
indicated by the lower pollutant emissions therein. Meanwhile, it has been suggested that vegetation coverage has 
a negative regulating effect on  PM2.5  concentration54,55. Thus, woodlands have the lowest  PM2.5 concentrations 
because of their highest vegetation coverage.

The different LULCC types represented transitions among the different intensities of human activities, which 
caused dynamic changes of the  PM2.5 concentrations. When other land types were converted to construction 
lands, the intensity of human activities increased, which caused an increase of  PM2.5 concentration. A similar 
conclusion was found in another study, which showed that when natural land cover is replaced by manmade 
areas  PM2.5 concentrations  increase56. Furthermore, other LULCC types were also discussed in our study. Farm-
lands may also contain intense human activities that can increase the  PM2.5 concentration, such as agricul-
tural  activities57,58. This was demonstrated by the increasing trend of  PM2.5 concentration when woodlands and 
grasslands were converted to farmlands. As vegetation coverage had a negative effect on  PM2.5  concentration55, 
the  PM2.5 concentration also changed when the vegetation type changed; i.e. an increase trend was seen when 
woodlands were converted to grasslands.

Due to the limited LULC data, this study illustrated the influence of LULC and LULCC on  PM2.5 at the 
regional scale where human activities were considered as the most important influence factor. However,  PM2.5 
pollution is both affected by human and natural  factors59. In desert areas, natural factors including dust and wind 
could be the most important  factors60, while in coastal areas, climatic elements had the most important influence 
on  PM2.5  pollution37. These situations were not discussed in the present study. Future studies at larger scales are 
required to demonstrate the influence of LULC on  PM2.5 more comprehensively. The relationship between  PM2.5 
pollution and its influence factors is complex and non-linear61. Traditional linear analysis methods have certain 
limitations and new non-linear analysis methods should be employed. Moreover, higher spatial and temporal 
resolution  PM2.5 data and LULC data are also required to better understand the response mechanism of  PM2.5 
pollution to LULCC.

Conclusions
In this study, high-accuracy  PM2.5 data from ACAG and LULC data were employed to explore the relationship 
between  PM2.5 and LULCC. A GWR method was used for the general analysis, and a spatial analysis method 
based on the geographic information system was used for the detailed analysis. The main conclusions can be 
drawn as follows:

(1) The GWR analysis showed that  R2 reached 0.92, which represented a stable relationship between  PM2.5 and 
LULCC. High local  R2 values located in highly dynamic LULCC areas indicated that the dynamic  PM2.5 
had a significant response to LULCC.

(2) In both considered years, 2000 and 2018, the order of  PM2.5 concentration in the different LULC types was 
the same: construction lands > unused lands > water > farmlands >grasslands > woodlands, meaning that 
the LULC type had an important influence on the  PM2.5 concentration.

(3) LULCC can also impact the dynamics of  PM2.5 concentration. When low-grade land types are converted 
to high-grade types, the  PM2.5 concentration increases; otherwise, it decreases. From another angle, when 
natural lands are converted to human-related lands, the  PM2.5 concentration increase; otherwise, the  PM2.5 
concentrations decrease.
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