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+e current study was designed to evaluate the possible protective effects of luteolin against β-cyfluthrin-mediated toxicity on the
primary culture of rat hepatocytes (RHs). In the first step, the exposure of RHs to β-cyfluthrin (10, 20, 40, and 80 μM) was assessed
byMTT. Second, redox condition was evaluated in cotreatment of cells with luteolin (20, 40, and 60 μM) and β-cyfluthrin (40 μM)
at both medium and intra levels. In comparison to control, viability was lower in 40 and 80 μM β-cyfluthrin-treated groups at 24 h
and all β-cyfluthrin-treated groups at 48 h (P< 0.05). Cotreatment with 20 or 40 μM luteolin + 40 μM β-cyfluthrin resulted in a
higher viability value compared to β-cyfluthrin alone at 24 and 48 h of incubation (P< 0.05). Administration of 20 or 40 μM
luteolin with β-cyfluthrin led to the decrease of malondialdehyde and total nitrate/nitrite and the increase of total antioxidant
capacity (TAC) values in both medium and intrahepatocyte levels compared to the β-cyfluthrin-treated group at 48 h (P< 0.05). It
seems that low and medium doses of luteolin possess the potential to reduce β-cyfluthrin-mediated hepatotoxicity via attenuation
of peroxidative/nitrosative reactions and augmentation of TAC levels.

1. Introduction

Pesticides are used to control pests widespread. However,
they could induce toxicity in nontarget species, such as
animals and humans, inadvertently [1]. Since the last few
decades, pyrethroids have been the most widely used class of
pesticides worldwide [2]. Due to the relative safety of
β-cyfluthrin, the assorted type II pyrethroid pesticide, it is
extensively used to control vermin [3]. It induces persistent
membrane depolarization of the nervous system due to the
impairment of sodium-ion-gated channels. Axon sodium
channels of mammals are significantly less sensitive to the
toxic effects of pyrethroids than that of insects. However, the
toxicity of β-cyfluthrin on different tissues and organs has
been reported by researchers [4–9]. In this regard, oxidative
and nitrosative effects of β-cyfluthrin during in vitro pres-
ervation of spermatozoa were also indicated [10]. Moreover,
the stimulatory effect of β-cyfluthrin on the generation of
reactive oxygen species (ROS) and ultimately related oxi-
dative toxicity has been demonstrated in rat kidneys, aquatic

organisms, and erythrocytes of rabbits [11–13]. Studies
indicated that exposure to pyrethroid resulted in oxidative
toxicity, immunological and sex hormone disturbances,
gene mutations, damages to DNA of spermatozoa, and a
decrease in semen quality [4, 7]. +erefore, the knowledge
about redox balance is an essential aspect of research in
humans and animals.

Luteolin (3, 4, 5, 7-tetrahydroxylflavone) is a flavonoid
compound found in many fruits and vegetables [14]. An-
tineoplastic, antihepatotoxic, antiallergic, antioxidative,
antiadipogenic, and anti-inflammatory effects of luteolin
were demonstrated by several research studies [15–20]. It has
been reported that luteolin was able to reduce the pro-
duction of ROS, modulate the redox balance, and ultimately
reduce the adverse effects of peroxidative reactions in bio-
logical systems [21]. Moreover, research displayed that
luteolin ameliorated the adverse effect of glucocorticoid by
increasing gene and protein expression of hepatic and renal
enzymes [22]. +e conventional protective mechanisms of
luteolin against induced hepatotoxicity by acetaminophen or
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tetrachloromethane are the upregulation of enzymatic an-
tioxidants and alleviation of proinflammatory mediator’s
expression [23, 24]. Recently, research projects have focused
on preventing or curing diseases mediated by environmental
toxicants using naturally derived compounds [25, 26].
However, the role and the possible mechanism of luteolin
against β-cyfluthrin-mediated hepatotoxicity have not been
indicated. We speculated that the antioxidative role of
luteolin would neutralize the ROS production and perox-
idative effects of β-cyfluthrin on hepatocytes. +us, the first
objective of the current study was to find the mild-moderate
toxic doses of β-cyfluthrin during the primary culture of rat
hepatocytes. +en, the protective effect of luteolin by co-
administration of determined toxic doses of β-cyfluthrin was
assessed, as well.

2. Materials and Methods

2.1. Experimental Rats and Isolation ofHepatic Cells. +e rats
were kept in controlled environmental houses. +e Animal
Care Committee of Urmia University approved the proce-
dure of study (ethical approval number: IR-UU-AEC-3/PD/
32). Adult male Wistar rats (200–250 g; n� 35) were anes-
thetized with chloroform. Hepatocytes were isolated
according to the method described previously [27]. Briefly,
an angiocath (needle gauge� 24) was gently inserted into the
portal vein, and the liver was perfused using CMF-HBSS
solution (pH� 7) for 10min (flow rate of 10mL per min).
+e flushed perfusate was collected via the inferior vena cava
and discarded. Following the flushing of the circulating
blood from the liver, the second step of perfusion was
performed with CMF-HBSS containing trypsin 0.1% (T4799;
Sigma-Aldrich, Chemie GmbH, Germany) for 30min.+en,
the minced liver tissue was pipetted up and down in cold
CMF-HBSS. +en, the cell suspension was filtered through a
mesh (size: 150 μm) and then centrifuged for 15min at
500 rpm.+e pellet was resuspended in 30mL of CMF-HBSS
and recentrifuged (repeated three times). Finally, the re-
covered hepatocytes were suspended in Dulbecco’s modified
Eagle medium (DMEM, P04-05551; PAN-Biotech, Ger-
many) supplemented with penicillin G sodium/streptomy-
cin sulfate (Solarbio® Life Science, Beijing, China) and 10%
(v/v) heat-inactivated fetal bovine serum at a density of
200,000 cells/mL (counted using a hemocytometer). +e
viability of hepatocytes over 80% (assessed by the trypan
blue exclusion test) was approved for the subsequent ex-
periment. Hepatocytes were seeded onto 24-well plates (JET
BIOFIL Tissue Culture Plate, 011024, China) and incubated
at 37°C under 5% CO2/95% O2 overnight. Following pre-
incubation, the medium and nonadherent hepatocytes were
aspirated and replaced with fresh culture medium.

2.2. Experiment 1. In the first experiment, hepatocytes
(2×105 cells/well) were exposed to 0, 10, 20, 40, and 80 μM
concentrations of β-cyfluthrin (PESTANAL, 46003; Sigma-
Aldrich, St Louis, MO) dissolved in dimethyl sulfoxide
(DMSO; CARLO ERBA, France). Hepatocyte viability was
assessed using 5-diphenyltetrazolium bromide (MTT) at 0,

24, and 48 h after exposure. +e different stock solutions of
β-cyfluthrin (80, 40, 20, 10, and 0mM) dissolved in DMSO
were prepared [10], and every well received an equal volume
of DMSO-dissolved β-cyfluthrin (2 μL in 1000 μL medium)
with different concentrations of β-cyfluthrin. A diluted
sample was set as a negative control group at each run. +e
experiment was replicated for 6 times, and three wells were
used for each group within each replication (number of
biological replicates� 270).

2.3. Experiment 2. According to the MTTassay results of the
first experiment, the dose of 40 μM β-cyfluthrin was chosen
for evaluation in the following experiment. In the second
experiment, hepatocytes were exposed to β-cyfluthrin
(40 μM) alone and coadministered with 20, 40, and 60 μM
luteolin (72511, CAS No.: 491-70-3; Sigma-Aldrich, USA) as
well. +e stock solution of 10, 20, and 30mM luteolin were
prepared by dissolving an appropriate amount in the DMSO.
+e amount of DMSO in treated samples was less than 0.5%
of the final volume. +e viability of hepatocytes was assessed
using MTT assay after 0, 24, and 48 h treatment. Moreover,
malondialdehyde (MDA), total antioxidant capacity (TAC),
total nitrite-nitrate (TNN), total lipid hydroperoxides
(TLHPs), and superoxide dismutase (SOD) activity were
evaluated in the medium and within hepatocytes at 0, 24,
and 48 h after incubation, separately. +e experiment was
replicated for 8 times, and three wells were used for each
group within each replication (number of biological
replicates� 360).

2.4. Cell Viability Analysis. +e viability of hepatocytes was
evaluated by MTT assay. After treatment of hepatocytes,
10 μL MTT (5mg/mL in PBS) was added to each well and
incubated for more four hours. +e medium was aspirated,
and DMSO was added to dissolve the formazan crystals.
After 0.5–1 hour, the optical density of each well was read on
a microplate reader (DANA, Iran) at the wavelength of
570 nm. Hepatocytes in the untreated control group were
considered 100% viable, and then, viability in each tested
group was expressed as a percentage of the untreated control
group.

2.5. Measurement of Oxidative and Nitrosative Stress Indices
and Antioxidant Levels in the Medium and Intrahepatocyte
Homogenate Samples. +e culture media were aspirated and
collected within a tube. +en, each well was treated with
250 μL trypsin-EDTA solution (0.25 and 0.02 g/100mL,
respectively) and placed for 10min in an incubator. Sepa-
rated hepatocytes were collected (within a new tube), and
lysis solution (trichloroacetic acid 2.5%, 250 μL) was added
to the hepatocytes. In order to ensure the lysis of hepato-
cytes, homogenization was done using a cell homogenizer
(T10 Basic; IKA®-Werke GmbH & Co. KG, Staufen, Ger-
many) for 2min. +en, the collected samples of culture
media and hepatocyte suspensions were stored at freeze
temperature (−20°C) for biochemical assay.
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Malondialdehyde levels were assessed using the prepa-
ration of reagent described by Stern et al. [28]. After the
mixing of TBA reagent with samples (culture media or
homogenate of hepatocytes), incubation was performed
(100°C, 15min), and the tubes were centrifuged at 2500g for
15min. +e absorbance of the supernatant was recorded
using a visible spectrophotometer (532 nm, Pharmacia
NOVASPEC II; Pharmacia LKB). Concentrations of MDA
were expressed as μmol/g protein.

Solution and reagents required for the evaluation of TAC
levels were prepared according to Koracevic and Koracevic
[29]. After two steps of incubation, the absorbance of the
generated color was recorded using a spectrophotometer
(Pharmacia NOVASPEC II; Pharmacia LKB) at the wave-
length of 532 nm against the blank solution. +e amount of
TAC was expressed as mmol/g protein in the homogenate of
hepatocytes and cultured media.

Freshly prepared Griess reagent was used to measure the
quantitative amount of TNN in the samples [30]. Following the
mixing of reagent with the sample, the plate was incubated in
darkness for 15min at laboratory temperature, and the optical
density of the generated solution color was recorded using an
ELISA reader (DANA, Iran) at the wavelength of 540nm. +e
amount of TNN was expressed as μmol/g protein.

In order to measure SOD activity, pyrogallol and Tris
buffer solutions were prepared freshly [31]. Finally, changes
in the absorbance of samples (420 nm, Pharmacia
NOVASPEC II; Pharmacia LKB) were compared with that of
the control sample, and the SOD activity was calculated and
expressed as unit/mg protein.

In order to evaluate the TLHPs, the working reagent, as
described by Nourooz-Zadeh et al. [32], was prepared by
dissolving recommended amounts of FOX-2 reagent with
beta-hydroxytoluene. After mixing of the sample with a
working solution, the tubes were incubated at the laboratory
(dark place) for 30min. Following completion of the reaction,
the absorbance of the solution was recorded using a spec-
trophotometer (Pharmacia NOVASPEC II; Pharmacia LKB) at
thewavelength of 560nm.+e standard curve was drawn using
the absorbance of serial concentrations of hydrogen peroxide.
+e amount of TLHPs was expressed as μmol/g protein.

2.6. Statistical Analysis. +e interaction of time× treatment
on different variables (MTT, MDA, TAC, TLHPs, TNN,
SOD activity) among experimental groups was analyzed
using two-way ANOVA, followed by a Holm–Sidak post hoc
test. Results were presented as the mean± S.E.M. +e re-
lationship between MTT and other variables (MDA, TAC,
TNN, SOD, and TLHPs) were assessed by regression
analysis. Statistical analyses were carried out using SigmaStat
software (Version 3.5; Chicago, IL). Probability values lesser
than 0.05 were considered significant.

3. Results

3.1. Experiment 1. Results of the first experiment revealed
that viability (or functionality) of hepatocytes was not af-
fected by β-cyfluthrin addition at 0 h (P> 0.05; Figure 1),

while the mentioned index was reduced by exposure to 40
and 80 μM β-cyfluthrin at 24 h and by all doses of
β-cyfluthrin at 48 h of storage compared to the control group
(P< 0.001; Figure 1). Finally, the 40 μM β-cyfluthrin was
considered as a mild-moderate toxic dose and hence selected
for the subsequent experiments.

3.2. Experiment 2

3.2.1. MTT. As shown in Figure 2, β-cyfluthrin (at 40 μM)
reduced the number of viable hepatocytes at 24 and 48 h
time points. Cotreatment of luteolin (at 40 μM) with toxic
doses of β-cyfluthrin increased the viability of hepatocytes at
mentioned time points (P � 0.014). Within-group analysis
indicated that viability was lower in β-cyfluthrin-treated
groups (alone or cotreated with luteolin) at 48 h compared to
0 h (P � 0.014; Figure 2).

3.2.2. MDA (μmol/g Protein) in the Cultured Media. +e
content of MDA, as a peroxidative variable, was not affected
by treatment at 0 h (P> 0.05), while its amount was in-
creased in β-cyfluthrin alone and β-cyfluthrin + 60 μM
luteolin-treated groups compared to the control group at
other studied time points (P< 0.001; Figure 3). Luteolin at
40 μM levels was able to reduce the deleterious effect of
β-cyfluthrin on the peroxidative index at 24 and 48 h
(P< 0.001; Figure 3). Changes over time revealed that the
amount of MDA was greater at 48 h compared to 0 h in all
experimental groups (P< 0.001; Figure 3).

3.2.3. Intrahepatocyte Amount of MDA (μmol/g Protein).
+e amount of MDA within the homogenate of hepatocytes
was as same as in the cultured media. Neutralization of the
adverse effect of β-cyfluthrin on the amount of intra-
hepatocyte MDA was achieved by 40 μM luteolin (P< 0.001;
Figure 4). Within-group analysis indicated that the amount
of MDA was greater at 48 h compared to 0 h in all exper-
imental groups (P< 0.001; Figure 4).

3.2.4. TAC Levels (mmol/g Protein) in the Cultured Media.
Treatment with β-cyfluthrin alone or β-cyfluthrin + 60 μM
luteolin reduced the TAC levels in cultured media at 0, 24,
and 48 h (P< 0.001; Figure 5). +e amount of TAC was
restored by cotreatment of β-cyfluthrin with 20 or 40 μM
luteolin at studied time points (P< 0.001; Figure 5). TAC
levels were reduced at 48 h compared to 0 h in studied
groups (P< 0.001; Figure 5).

3.2.5. Intrahepatocyte Amount of TAC (mmol/g Protein).
Within-group analysis revealed that the amount of TAC was
lower in β-cyfluthrin alone, β-cyfluthrin + 20 μM luteolin-
treated, and β-cyfluthrin + 60 μM luteolin-treated groups at
0 and 48 h compared to the relative control group (P< 0.001;
Figure 6). Furthermore, a greater amount of TAC was
recorded in β-cyfluthrin + 20 or 40 μM luteolin-treated
groups compared to the other treated groups at 48 h
(P< 0.001; Figure 6). Over-time analysis indicated greater
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TAC values at 24 h compared to 0 h in luteolin-treated
groups (P< 0.001; Figure 6).

3.2.6. Amount of TNN (μmol/g Protein) in the Cultured
Media. +e time× treatment interaction revealed that the
amount of TNN was greater in β-cyfluthrin-alone-treated
group compared to other groups at 0, 24, and 48 h of storage
(P< 0.001; Figure 7). Administration of luteolin at 40 μM
levels completely inhibits the deleterious effect of β-cyflu-
thrin. Within-group analysis indicated that the TNN
amount increased in a time-dependent manner in all studied
groups (P< 0.001; Figure 7).

3.2.7. Intrahepatocyte Amount of TNN (μmol/g Protein).
+e observed changes in the amount of intrahepatocyte
TNN resembled that in the cultured media described above
(Figure 8).

3.2.8. Amount of TLHP (μmol/g Protein) in the Cultured
Media. +ere were no significant changes among treated
groups at different time points (P> 0.05; Figure 9). Within-
group analysis indicated a greater amount of TLHP at 24 h
compared to 0 and 48 h time points in all groups (P< 0.05;
Figure 9).
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Figure 1: Effect of varying doses of β-cyfluthrin (10, 20, 40, and 80 μM) on viability of hepatocytes (assessed byMTT) at different time point
storages. Hepatocytes were seeded at 2×105 cells/well and were incubated for 48 h. Data are expressed as the mean± SEM. Hepatocyte
viability was expressed and presented compared with the untreated hepatocyte control group. A,B,C,DValues with different letters indicate a
difference (P< 0.001) among groups at each time point. a,b,cValues with different letters indicate a difference (P< 0.001) over time within
every experimental group. Cyf, β-cyfluthrin; DMSO, dimethyl sulfoxide as a solvent of β-cyfluthrin.
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Figure 2: Effect of simultaneous treatment of luteolin (20, 40, and 60 μM)with toxic doses of β-cyfluthrin (40 μM) on viability of hepatocytes
(assessed by MTT) at different time point storages. Hepatocytes were seeded at 2×105 cells/well and were incubated for 48 h. Data are
expressed as the mean± SEM. Hepatocyte viability was expressed and presented compared with the untreated hepatocyte control group.
A,BValues with different letters indicate a difference (P< 0.05) among groups at each time point. a,b,cValues with different letters indicate a
difference (P< 0.05) over time within every experimental group. Cyf, β-cyfluthrin; Lut, luteolin; DMSO, dimethyl sulfoxide as a solvent of
β-cyfluthrin and luteolin.
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3.2.9. Intrahepatocyte Amount of TLHP (μmol/g Protein).
Changes in TLHP within hepatocytes were the same as that
in the culture media (Figure 10).

3.2.10. Activity of SOD in the Culture Media (unit/mg
Protein). +e activity of SOD was greater in control and
β-cyfluthrin + 20 or 40 μM luteolin groups compared to the
β-cyfluthrin-only-exposed group at 24 and 48 h (P< 0.01;
Figure 11). SOD activity of β-cyfluthrin + 20 or 40 μM
luteolin groups was higher at 24 and 48 h compared to 0 h
(P< 0.01; Figure 11).

3.2.11. 9e Activity of SOD within Hepatocytes (unit/mg
Protein). +e activity of SOD was lower in β-cyfluthrin-only-
treated group than the control group at 24 and 48h of storages
(P< 0.01; Figure 12). Coadministration of 20 or 40μM luteolin
restored the activity of the mentioned enzyme within hepa-
tocytes compared to the β-cyfluthrin-alone-treated group.
Within-group analysis revealed greater activity at 24h than 0-
and 48-h time points in all groups (P< 0.01; Figure 12).

3.2.12. Correlation between Functionality of Hepatocytes with
Other Variables. +e analysis revealed that there was a
positive correlation between MTT and TAC (P< 0.001;
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Figure 3: Amount of malondialdehyde (MDA; μmol/g protein) in the cultured medium of rat hepatocytes following exposure to toxic doses
of β-cyfluthrin (40 μM) alone or cotreatment with luteolin (20, 40, and 60 μM). Hepatocytes were seeded at 2×105 cells/well and were
incubated for 48 h. Data are expressed as the mean± SEM. A,B,CValues with different letters indicate a significant difference (P< 0.001)
among groups at each time point. a,b,cValues with different letters indicate a difference (P< 0.001) over time within every experimental
group. Cyf, β-cyfluthrin; Lut, luteolin; DMSO, dimethyl sulfoxide as a solvent of β-cyfluthrin and luteolin.
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Figure 4: Amount of intrahepatocyte malondialdehyde (MDA; μmol/g protein) following exposure to toxic doses of β-cyfluthrin (40 μM)
alone or cotreatment with luteolin (20, 40, and 60 μM). Hepatocytes were seeded at 2×105 cells/well and were incubated for 48 h. Data are
expressed as the mean± SEM. A,B,CValues with different letters indicate a difference (P< 0.001) among groups at each time point. a,b,cValues
with different letters indicate a difference (P< 0.001) over time within every experimental group. Cyf, β-cyfluthrin; Lut, luteolin; DMSO,
dimethyl sulfoxide as a solvent of β-cyfluthrin and luteolin.
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Supplementary file 1) and SOD (P � 0.003; Supplementary
file 1) and negative correlation with MDA (P< 0.001;
Supplementary file 1) and TNN (P< 0.001; Supplementary
file 1). +ere was no association between MTT and TLHP
variables (P � 0.48; Supplementary file 1).

4. Discussion

+e first aim of the present study was to assess the varying
amounts of β-cyfluthrin on the viability (evaluated by
MTT) of cultured rat primary hepatocytes up to 48 h. +e
analysis of data revealed that β-cyfluthrin at 40 and 80 μM

reduced the viability of hepatocytes at 24 and 48 h after
exposure; therefore, the dose of 40 μM was selected and
used in the following experiment. Another objective was
to assess the capability of luteolin, as an antioxidant, in
the alleviation of β-cyfluthrin-induced hepatotoxic
effects.

Research indicated that pyrethroids induce oxidative
toxicity when exposed to humans, mice, or rats during in
vivo and in vitro experiments [33–37]. Due to the presence of
the cyano group in the structure of β-cyfluthrin, its toxicity
might be related to the release of chemically unstable cya-
nohydrins after exposure [38]. In biological systems,
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Figure 6: Intrahepatocyte total antioxidant capacity (TAC; mmol/g protein) level following exposure to toxic doses of β-cyfluthrin (40 μM)
alone or cotreatment with luteolin (20, 40, and 60 μM). Hepatocytes were seeded at 2×105 cells/well and were incubated for 48 h. Data are
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cyanohydrins change to cyanides and aldehydes, which
ultimately could act as free radicals [12]. Moreover, due to
the high lipophilicity of β-cyfluthrin, it could easily penetrate
via cell membranes and exert its detrimental effects within
the cells [39]. Previous reports revealed that peroxidative
reaction is one of the pathways of induced toxicity by py-
rethroid insecticides over in vitro exposure [10, 40, 41].
According to the results of MTT (in the first and second
experiments) and MDA levels, the current study confirmed
that β-cyfluthrin induces oxidative toxicity in the primary
culture of rat hepatocytes. Moreover, the results of the
current study indicated the protective role of luteolin against
the toxic effects of β-cyfluthrin on viability and MDA levels
of rat hepatocytes. Previous research revealed that luteolin,
which belongs to a class of flavonoids, has strong ROS
scavenger effects [18, 42]. In this regard, it has been dem-
onstrated that the glycosylated form of luteolin (cynaro-
side) reduced the amount of ROS generation and ultimately
prevented the deleterious effects of oxidative toxicity in

cardiomyocytes [43]. Another experiment indicated the
positive effects of luteolin in a dose-dependent
(30–100 μM) manner on free radical-scavenging activity
and index of lipid peroxidation levels during induced
oxidative toxicity in the mouse brain cells [44]. Moreover,
the protective role of luteolin against detrimental effects of
isoproterenol-induced myocardial infarction on different
indices, such as MDA and lipid hydroperoxides, was
demonstrated in treated maleWistar rats [45]. Our findings
are in good accordance with the previous reports about the
role of luteolin in increasing the viability of cells when
exposed to oxidant compounds such as cisplatin and H2O2
[41, 42].

Our results indicated that β-cyfluthrin at 40 and 80 μM
levels reduced the viability of rat hepatocytes during primary
culture. In accordance with our results, degenerative
changes and reduced hepatocyte viability were indicated
after exposure to cypermethrin or pyrrolidine alkaloids
[46, 47]. +e reduction of hepatocyte viability in the group
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treated with β-cyfluthrin (alone) might be strongly related to
the generation of free radicals, stimulation of peroxidative
and nitrosative reactions, a significant increase in MDA and
TNN levels, and ultimately reduction of enzymatic anti-
oxidant amount [10, 48]. Moreover, the results of the current
study revealed the hepatoprotective role of luteolin against
toxic doses of β-cyfluthrin. In this regard, increased cell
viability following treatment with luteolin, especially during
cell challenges with oxidants, was attributed to enhancement
of antiapoptotic protein Bcl-2 expression and lowering the
expression of the proapoptotic protein Bax in a dose-de-
pendent manner [49].

Enzymatic antioxidants act effectively to reduce the
amounts of ROS and ultimately their detrimental oxidative
effect on biological systems [35]. It seems that a slight re-
duction in the physiological amounts of enzymatic anti-
oxidants, such as SOD, reduces the capability and the
resistance of cellular lipids, proteins, and DNA to counteract
against detrimental effects of oxidative toxicity [50, 51].
Jebur et al. [35] indicated the reduction of hepatic enzymatic
and nonenzymatic levels of antioxidants (reduced gluta-
thione, glutathione peroxidase, glutathione reductase, glu-
tathione S-transferase, SOD, and catalase) when rats were
exposed to 15mg/kg BW of β-cyfluthrin via oral gavage.
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Results of the current study displayed that β-cyfluthrin
significantly reduces the amount of SOD activity within both
hepatocytes and the cultured media. It is hypothesized that
β-cyfluthrin directly (inhibition of SOD activity) or indi-
rectly (consumption during neutralization of free radicals)
caused a reduction in enzymatic antioxidants [35]. Our
findings indicated the ameliorative role of luteolin against
the detrimental effects of β-cyfluthrin on TAC and SOD
levels. In accordance with our findings, the protective role of
luteolin (10 and 20 μg/mL) on hemolysis rate, ROS

generation, MDA, and amounts of antioxidative enzymes
when erythrocytes were treated with the known oxidant
compound (H2O2) was shown [52]. Luteolin was signifi-
cantly effective in alleviating the detrimental effects of iso-
proterenol-induced myocardial infarction on different
indices, such as MDA, lipid hydroperoxides, and enzymatic
and nonenzymatic antioxidant levels of treated male Wistar
rats [45]. +e cytoprotective effect of luteolin due to its
strong antioxidative properties and scavenging of ROS has
been reported in the cell culture model [53]. Our results
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Figure 11: Superoxide dismutase (SOD; unit/mg protein) activity in the cultured medium of rat hepatocytes following exposure to toxic
doses of β-cyfluthrin (40 μM) alone or cotreatment with luteolin (20, 40, and 60 μM). Hepatocytes were seeded at 2×105 cells/well and were
incubated for 48 h. Data are expressed as the mean± SEM. A,B,CValues with different letters indicate a significant difference (P< 0.001)
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exhibited that luteolin would reduce the levels of nitrosative
reaction, as measured by total nitrate-nitrite, mediated by
β-cyfluthrin. In this regard, the modulatory role of luteolin
on oxidative and nitrosative indices of mouse retinal cells
was reported [54]. +e extent of cell damage by oxidants is
reduced by enhancing heme oxygenase-1 (HO-1) expression
[55]. +e mentioned enzyme (act as antioxidative/cyto-
protective) is usually induced by exposure to oxidants
such as UV irradiation, proinflammatory cytokines, heavy
metals, and thiol-reactive substances [56]. However, the
expression of HO-1 was not evaluated in the current
study, but the direct role of luteolin on the augmentation
of TAC levels through HO-1 expression was shown
previously [41]. In accordance with our results, Sun et al.
[49] reported that luteolin showed the capability to
ameliorate the harmful effects of isoproterenol on TAC
and SOD activities during cell culture experiments. Ad-
ditionally, they revealed that luteolin reduced the MDA
and ROS levels during H2O2-mediated toxicity in a dose-
dependent manner, similar to our findings. Based on the
results of the previous [15–24] and current studies about a
wide range of pharmacological effects of the luteolin, it is
recommended that the consumption of foods containing
luteolin prevents or reduces the adverse effects of diseases
or oxidative stress.

+e current experiment displayed that the most protective
effect of luteolin was achieved at the doses of 20 and 40μM but
reduced at 80μM.+ere is increasing evidence showing that the
natural substances with antioxidant effects are acting as double-
edged swords, meaning that the high concentration of exoge-
nous antioxidants may disrupt redox balance. It seems that
the higher concentrations of exogenous antioxidant act
like a pro-oxidant and activates pathways such as in-
creasing proinflammatory mediators’ production, nitro-
sylation of proteins, proglycation effect, and endocrine-
disrupting activities [57]. +erefore, the results of the
present experiment concerning the reverse effect of the
luteolin supplementation at 80 μM level might be related
to nonphysiologic concentration of exogenous antioxi-
dant, which was observed in the current experiment.

In conclusion, exposure of rat hepatocytes to toxic doses
of β-cyfluthrin reduced the SOD activity and TAC levels and
increased the nitrosative and peroxidative indices. Fur-
thermore, the capability of luteolin to alleviate the detri-
mental effects of β-cyfluthrin on the primary culture of rat
hepatocytes was indicated by the current study. However,
more studies are mandatory to indicate the protective role of
luteolin upon induced toxicity of hepatocytes (by toxicants
such as β-cyfluthrin) at the gene level.
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