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Abstract

Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations 

underlying the pathogenesis of these tumors have not been systematically studied so far. Here we 

perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) 

sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling 

genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 

22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In 

contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations 

are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly 

aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These 

data also suggest that inactivation of chromatin remodeling genes is sufficient to drive 

transformation in pulmonary carcinoids.

Introduction

Pulmonary carcinoids are neuroendocrine tumors that account for about 2% of pulmonary 

neoplasms. Based on the WHO classification of 2004, carcinoids can be subdivided in 
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typical or atypical, the latter ones being very rare (about 0.2%)1. Most carcinoids can be 

cured by surgery; however, inoperable tumors are mostly insensitive to chemo- and radiation 

therapies1. Apart from few low-frequency alterations, such as mutations in MEN11, 

comprehensive genome analyses of this tumor type have so far been lacking.

Here we conduct integrated genome analyses2 on data from chromosomal gene copy number 

of 54 tumors, genome and exome sequencing of 29 and 15 tumor-normal pairs respectively, 

as well as transcriptome sequencing of 69 tumors. Chromatin-remodeling is the most 

frequently mutated pathway in pulmonary carcinoids; the genes MEN1, PSIP1 and ARID1A 

were recurrently affected by mutations. Specifically, covalent histone modifiers and subunits 

of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively. By 

contrast, mutations of TP53 and RB1 are only found in 2 out of 45 cases, suggesting that 

these genes are not main drivers in pulmonary carcinoids.

Results

In total, we generated genome/exome sequencing data for 44 independent tumor-normal 

pairs, and for most of them, also RNAseq (n=39, 69 in total), and SNP 6.0 (n=29, 54 in 

total) data (Supplementary Table S1). Although no significant focal copy number 

alterations were observed across the tumors analyzed, we detected a copy number pattern 

compatible with chromothripsis3 in a stage-III atypical carcinoid of a former smoker (Fig. 
1a; Supplementary Fig. S1). The intensely clustered genomic structural alterations found in 

this sample were restricted to chromosomes 3, 12, and 13, and led to the expression of 

several chimeric transcripts (Fig. 1b; Supplementary Table S2). Some of these chimeric 

transcripts affected genes involved in chromatin remodeling processes, including out-of-

frame fusion transcripts disrupting the genes, ARID2, SETD1B, and STAG1. Through the 

analyses of genome and exome sequencing data, we detected 529 non-synonymous 

mutations in 494 genes, which translates to a mean somatic mutation rate of 0.4 mutations 

per megabase (Mb) (Fig. 1c; Supplementary Data 1), which is much lower than the rate 

observed in other lung tumors (Fig. 1c)2,4,5. As expected, and in contrast to small-cell lung 

cancer (SCLC), no smoking-related mutation signature was observed in the mutation pattern 

of pulmonary carcinoids (Fig. 1d).

We identified MEN1, ARID1A and EIF1AX as significantly mutated genes2 (q-value<0.2, 

see Methods section) (Fig. 2a; Supplementary Table S1 and S3; Supplementary Data 1). 

MEN1 and ARID1A play important roles in chromatin remodeling processes. The tumor 

suppressor MEN1 physically interacts with MLL and MLL2 to induce gene transcription6. 

Specifically, MEN1 is a molecular adaptor that physically links MLL with the chromatin-

associated protein PSIP1, an interaction that is required for MLL/MEN1-dependent 

functions7. MEN1 also acts as a transcriptional repressor through the interaction with 

SUV39H18. We observed mutually exclusive frame-shift and truncating mutations in MEN1 

and PSIP1 in 6 cases (13.3%), which were almost all accompanied by loss of heterozygosity 

(LOH) (Supplementary Fig. S2). We also detected mutations in histone methyltransferases 

(SETD1B, SETDB1 and NSD1) and demethylases (KDM4A, PHF8 and JMJD1C), as well as 

in the following members of the Polycomb complex9 (Supplementary Table S1 and S2; 

Supplementary Data 1): CBX6, which belongs to the Polycomb repressive complex 1 
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(PRC1); EZH1, which is part of the Polycomb repressive complex 2 (PRC2); and YY1, a 

member of the PHO repressive complex 1 that recruits PRC1 and PRC2. CBX6 and EZH1 

mutations were also accompanied by LOH (Supplementary Fig. S2). In addition, we also 

detected mutations in the histone modifiers BRWD3 and HDAC5 in one sample each. In 

total, 40% of the cases carried mutually exclusive mutations in genes that are involved in 

covalent histone modifications (q-value=8x10-7, see Methods section) (Fig. 2a; 
Supplementary Table S4). In order to evaluate the impact of these mutations on histone 

methylation, we compared the levels of the H3K9me3 and H3K27me3 on 7 mutated and 6 

wild-type samples, and observed a trend towards lower methylation in the mutated cases 

(Table 1; Fig. 2b).

Truncating and frame-shift mutations in ARID1A were detected in 3 cases (6.7%). ARID1A 

is one of the two mutually exclusive ARID1 subunits, believed to provide specificity to the 

ATP-dependent SWI/SNF chromatin-remodeling complex10,11. Truncating mutations of this 

gene have been reported at high frequency in several primary human cancers12. In total, 

members of this complex were mutated in mutually exclusive fashion in 22.2% of the 

specimens (q-value=8x10-8, see Methods section) (Fig. 2a; Supplementary Table S4). 

Among them were the core subunits SMARCA1, SMARCA2, and SMARCA4, which carry the 

ATPase activity of the complex, as well as the subunits ARID2, SMARCC2, SMARCB1, and, 

BCL11A (Fig. 2a; Supplementary Table S1 and S2; Supplementary Data 1)13,14. Another 

recurrently affected pathway was sister-chromatid cohesion during cell cycle progression 

with the following genes mutated (Fig. 2a; Supplementary Table S1 and S2; Supplementary 

Data 1; Supplementary Fig. S3): the cohesin subunit STAG115, the cohesin loader NIPBL16; 

the ribonuclease and microRNA processor DICER, necessary for centromere 

establishment17; and ERCC6L, involved in sister chromatid separation18. In addition, 

although only few chimeric transcripts were detected in the 69 transcriptomes analyzed 

(Supplementary Table S5), we found one sample harboring an inactivating chimeric 

transcript leading to the loss of the mediator complex gene MED24 (Supplementary Fig. 
S4) that interacts both physically and functionally with cohesin and NIPBL to regulate gene 

expression19. In summary, we detected mutations in chromatin remodeling genes in 23 

(51.1%) of the samples analyzed. The specific role of histone modifiers in the development 

of pulmonary carcinoids was confirmed by the lack of significance of these pathways in 

SCLC2 (Supplementary Table S4). This was further supported by a gene expression 

analysis including 50 lung adenocarcinomas (unpublished data), 42 SCLC2,20, and the 69 

pulmonary carcinoids included in this study (Supplementary Data 2). Consensus k-means 

clustering revealed that although both SCLC and pulmonary carcinoids are lung 

neuroendocrine tumors, both tumor types as well as adenocarcinomas formed statistically 

significant separate clusters (Fig. 3a). In support of this notion, we recently reported that the 

early alterations in SCLC universally affect TP53 and RB12, whereas in this study these 

genes were only mutated in two samples (Fig 2a; Supplementary Table S1; Supplementary 

Data 1). Moreover, when examining up- and down-regulated pathways in SCLC versus 

pulmonary carcinoids by Gene Set Enrichment Analysis (GSEA)21, we found that in line 

with the pattern of mutations, the RB1 pathway was statistically significantly altered in 

SCLC (q-value=5x10-4, see Methods section) but not in pulmonary carcinoids (Fig. 3b; 
Supplementary Table S6).
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Another statistically significant mutated gene was the eukaryotic translation initiation factor 

1A (EIF1AX) mutated in 4 cases (8.9%). Additionally, SEC31A, WDR26, and the E3-

ubiquitin ligase HERC2 were mutated in two samples each. Further supporting a role of E3 

ubiquitin ligases in the development of pulmonary carcinoids we found mutations or 

rearrangements affecting these genes in 17.8% of the samples analyzed (Fig. 2a; 

Supplementary Table S1 and S7; Supplementary Data 1). All together, we have identified 

candidate driver genes in 73.3% of the cases. Of note, we did not observe any genetic 

segregation between typical or atypical carcinoids, neither between the expression clusters 

generated from the two subtypes, nor between these clusters and the mutated pathways 

(Supplementary Fig. S5). However, it is worth mentioning that only 9 atypical cases were 

included in this study. The spectrum of mutations found in the discovery cohort, was further 

validated by transcriptome sequencing of an independent set of pulmonary carcinoid 

specimens (Supplementary Table S1 and S8). Due to the fact that many nonsense and 

frame-shift mutations may result in nonsense-mediated decay22,23, the mutations detected by 

transcriptome sequencing were only missense. Due to this bias, accurate mutation 

frequencies could not be inferred from these data.

Discussion

This study defines recurrently mutated sets of genes in pulmonary carcinoids. The fact that 

almost all of the reported genes were mutated in a mutually exclusive manner and affected a 

small set of cellular pathways, defines these as the key pathways in this tumor type. Given 

the frequent mutations affecting the few signaling pathways described above and the almost 

universal absence of other cancer mutations, our findings support a model where pulmonary 

carcinoids are not early progenitor lesions of other neuroendocrine tumors, such as small-

cell lung cancer or large-cell neuroendocrine carcinoma, but arise through independent 

cellular mechanisms. More broadly, our data suggest that mutations in chromatin 

remodeling genes, which in recent studies were found frequently mutated across multiple 

malignant tumours24, are sufficient to drive early steps in tumorigenesis in a precisely 

defined spectrum of required cellular pathways.

Methods

Tumor specimens

The study as well as written informed consent documents had been approved by the 

Institutional Review Board of the University of Cologne. Additional biospecimens for this 

study were obtained from the Victorian Cancer Biobank, Melbourne, Australia; the 

Vanderbilt-Ingram Cancer Center, Nashville, USA; and Roy Castle Lung Cancer Research 

Programme, The University of Liverpool Cancer Research Center, Liverpool, UK. The 

Institutional Review Board (IRB) of each participating institution approved collection and 

use of all patient specimens in this study.

Nucleic acid extraction and sample sequencing

All samples in this study were reviewed by expert pathologists. Total RNA and DNA were 

obtained from fresh-frozen tumor and matched fresh-frozen normal tissue or blood. Tissue 
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was frozen within 30 min after surgery and was stored at –80 °C. Blood was collected in 

tubes containing the anticoagulant EDTA and was stored at –80 °C. Total DNA and RNA 

were extracted from fresh-frozen lung tumor tissue containing more than 70% tumor cells. 

Depending on the size of the tissue, 15–30 sections, each 20 μm thick, were cut using a 

cryostat (Leica) at –20 °C. The matched normal sample obtained from frozen tissue was 

treated accordingly. DNA from sections and blood was extracted using the Puregene 

Extraction kit (Qiagen) according to the manufacturer's instructions. DNA was eluted in 1× 

TE buffer (Qiagen), diluted to a working concentration of 150 ng—l and stored at –80 °C. 

For whole exome sequencing we fragmented 1 μg of DNA with sonification technology 

(Bioruptor, diagenode, Liège, Belgium). The fragments were endrepaired and adaptor-

ligated, including incorporation of sample index barcodes. After size selection, we subjected 

the library to an enrichment process with the SeqCap EZ Human Exome Library version 2.0 

kit (Roche NimbleGen, Madison, WI, USA). The final libraries were sequenced with a 

paired-end 2×100 bp protocol. On average, 7 Gb of sequence were produced per normal, 

resulting in 30x coverage of more than 80% of target sequences (44Mb). For better 

sensitivity, tumors were sequenced with 12Gb and 30x coverage of more than 90%. We 

filtered primary data according to signal purity with the Illumina Realtime Analysis 

software. Whole genome sequencing was also performed using a read length of 2x 100bp for 

all samples. On average, 110 Gb of sequence were produced per sample, aiming a mean 

coverage of 30x for both tumor and matched-normal. RNAseq was performed on cDNA 

libraries prepared from PolyA+ RNA extracted from tumor cells using the Illumina TruSeq 

protocol for mRNA. The final libraries were sequenced with a paired-end 2×100 bp protocol 

aiming at 8.5 Gb per sample, resulting on a 30x mean coverage of the annotated 

transcriptome. All the sequencing was carry on an Illumina HiSeq™ 2000 sequencing 

instrument (Illumina, San Diego, CA, USA).

Sequence data processing and mutation detection

Raw sequencing data are aligned to the most recent build of the human genome (NCBI build 

37/hg19) using BWA (version: 0.5.9rc1)25 and possible PCR-duplicates are subsequently 

removed form the alignments. Somatic mutations were detected using our in-house 

developed sequencing analysis pipeline. In brief, the mutation calling algorithm incorporates 

parameters such as local copy number profiles, estimates of tumor purity and ploidy, local 

sequencing depth, as well as the global sequencing error into a statistical model with which 

the presence of a mutated allele in the tumor is determined. Next, the absence of this variant 

in the matched normal is assessed by demanding that the corresponding allelic fraction is 

compatible with the estimated background sequencing error in the normal. In addition, we 

demand that the allelic fractions between tumor and normal differ significantly. To finally 

remove artificial mutation calls, we apply a filter that is based on the forward-reverse bias of 

the sequencing reads. Further details of this approach are given in Peifer et al.2

Genomic rearrangement reconstruction from paired-end data

To reconstruct rearrangements from paired-end data, we refined our initial method2 by 

adding breakpoint-spanning reads. Here, locations of encompassing read pairs are screened 

for further reads where only one pair aligns to the region and the other pair either does not 

align at all or is clipped by the aligner. These reads are then realigned using BLAT to a 
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1000bp region around the region defined by the encompassing reads. Rearrangements 

confirmed by at least one spanning read are finally reported. To filter for somatic 

rearrangements, we subtracted those regions where rearrangements are present in the 

matched-normal and in all other sequenced normals within the project.

Analysis of significantly mutated genes and pathways

The analysis of significantly mutated genes is done in a way that both gene expression and 

the accumulation of synonymous mutations are considered to obtain robust assessments of 

frequently mutated, yet biologically relevant genes. To this end, the overall background 

mutation rate is determined first, from which the expected number of mutations for each 

gene is computed under the assumption of a purely random mutational process. This gene 

specific expected number of mutations defines the underlying null model of our statistical 

test. To account for misspecifications, e.g., due to a local variation of mutation rates, we also 

incorporated the synonymous to non-synonymous ratio into a combined statistical model to 

determine significantly mutated genes. Since mutation rates in non-expressed genes are 

often high than the genome-wide background rate2,26, genes that are having a median FPKM 

value less than one in our transcriptome sequencing data are removed prior testing. To 

account for multiple hypothesis testing, we are using the Benjamini-Hochberg approach27. 

Mutation data of the total of 44 samples, for which either WES or WGS was performed, 

were used for this analysis.

In case of the pathway analysis, gene lists of the methylation- and the SWI/SNF complex 

were obtained from recent publications9,13,14,28. To assess whether mutations in these 

pathways are significantly enriched, all genes of the pathway are grouped together as if they 

represent a ”single gene” and subsequently tested if the total number of mutation exceed 

mutational background of the entire pathway. To this end, the same method as described 

above was used. Mutation data of the total of 44 samples, for which either WES or WGS 

was performed, were used for this analysis.

Analysis of chromosomal gene copy number data

Hybridization of the Affymetrix SNP 6.0 arrays was carried out according to the 

manufacturers' instructions and analyzed as follows: raw signal intensities were processed 

by applying a log-linear model to determine allele-specific probe affinities and probe-

specific background intensities. To calibrate the model, a Gauss-Newton approach was used 

and the resulting raw copy number profiles are segmented by applying the circular binary 

segmentation method29.

Analysis of RNAseq data

For the analysis of RNAseq data, we have developed a pipeline that affords accurate and 

efficient mapping and downstream analysis of transcribed genes in cancer samples (Lynnette 

Fernandez-Cuesta and Ruping Sun, personal communication). In brief, paired-end RNAseq 

reads were mapped onto hg19 using a sensitive gapped aligner, GSNAP30. Possible 

breakpoints were called by identifying individual reads showing split-mapping to distinct 

locations as well as clusters of discordant read pairs. Breakpoint assembly was performed to 
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leverage information across reads anchored around potential breakpoints. Assembled contigs 

were aligned back to the reference genome to confirm bona fide fusion points.

Dideoxy sequencing

All non-synonymous mutations found in the genome/exome data were checked in RNAseq 

data when available. Genes recurrently mutated involved in pathways statistically 

significantly mutated, or interesting because of their presence in other lung neuroendocrine 

tumors, were selected for validation. 158 mutations were considered for validation: 115 

validated and 43 did not (validation rate 73%). Sequencing primer pairs were designed to 

enclose the putative mutation (Supplementary Data 1), or to encompass the candidate 

rearrangement (Supplementary Table S7) or chimeric transcript (Supplementary Table 
S2 and S5). Sequencing was carried out using dideoxy-nucleotide chain termination 

(Sanger) sequencing, and electropherograms were analyzed by visual inspection using 4 

Peaks.

Gene expression data analyses

Unsupervised consensus clustering was applied to RNAseq data of 69 pulmonary carcinoids, 

50 AD, and 42 SCLC2,20 samples. The 3000 genes with highest variation across all samples 

were filtered out before performing consensus clustering. We used the clustering module 

from GenePattern31 and the consensus CDF32,33. Significance was obtained by using 

SigClust34. Fisher's exact test35 was used to check for associations between clusters and 

histological subtypes. GSEA21 were performed on 69 pulmonary carcinoids and 42 

SCLC2,20 samples; and the gene sets oncogenic signatures were used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genomic characterization of pulmonary carcinoids. (a) CIRCOS plot of the chromothripsis 

case. The outer ring shows chromosomes arranged end to end. Somatic copy number 

alterations (gains in red and losses in blue) detected by 6.0 SNP arrays are depicted in the 

inside ring. (b) Copy numbers and chimeric transcripts of affected chromosomes. 

Segmented copy number states (blue points) are shown together with raw copy number data 

averaged over 50 adjacent probes (grey points). To show the different levels of strength for 

the identified chimeric transcripts all curves are scaled according to the sequencing coverage 
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at the fusion-point. (c) Mutation frequency detected by genome and exome sequencing in 

pulmonary carcinoids (PCA). Each blue dot represents the number of mutations per 

megabase in one pulmonary carcinoid sample. Average frequencies are also shown for 

adenocarcinomas (AD), squamous (SQ), and small-cell lung cancer (SCLC) base on 

previous studies2,4,5 (d) Comparison of context independent transversion and transition rates 

(an overall strand symmetry is assumed) between rates derived from molecular evolution 

(evol)36, from a previous SCLC sequencing study2, and from the pulmonary carcinoids 

(PCA) genome and exome sequencing. All rates are scaled as such that their overall sum is 

one.

Fernandez-Cuesta et al. Page 12

Nat Commun. Author manuscript; available in PMC 2014 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Significant affected genes and pathways in pulmonary carcinoids. (a) Significantly mutated 

genes and pathways identified by genome (n=29), exome (n=15) and transcriptome (n=69) 

sequencing. The percentage of pulmonary carcinoids with a specific gene or pathway 

mutated is noted at the right side. The q-values of the significantly mutated genes and 

pathways are shown in brackets (see Methods section). Samples are displayed as columns 

and arranged to emphasize mutually exclusive mutations. (b) Methylation levels of 

H3K9me3 and H3K27me3 in pulmonary carcinoids. Representative pictures of different 
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degrees of methylation (high, intermediate, and low) for some of the samples summarized in 

Table 1. The mutated gene is shown in italics at the bottom right part of the correspondent 

picture. Wild-type samples are denoted by WT.
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Figure 3. 
Expression data analysis of pulmonary carcinois based on RNAseq data. (a) Consensus 

Kmeans clustering32,33 using RNAseq expression data of 50 adenocarcinomas (AD, in 

blue), 42 small-cell lung cancer (SCLC, in red), and 69 pulmonary carcinoids (PCA, in 

purple) identified 3 groups using the clustering module from GenePattern31 and consensus 

CDF32,33 (left panel). The significance of the clustering was evaluated by using SigClust34 

with a p<0.0001. Fisher's exact test35 was used to check associations between the clusters 

and the histological subtypes (right panel). (b) Gene Set Enrichment Analysis (GSEA)21 for 
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SCLC versus PCA using RNAseq expression data. Low gene expression is indicated in blue 

and high expression, in red. On the right side are named the altered pathways in PCA 

(green) and SCLC (purple).
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Table 1

Overview of samples annotated for mutations in genes involved in histone methylation, and correspondent 

levels of H3K9me3 and H3K27me3 detected by immunohistochemistry.

SAMPLE MUTATION H3K9me3 H3K27me3

S02333 JMJD1C_H954N Intermediate Low

S01502 KDM4A_I168T Intermediate N/A

S02323 MEN1_e3+1 and LOH Low Low

S02339 NSD1_A1047G Intermediate Low

S02327 CBX6_P302S and LOH Low Low

S01746 EZH1_R728G and LOH Low Intermediate

S02325 YY1_E253K Low Intermediate

S01501 Wild type N/A High

S01731 Wild type Low Low

S01742 Wild type High High

S02334 Wild type Intermediate High

S02337 Wild type High High

S02338 Wild type High Intermediate
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