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Purpose: Assessing the presence of visual field defects (VFD) through procedures
such as perimetry is an essential aspect of the management and diagnosis of ocular
disorders. However, even the latest perimetric methods have shortcomings—a high
cognitive demand and requiring prolonged stable fixation and feedback through a
button response. Consequently, an approach using eye movements (EM)—as a natural
response—has been proposed as an alternate way to evaluate the presence of VFD.
This approach has given good results for computer-simulated VFD. However, its use in
patients is not well documented yet. Here we use this new approach to quantify the
spatiotemporal properties (STP) of EM of various patients suffering from glaucoma and
neuro-ophthalmological VFD and controls.

Methods: In total, 15 glaucoma patients, 37 patients with a neuro-ophthalmological
disorder, and 21 controls performed a visual tracking task while their EM were being
recorded. Subsequently, the STP of EMwere quantified using a cross-correlogram analy-
sis. Decision trees were used to identify the relevant STP and classify the populations.

Results: We achieved a classification accuracy of 94.5% (TPR/sensitivity = 96%,
TNR/specificity = 90%) between patients and controls. Individually, the algorithm
achieved an accuracy of 86.3% (TPR for neuro-ophthalmology [97%], glaucoma [60%],
and controls [86%]). The STP of EM were highly similar across two different control
cohorts.

Conclusions: In an ocular tracking task, patients with VFD due to different underlying
pathology make EM with distinctive STP. These properties are interpretable based on
different clinical characteristics of patients and can be used for patient classification.

Translational Relevance: Our EM-based screening tool may complement existing
perimetric techniques in clinical practice.

Introduction

Assessing the presence of visual field defects (VFD)
is a critical aspect of diagnosing the presence of
many ocular disorders such as glaucoma and age-
related macular degeneration. In the context of

neuro-ophthalmology, VFD are useful to localize
the site of lesions in the visual pathway. Besides this,
the visual fields are helpful to monitor patients with
recurring neuro-ocular diseases such as pituitary
adenomas or optic neuropathy and to understand
their visual abilities on daily-life tasks during
rehabilitation.1
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The most common methods to determine the
presence of VFD are standard automated perimetry
(SAP) and frequency doubling technology (FDT)
perimetry. Although clinically very useful, these
standard methods have some limitations that can
prevent a proper visual field assessment in various
clinical populations, such as the elderly, people with
cognitive impairments, and young children. We will
address these limitations below in more detail.

If a new method could overcome these limitations,
it could be used to screen for VFD also in such popula-
tions. In this study, we ask whether a recent approach
based on analyzing eye-movements (EM) made during
a tracking task could fulfill this role.2–4 Specifically, we
will quantify the spatiotemporal properties (STP) of
EM of a group of patients suffering from glaucoma or
neuro-ophthalmologic disorders. Subsequently, we will
determine whether classifying these properties can be
used to reliably screen for VFD.

SAP has a number of limitations that render it
problematic for various patient groups. It is cogni-
tively demanding—for example, the patient has to
keep their eyes fixated on a central cross for nearly
10 minutes while a small light is being projected
at them. Although recent protocols such as SITA-
Faster (Swedish Interactive Thresholding Algorithm)
can shorten this duration, it can still be discomfort-
ing because one’s natural reflex is to look toward
any suddenly-appearing visual stimulus. Moreover,
the technique requires the patient to press a button
upon perceiving the stimulus. The cognitive and task
demands imply that there is a learning curve associated
with performing the test, which may interfere with the
goal of catching the disorder. Although the associated
false-positive and false-negative responses are informa-
tive about performance in a way, they increase test
duration and may reduce the reliability of the results.
FDT perimetry, on the other hand, requires much
less time. However, as with SAP, the method demands
stable fixation and manual responding. Furthermore,
FDT perimetry is poor at differentiating hemianopic
and glaucomatous VFD.5

Methods such as SAP and FDT rely on discrete and
trial-based psychophysicalmethodswherein the subject
presses a button if they perceive the stimulus. However,
in daily life, the response to a natural stimulus is seldom
discrete. Rather, it is in accordance with the statis-
tical structure and dynamics of the stimulus.6 Prior
studies3,7 therefore have turned to continuous tracking
of stimulus position to model behavior. For example,
it is possible to derive the sensitivity of detecting a
stimulus from someone’s ability to track that stimu-
lus using a computer mouse or joystick.3,8,9 The need
for such a conscious manual response can be elimi-

nated by tracking EM.10 EM are intuitive to make—
if a person detects a suddenly-appearing visual stimu-
lus in a particular position, they are inclined to direct
their eyes to that location. Consequently, a continu-
ous assessment of EM in a tracking paradigm has
the potential to overcome some of the limitations of
SAP/FDT.

For this reason, we have previously developed an
approach in which EM were measured while partici-
pants performed a continuous stimulus-tracking task.3
The Eye-Movement Correlogram (EMC) method2 was
subsequently applied to the data for quantifying the
STP of the EM. The intuition behind this spatiotem-
poral approach is the following: if a participant’s visual
sensitivity is reduced due to the presence of a VFD,
then one can expect temporal delays in their smooth
pursuit of a target. Moreover, if the participant is
unable to track a stimulus because of a VFD block-
ing their view on it, they must search for it—which
will result in even longer temporal delays and increased
spatial errors. Furthermore, VFDs can be expected to
affect the process of EM generation because of alter-
ations in the balance between saccade generation and
fixation stabilization.11

To verify these aspects, the approach was applied
to classify participants with computer-simulated VFD
mimicking the acute effects of glaucoma, age-related
macular disease and hemianopia.4 It provided good
classification results (accuracy= 90%; true positive rate
[TPR] = 98%). However, while this provides proof that
the method could work in principle, it does not guaran-
tee that it will be useful in patients as there could be
a difference in the EM behavior of participants with
simulated and real scotomas,11 for example, because of
long-term adaptation or the learning of compensatory
strategies.

In this article, we hypothesize that the STP of
EM in a visual-tracking task will be systematically
and categorically different for three groups of partic-
ipants: patients with glaucoma, patients with a neuro-
ophthalmologic disorder, and healthy controls.

The procedure used in this article to test this hypoth-
esis can be summarized as follows: First, the partic-
ipants track a randomly moving blob on the screen
while their EM are being monitored through an eye
tracker. Next, we extract the STP of their EM using
the EMC technique. Then, to verify the stability of our
approach across ethnicity, we compare the STP of our
participants to those of a cohort of Caucasian partici-
pants. Subsequently, we train a decision tree algorithm
to classify the VFD based on the obtained features in
our participations. Finally, we try to understand the
observed STP in each of the patient groups as a conse-
quence of their pathology.
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Table 1. Group Demographics and Clinical Characteristics

Characteristics Neuro-Ophthalmologic Disorders (N = 37) Glaucoma (N = 15) Controls (N = 21)

Age (y) 36.9 (12.5) 43.9 (12.5) 38 (15.05)
Age Range (y) 18–73 24–61 20–67
Male (sex) 15 (40.5) 10 (66.6) 15 (71.4)
BCVA 0.78 (0.27) 0.72 (0.27) 0.89 (0.1)
BCVA Range 0.25–1 0.25–1 0.7–1
Subtypes Temporal disc pallor (n = 7) POAG (n = 9)

Toxic optic neuropathy (n = 5) Steroid-induced glaucoma (n = 2)
Optic neuritis (n = 4) JOAG (n = 3)

Pituitary adenoma (n = 6) PACG (n = 1)
TONP (n = 3)

Secondary optic atrophy (n = 2)
Papilloedema (n = 4)

IIH (n = 2)
NAION (n = 2)

Brain infarction with parietal lobe involvement (n = 1)
Brain infarction with occipital lobe involvement (n = 1)

Values are represented asmean (SD) or number (%). The P value for the differences in age groupmeans for the three groups
was 0.22.

IIH, idiopathic intracranial hypertension; JOAG, juvenile open-angle glaucoma; NAION, nonarteritic anterior ischemic optic
neuropathy; PACG, primary angle closure glaucoma; TONP, temporal optic nerve pallor.

Methods

Ethical Approval

The ethics board of the All India Institute of
Medical Sciences–Delhi (AIIMS) and Indian Institute
of Technology–Delhi (IITD) approved this study. All
participants provided written informed consent before
participation. The study adhered to the tenets of the
Declaration of Helsinki.

Participants

Nineteen patients with glaucoma, 43 patients with a
neuro-ophthalmologic disorder, and 21 controls volun-
teered to participate. All patients with glaucoma and
neuro-ophthalmologic disorder were recruited from
AIIMS. The inclusion criteria for the patient group
were diagnosed patients with neuro-ophthalmologic
disorders or glaucomawith best-corrected visual acuity
(BCVA) of 6/36 or better and having stable and reliable
visual fields. The inclusion criteria for the controls
were having intact visual fields with BCVA of 6/9
(0.67 or ≤0.17 logMAR) or better in both eyes. The
exclusion criteria for the patients were having ambly-

opia, nystagmus, strabismus, or any conditions that
affect the extraocular muscles. The exclusion criteria
for both groups were subjects below the age of 18 years,
subjects with astigmatism higher than two diopters.
The glaucoma patient group included participants
with primary open angle glaucoma (POAG), steroid-
induced glaucoma, juvenile open-angle glaucoma,
and primary angle closure glaucoma. The neuro-
ophthalmologic disorder group included participants
with temporal disc pallor, toxic optic neuropathy,
optic neuritis, pituitary adenoma, temporal optic
nerve pallor, secondary optic atrophy, papilledema,
idiopathic intracranial hypertension, and nonarteritic
anterior ischemic optic neuropathy. Table 1 shows
the demographics of all the included participants. Six
participants with neuro-ophthalmologic VFD and four
participants with glaucoma were excluded because
of poor eye tracking calibration and data. In total,
15 patients with glaucoma, 37 patients with neuro-
ophthalmologic VFD, and 21 controls were included
in this study. Additionally, to verify the stability of the
method across ethnicity, we also included data from 48
Dutch controls performing the same experiment (eight
observers per decade; age-range: 30–79 years; fourmale
per decade). The data were collected at Royal Dutch
Visio, Haren, The Netherlands.12
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Table 2. Visual Field Defects Observed in the Neuro-
Ophthalmology Category

Visual Field Defects No. of Eyes (n = 64)

Hemianopia 10
Generalized constriction 10
Paracentral scotoma 9
Within normal limits 8
Enlargement of blind spot 8
Peripheral scotomas 6
Quadrantanopia 4
Altitudinal 4
Bitemporal hemianopia 2
Biarcuate 2
Central scotoma 1

Table 3. Visual Field Defects Observed in the
Glaucoma Category

Visual Field Defects No. of Eyes (n = 28)

Paracentral scotoma 7
Generalized constriction
with central or temporal
sparing

6

Arcuate 6
Within normal limits 4
Generalized constriction 3
Biarcuate 2

Ophthalmic Data

All participants were refracted, and the BCVA was
documented using a Snellen chart with optimal correc-
tion for the viewing distance. The BCVA (in decimal
units) of the three groups is shown in Table 1. This
was followed by a visual field assessment for each
eye on a Humphrey Field Analyzer (HFA; Carl Zeiss
Meditec, Jena,Germany) using the 30-2 grid,Goldman
III stimulus and the Swedish Interactive Threshold
Algorithm Fast (SITA-Fast). Tables 2 and 3 show
the different types of VFD observed in the neuro-
ophthalmology and glaucoma patient groups. Based on
the Hodapp-Parrish-Anderson classification13 of the
worse eye, the glaucoma group comprised five early-
stage, three moderate, two advanced and five severe
patients, and the neuro-ophthalmology group had
eleven early-stage, nine moderate, thirteen advanced
and four severe patients.

Stimulus and Eye Tracking Apparatus

The experiment was designed and conducted with
custom made scripts in MATLAB R2018b using the

Psychtoolbox14,15 and the Tobii Pro Software Devel-
opment Kit (Tobii, Stockholm, Sweden). The gaze
positions were acquired with a screen-based Tobii
T120 eye-tracker (Tobii, Stockholm, Sweden) with
a sampling frequency of 120 Hz, down-sampled to
60 Hz to match the refresh rate of the stimulus display
monitor of the Tobii T120 eye tracker. The task was
done monocularly using a Tobii Infrared-transparent
occluder so that the eye tracker could monitor the
gaze position unhindered while occluding the subjects’
eye.

The stimulus was a Gaussian luminance blob of
0.43° in diameter (equivalent to Goldman size III)
moving according to a Gaussian random walk on
the screen. The luminance blob was presented at
a peak luminance of ∼ 165 cd/m2 on a uniform
grey background (∼ 150 cd/m2), effectively having a
contrast of 5% from the background. The 2D random-
walk path had two modes: (1) the blob could move
in a “smooth” mode where it moves continuously or
(2) “displaced” mode where the blob jumps randomly
to a new location on the screen every two seconds.
The participants were seated comfortably and asked to
place their chin on a chin-rest placed at a distance of
60 cm from the screen (with integrated eye tracker).
Next, a five-point custom-made eye calibration was
performed. Subsequently, participants were asked to
“follow the moving blob.” They were allowed to blink
as required. The experiment consisted of six trials of
20 seconds each. A participant could take a short
break at the end of a trial if they felt a need for
this.

Eye-Tracking Data Pre-Processing

Wefirst obtain the eye positions from the eye tracker
in terms of screen coordinates. These positions are then
converted to visual field coordinates. Subsequently, we
correct for eye blinks by the following:

1. We differentiate the eye positions to obtain the
horizontal and vertical gaze velocities.

2. In the vertical gaze velocity, we mark all spikes
which go higher than the threshold of 190°/sec,
and that are followed either by a flat line (first
derivative of vertical gaze velocity is 0) or some
missing data. These portions of the time series
occur due to how video-based eye trackers record
eyeblinks, that is, they wrongly interpret it as the
pupil suddenly shifting upward when the eyelids
close.

3. Next, we record the last valid position and dilate
the blink by five samples before and after the
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Table 4. A Description of the Spatiotemporal Properties Along With Their Corresponding Ranges

Category Property Name Description Range

Spatial 1. PED: Amplitude Describes the most frequent positional error observed.
Higher values of amplitude for a mean of zero indicates
better performance.

[0 1]

2. PED: Mean Describes the spatial offset. Values (in visual degrees)
closer to zero indicate better performance.

[0 ∞]

3. PED: Standard Deviation Describes the spatial uncertainty: the spread of the
positional deviations. Lower values indicate better
performance.

[0 ∞]

4. PED: adjusted R2 Describes how close the positional error distribution
resembles a Gaussian distribution. Values closer to 1
indicate better performance.

≤1

Temporal 5. Average Velocity CCG:
Amplitude

Shows the maximum correlation between the stimuli and
gaze velocities. Higher values indicate better
performance.

[−1 1]

6. Average Velocity CCG: Mean Describes the temporal lag between stimuli and gaze
velocities (in ms). Lower values indicate better
performance.

[0 ∞]

7. Average Velocity CCG:
Standard Deviation

Describes the temporal uncertainty: the time window (in
ms) in which the observer is uncertain in their ability to
track the stimulus. Lower values indicate better
performance.

[0 ∞]

8. Average Velocity CCG:
Adjusted R-squared

Describes how close the temporal tracking performance
resembles a Gaussian distribution. Values closer to 1
indicate better performance.

≤1

Integrated 9. Observation noise variance Describes the noise internal to the observer Sensory noise
estimated by measuring the variance of the
observational noise using a flipped Kalman filter. Lower
values indicate better STP.

[0 ∞]

10. Similarity Cosine similarity between gaze and stimulus vectors of
positions. Higher values indicate better STP.

[0 1]

CCG, cross-correlogram; PED, positional error distribution.

period to define the beginning and the end of the
blink period.

4. Finally, we fill the missing data with estimates
inferred from forward and reverse autoregres-
sive fits16 of 10 samples preceding and after the
defined blink period.

Note that we discard a trial if the data losses caused
by blinks or missing data exceedmore than 33% of that
entire trial’s duration.

Eye Movement Correlogram

Once the blink-filtered signal is obtained, we
proceed to perform what is known as the EMC. A

detailed treatment on the topic is available in Mulli-
gan et al.2 We briefly describe the procedure here.
EMC is an analytical tool that can be used to quantify
the spatial and temporal relationships between the
time series of a target stimulus and the correspond-
ing response. It involves correlating the two time-
series as a function of the time-lag between them.
In our experiment, we apply the EMC technique to
the stimulus and eye response velocities to quantify
the temporal features of the EM. Because our exper-
imental paradigm measures the horizontal and verti-
cal components of the eye positions, each trial yields
a “Horizontal Cross-Correlogram” and a “Vertical
Cross-Correlogram,” respectively. Below, we describe
the STP of EM in detail.
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STP

We distinguish between three categories of
spatiotemporal properties:

A. Spatial Properties: These refer to the spatial
accuracy of a participant’s EM behavior and are
quantified as follows:

(1) For every trial, we obtain the positional devia-
tions between the stimulus and eye positions at
each time instant.

(2) Next, we concatenate the positional errors of all
the trials and obtain a probability distribution of
the spatial errors across all trials.

(3) Subsequently, we fit a 1D Gaussian model to
this probability distribution. This is the positional
error distribution.

(4) Finally, we obtain the spatial properties from the
parameters of the Gaussianmodel, that is, ampli-
tude, mean (μ), standard deviation (SD) (σ ) and
variance explained (adjusted R2).

B. Temporal Properties: These are the parameters
that describe the temporal aspects of EM and are
obtained as follows:

1) For every trial, we first differentiate the stimulus
positions and the gaze positions with respect to
time to obtain their corresponding velocities.

2) Next, we perform a normalized cross-correlation
between the stimulus and the gaze velocities as a
function of the time-lag. The time lag varies from
−1 to +1 seconds with a step-size of 0.016 (i.e.,
the interframe interval).

3) Each trial produces two cross-correlograms
(CCG) – one each for the horizontal and vertical
components of the stimulus and eye response.

4) Then, we average all the CCGs obtained over
the number of trials. Furthermore, we fit a one-
dimensional Gaussian model to the averaged
CCG.

5) Finally, we obtain the temporal properties from
the parameters of the Gaussian model, that is,
amplitude, mean (μ), standard deviation (σ ), and
variance explained (adjusted R2).

C. Integrated STP: These properties capture both
the spatial errors and the temporal delays of the eye
movements with respect to the stimulus. We consider
two such properties:

1) Cosine Similarity: It describes the amount of
similarity between the stimulus and the gaze
positions, irrespective of their length. This metric
is useful as sometimes the stimulus and gaze

position vectors may be far in terms of their
Euclidean distances, but could be much closer
in terms of their orientations. It is computed as
follows:

Cosine Similarity = Stimulus PositionsTGazePositions
|Stimulus Positions ‖GazePositions | , (1)

where T stands for transpose of the vector
containing the stimulus positions and |.| refers to
the magnitude of the vector.

2) Observation Noise Variance: Traditionally,
Kalman filters have two sources of variance
present in them: (1) Target displacement variance,
that is, the variance associated with driving the
target position at each time step and (2) obser-
vation noise variance—the variance associated
with the present sensory observation.3 Here we
use the latter as an estimate of the participant’s
spatiotemporal tracking abilities. If the stimu-
lus is perceived well by the participant, then
the gaze (observation) noise variance is low as
compared to the stimulus displacement variance.
This would mean that the difference between the
prior stimuli position estimate and the current
noisy gaze data is mostly due to changes in the
position of the stimuli. Consequently, the previ-
ous estimate is weighted lower than the current
observation. Given that we already know the
stimuli positions and the corresponding gaze
observations, we “overturn” the Kalman filter
and estimate the noise parameter instead.

The STP along with their corresponding
ranges are summarized in Table 4.

Test for the Stability of the STPs Across
Ethnicity

Once the STP were obtained from the data, we first
wanted to check whether ethnicity has an effect on
these features, that is, whether the STPof EMof Indian
controls would differ from those of Dutch controls. To
test this out, we computed the modified Z-scores of
each of the STP in the Indian control group against
the Dutch normative group. The reason behind using
modified Z-scores instead of the standard Z-score is
because the former uses the median as a measure of
deviation instead of the mean. Modified Z-scores are
therefore less influenced by outliers and more robust.17
They are computed as follows:

Mi = xi − x̄
1.486MAD

, (2)

where x̄ is the median of the data and MAD refers
to the Median Absolute Deviation, which is further
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defined as:

MAD = median
(∣∣Yi − Ȳ

∣∣) , (3)

where Ȳ refers to the median of the data.
Note that the experimental stimulus at Royal Dutch

Visio was similar to that shown in AIIMS. Partic-
ipants viewed both modes of the experiment on a
Tobii 60 XL (Tobii, Stockholm, Sweden) eye tracker
at a distance of 60 cm. The stimulus was a Gaussian
luminance blob of 0.42° moving in a two-dimensional
Gaussian random walk. The blob had a luminance
of ∼160 cd/m2 against a uniform gray background
(∼140 cd/m2)—which effectively had a Weber contrast
of 5% from the background.

Feature Selection and Participant
Classification

After extracting the STP from the EM data, we
proceed to train a decision tree (DT)18 classification
model to discriminate between the different categories
of patients and controls. They are constructed by
splitting a set of labelled features (feature-space) at
every “node” into smaller branches (sub-spaces) before
converging onto a “class” or decision—called the
“leaf.” In our case, the DTs begin with a 40-dimension
feature space, that is, from the 40 STPs (10 each
× horizontal & vertical components × for “smooth”
and “displaced” modes). Subsequently, they split into
smaller branches based on the “Gini’s diversity index”
(GDI) impurity criterion—a measure of homogeneity
of the class labels reaching a particular node. The GDI
is computed as follows:

1 −
∑

f 2(i), (4)

where f(i) is the fraction of the number of examples
in the dataset for class i (with i being an indicator for
control, glaucoma, and neuro-ophthalmologic disor-
der groups) arriving at a specific node. The GDI at
a node returns a value of 0 indicating “purity” if it
has samples of the same class, and the node becomes
a leaf, thereby completing the decision. On the other
hand, the GDI returns a positive value if there are
samples from different classes arriving at a node. The
node is then termed “impure,” and the node is subse-
quently split to minimize the GDI to converge onto a
leaf eventually. The parameters of the model, such as
the maximum number of tree splits and depth of the
decision tree were tuned according to a 10-fold cross-
validation technique.Here, the data are first partitioned
to 10 folds. Subsequently, at every stage, one of the
folds is used for testing while the remaining nine are
used for training. The parameters leading to the least

error across all the folds are then used to build the final
model on our dataset. This technique is used to prevent
overfitting and is useful for relatively small datasets
such as ours, wherewewould like tomaximize our error
estimation.19

Performance Metrics

The metrics evaluating the patient-categorization
model are described below:

1) Sensitivity/true-positive rate (TPR): It refers to
the proportion of subjects who test positive in a
particular category among all the subjects who
actually have the condition.

TPRclass = No. of true positives
No. of true positives + No. of f alse negatives (5)

2) Specificity/true-negative rate (TNR): It refers to
the proportion of subjects who test negative in
a particular category among all the subjects who
actually do not have the condition.

TNRclass = No. of true negatives
No. of true negatives + No. of f alse positives (6)

3) Positive predictive value (PPV): It refers to the
probability that a subject in a specific class truly
has the specific condition, given that a positive
result has already been seen.

PPVclass = No. of true positives
No. of true positives + No. of f alse positives (7)

4) Negative predictive value (NPV): It refers to the
probability that a subject in a specific class truly
does not have the specific condition, given that a
negative test result has already been seen.

NPVclass = No. of true negatives
No. of true negatives + No. of f alse negatives (8)

Results

To summarize the results, we found that the STP of
EM are consistent across Indian and Dutch controls.
Subsequently, we note that the neuro-ophthalmic
patients had the highest average smooth pursuit latency
as compared to glaucoma and the control groups.
In terms of the positional error distributions, these
patients also had higher standard deviations (positional
and temporal uncertainties) for both the “smooth”
and the “displaced” modes. The glaucoma group of
patients, on the other hand, had a higher average
latency compared to the rest of the groups in the
“displaced” mode. Furthermore, we achieved a classi-
fication accuracy of 94.5% (TPR/sensitivity = 96%,
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Figure 1. Examples of a single trial of a healthy participant in the “Smooth” (a, b) and the “Displaced” (c, d) modes. The movement of the
stimuli is shown in blue, and the participant’s gaze positions are shown in red. (a, c) Horizontal components of the stimuli and gaze positions.
(b, d) The corresponding vertical components.

TNR/specificity = 90%) between the patients and
controls by constructing a screening model that uses
STP of EM and decision trees. Finally, in terms of
individual categorization into one of the three groups,
the machine-learning algorithm achieved an accuracy
of 86.3% (TPR for neuro-ophthalmology = 97%,
glaucoma = 60%, and controls = 86%). We describe
these results in more detail below.

STP of Different Groups

Table 1 summarizes the demographics of the three
groups. They did not differ significantly in age. Figure 1
shows six trials of a healthy participant in the “smooth”
and the “displaced” mode. The position of the blob is
depicted in blue while the eye positions are shown in
red. The left panel of the figure shows the horizontal
components of the stimuli and eye positions, while the
right panel shows the corresponding vertical positions.

One can notice visually that the blue and red time-
series signals almost overlap with one another, indicat-
ing that the subject has followed the stimuli reasonably
well. Figure 2a shows the normalized average cross-
correlogram for the same subject.We observe a positive
peak at a latency of 0.16 seconds (or 160 milliseconds)
for the horizontal component and 0.17 seconds for the
vertical one. Figure 2b shows the positional error distri-
bution of the healthy subject - a narrow bell-shaped
curve which has large values near zero-error - which is
expected in a typical healthy subject. A curve fit to this
distribution is used for subsequent analysis. Figures (3a
& 3b) depict the STP asmentioned above of the healthy
subject in the “displaced”mode. Given that the partic-
ipant has to keep making saccades to keep up with the
jumping blob, the latencies are a bit more (0.29 secs and
0.32 secs) as compared to those in the “smooth”mode.
However, the positional error distributions still retain
their shallow tails.
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Figure 2. (a, c, e) The average velocity cross-correlograms for a healthy, a glaucoma and a neuro-ophthalmological participant in the
“Smooth Mode” (blue), respectively. (b, d, f) The positional error distributions for the corresponding three individuals.

Figures 2c and 2d show that in the “smooth”mode,
the glaucoma subject performs similar to the control
subject with low temporal lags (0.2 secs and 0.23 secs)
and positional uncertainty values (0.73 and 0.72) in the

error distributions. However, as seen in Figures 3c and
3d, it is the “displaced mode” where the subject gets
flagged into the glaucoma group of patients with the
CCG showing substantial temporal delay (0.42 seconds



Eye-Movements to Assess Visual Field Defects TVST | February 2021 | Vol. 10 | No. 2 | Article 1 | 10

Figure 3. (a, c, e) The average velocity cross-correlograms for the same (the healthy, the glaucoma, and the neuro-ophthalmologic) partic-
ipant shown in Figure 2 in the “Displaced Mode” (orange). (b, d, f) The positional error distributions for the corresponding three individuals.

and 0.45 seconds) and the positional error distribu-
tion having large standard deviation (positional uncer-
tainty) (2.88 and 2.58) with fatter tails.

Figure 4 shows the group means and the 95% confi-
dence intervals of the three groups. Here, we see that
when the blob moved smoothly, the mean tempo-

ral lag of glaucoma patients was higher (0.2 seconds
and 0.24 seconds) than the controls (0.18 secs and
0.22 secs) but lower than the neuro-ophthalmic group
of patients (0.23 seconds and 0.26 seconds) for the
horizontal and vertical gaze components, respectively.
However, when the blob jumped randomly every two
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Figure 4. The group means and the corresponding 95% confidence intervals of the feature Temporal Lag for all the three groups.

seconds, the glaucoma group had the highest mean
temporal lag across all subjects (i.e., 0.38 seconds and
0.45 seconds) as compared to the neuro-ophthalmic
group (0.35 seconds and 0.38 seconds) and the controls
(0.32 seconds and 0.36 seconds).

Figures 2e and 2f show a typical neuro-ophthalmic
patient exhibiting more considerable delays during
smooth pursuit (0.24 seconds and 0.3 seconds) than
the rest of the showcased subjects. In the “displaced
mode,” the patient exhibits a large spatial uncertainty
(5.55 and 4.95) as depicted by the standard deviation
of the flat positional error distributions.

Test for Stability Across Ethnicity

Figure 5 shows the spider plots depicting the
modified Z-scores of all the STP in both the exper-
iment modes for the two ethnic control cohorts. A
particular feature is considered to be an outlier if
it differs from the normative population by ± 2 SD
from the median. However, as seen in the figure, the
spatiotemporal parameters of the EM made by Indian
controls in both the modes are well within the normal-
ity bounds. In fact, the spatiotemporal signatures of the
two cohorts almost overlap with each other.

Decision Models

Figure 6 shows the “Screening” Model, that is, the
decision tree model that was constructed to separate
the healthy from either of the ophthalmic disorders
in our group based on their EM. To understand how
the decision tree works, we provide some explana-
tion. At this stage, it is assumed that a participant has
performed both the “smooth” and “displaced” variant
of the experiment. For easy readability, we have color

coded “smooth”mode features in blue and “displaced”
mode features in orange.

The model first checks for the cosine similarity of
the vertical eye movements in the “displaced” mode
of the experiment. This is called the “root” of the
decision tree and is indicative of themost useful feature
in the entire list. If the similarity is more than 0.74,
then the model subsequently checks for the variance
explained by the positional error distribution in the
“smooth” mode. If this value is higher than 0.99, then
the subject is classified as a “healthy” subject (coded
in green). Similarly, other combinations can lead to
“healthy” or “patient” (coded in red) categories—such
terminal categories are called a “leaf.”Usually, a leaf is
dominated by one of the classes; however, there can be
a minority of the other class—these are misclassifica-
tions and affect the overall accuracy of the model. This
model achieved a classifying accuracy of 94.5% after
performing a “Leave-One-Out” cross-validation proce-
dure. The model had a true-positive rate/sensitivity—
a measure crucial in screening procedures—of 96%
and a specificity of 90%. Figure 7 shows the decision
tree with the useful features for individual categoriza-
tion of a participant into one of three categories, i.e.
healthy, glaucoma or neuro-ophthalmological disorder.
This model achieved an accuracy of 86.3% (TPR for
the neuro-ophthalmologic group = 97%, glaucoma =
60%, and controls = 86%).

Evaluation of the Patient-Categorization
Model

Table 5 shows the confusion matrix for the individ-
ual patient-categorization model shown in Figure 7.
The values on the principal diagonal of the matrix
represent the number of participants correctly classi-



Eye-Movements to Assess Visual Field Defects TVST | February 2021 | Vol. 10 | No. 2 | Article 1 | 12

Figure 5. Spider plots depicting themodified Z-scores of the spatiotemporal properties of the horizontal and vertical eye components for
Indian against the Dutch control cohort. (a, b, “Smooth Mode”; c, d, “Displaced Mode”).

Figure 6. Decision tree model for screening patients from healthy
controls. The terminal nodes at each level of the tree indicate the
number of correctly classified and misclassified (if any) subjects.

fied in the specific category. Off-diagonal values repre-
sent the misclassifications. Table 6 shows the statistics
of the confusion matrix such as the true- and false-
positive results, and the true- and false-negative results

Figure 7. Decision tree model for screening the individual patient
groups from healthy controls.
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Table 5. The Confusion Matrix for the Individual Patient-Categorization Model

Predicted Class

True Class Controls Glaucoma Neuro-Ophthalmology

Controls 18 — 3
Glaucoma 2 9 4
Neuro-Ophthalmology — 1 36

Table 6. The Confusion Matrix Statistics Showing the Number of True- and False-Positives and True- and False-
Negatives Across the Three Groups

Class True Positives False Positives False Negatives True Negatives

Controls 18 2 3 50
Glaucoma 9 1 6 57
Neuro-Ophthalmology 36 7 1 29

Table 7. Additional PerformanceMetrics Showing the Sensitivity (TPR), Specificity (TNR), Positive Predictive Value
(Precision) and Negative Predictive Value For All the Three Groups

Performance Metrics

Class Sensitivity Specificity Positive Predictive Value Negative Predictive Value

Controls 86% 96% 90% 94.3%
Glaucoma 60% 98% 90% 90.4%
Neuro-Ophthalmology 97% 81% 83.7% 96.6%

as described in the preceding section. Table 7 shows
additional performance metrics such as the sensitivity,
specificity, PPV, and NPV for the model.

Discussion

The main findings of this study are that eye
movement patterns of patients with glaucomatous
and neuro-ophthalmologic VFD vary sufficiently from
healthy people such that they can be used for screen-
ing purposes. The STP of our method describe their
oculomotor behavior and agree well with the current
literature on this.Moreover, these STP are stable across
ethnicity. An explainable decisionmodel based on these
STP is able to classify the patients based on their EM
behavior. Below, we describe these aspects in more
detail.

Screening Patients Based on the STP of Eye
Movements

There is precedent in using EM to examine the
effects of VFD – they have been applied in the context

of driving,20 face recognition,21 and reading.22 Here,
we attempt to screen patients based on their EM as
well. The “screening” decision tree model (see Fig. 6)
shows that the spatiotemporal feature cosine similar-
ity in the “displaced mode” is the most critical feature
in terms of discriminating the healthy from those who
have either a glaucomatous or neuro-ophthalmologic
VFD. Most of the patients (44/52) are categorized
as such, based on a reduced cosine similarity in the
“displaced mode.” In fact, the decision tree explains
that both the horizontal and vertical eye positions in
the “displaced mode” are dissimilar to that of the
stimulus position as compared to those of controls.
Furthermore, the decision tree selects two other distin-
guishing features: (1) the adjusted R2 of the Gaussian
fit model in the “smooth mode” average velocity
cross-correlogram. (2) The standard deviation of the
positional error distribution in the “displaced” mode.
The former feature is an indication of how well
the latency of smooth pursuit resembles a Gaussian
whereas the latter describes the spatial uncertainty in
the visually driven eye movements while searching for a
blob that jumped randomly every two seconds. Overall,
the decision model makes use of two properties from
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each of the “smooth” and the “displaced” modes to
screen for patients.

Oculomotor Behavior in Glaucoma

Our group of glaucoma patients had lower
spatiotemporal fidelity as compared to that of controls,
that is, with reduced cosine similarity. A closer look
at the “Patient Categorization” decision tree model
in Figure 7 reveals that glaucoma patients are catego-
rized as such based on at least 3 “displaced mode”
features, namely: cosine similarity, temporal lag of the
average velocity cross-correlogram, and the standard
deviation of the positional error distribution. This
pattern is interpretable as glaucoma patients typically
have peripheral visual field loss. Consequently, they
would have had to make a large number of saccades to
search for the luminance blob when it jumped to a new
random location every two seconds. More specifically,
the glaucoma group had both a higher temporal lag
and spatial uncertaintywhen they had tomake saccades
as compared to the control and neuro-ophthalmologic
disorder groups (these can be observed by tracing
the decision paths leading to the glaucoma category -
shown in violet). Such observations are reported in the
literature as well—Kanjee et al.23 report that saccadic
eye movements were significantly delayed in patients
with early, moderate and advanced glaucoma.Najjar et
al.24 also report that POAG patients had a much lower
average saccade velocity as compared to controls when
the visual target was presented in the peripheral region.
Moreover, they observed that the saccades made by
these patients were hypometric and had significantly
reduced amplitude and gain as compared to controls.
Another interesting observation is that the “smooth”
mode is not a necessary condition for glaucoma catego-
rization because the “displaced” mode features suffice
to do so. Nevertheless, for clinical relevance, we note
that during smooth pursuit, the glaucoma group had
a worse time lag than the controls but did not differ
much as compared to the neuro-ophthalmologic disor-
der group (see Fig. 4). Similar observations on smooth
pursuit in glaucoma have been made wherein POAG
patients watched a kinetic target and had impaired
latency and accuracy of eye movements as compared
to those of normal observers.25

Oculomotor Behavior in
Neuro-Ophthalmological Disorders

The neuro-ophthalmology disorder group also had
lower spatiotemporal fidelity as compared to the
controls.However, what sets it apart from the glaucoma

group is the fact that they showed higher temporal
lags than the glaucoma group during smooth pursuit.
These observations can be expected as patients with
unilateral cerebral lesions may have deficient smooth
pursuit when stimuli targets move towards the site
of lesion.26,27 Meanwhile, in the “displaced mode,”
the glaucoma group of patients had higher lags as
compared to those of the neuro-ophthalmologic group.
About half of the participants under the neuro-
ophthalmic group had higher standard deviations in
the positional error distribution for the “displaced
mode.” This indicates that spatial uncertainty is higher
while performing saccades—which is consistent with
the notion that saccadic dysmetria is likely to occur
primarily for moving targets.28,29 The temporal lag and
uncertainty during smooth pursuit are also higher than
the rest for at least half of the participants in the group.
This pattern can be attributed to the fact that tempo-
ral uncertainty increases as the complexity in the eye
movement planning is under risk due to the increase in
brain injury besides age.Moreover, an increase in mean
latency also increases the standard deviation of the eye
movement duration.30

STPs of EM are Stable Across Indian and
Dutch Controls

Studies have shown that eye tracking precision can
vary for different eye colors31,32; for example, eye
trackers typically respond with lower precision and
accuracy for subjects with bluish eyes as compared to
brownish ones.33 Consequently, we wanted to check
whether a combination of ethnicity and eye track-
ing setup would affect the STP of EM. However, as
seen in Figure 5, both the control cohorts are similar
in terms of the STP of their EM. We can infer two
things from the result: (1) The EM patterns of the
two ethnic groups were similar in response to the
stimuli shown. (2) Our method accounts for at least
some differences in eye tracking setups—such as screen
size, monitor refresh rate, and viewing distances. The
latter suggests that our method may be used across
different populations and in different eye tracking
setups.

Using Decision Trees as Clinically Explainable
Machine Learning Models

There are three main reasons why, at present, DTs
are our preferred choice of classification: (1) Although
deep learning methods far exceed human performance
when it comes to classification tasks, their training
requires using enormous datasets. Moreover, they are
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considered as “black-box” models with no explicit
knowledge representation. Although such approaches
are generally fine for tasks such as natural image or
text classification, it is crucial to have “explainable
artificial intelligence (XAI)” models when it comes
to the medical field.34 Because a clinician could be
asked by a patient to explain why they took a medical
decision, it would be eventually imperative for them
to explain and retrace an AI-assisted clinical decision.
Given that we have a limited amount of data and
current deep learning-based XAI-approaches are still
under development, we used a relatively uncompli-
cated and explainable technique of DTs. (2) DTs,
by design, are able to perform feature selection and
consequently reduce the number of features to be
considered.35 (3) DTs have an added advantage of not
requiring distributions or prior probabilities associ-
ated with different classes (in our case, associated with
glaucoma, neuro-ophthalmologic disorder or control
groups).

Limitations and Future Directions

There are some limitations to our current study.
We used a blob with fixed size and luminance as the
target stimuli in our experiment. Now, the ratio of
the background luminance to the target luminance—
also known as “differential light sensitivity” (DLS)—
is related to the receptive field size of the ganglion
cells.36 For small stimuli, the DLS is linearly related
to the stimulus size because the human visual system
summates the luminance information. However, in our
case, there are two issues: First, we used a Goldman
size III blob, and for these larger sizes, the luminance
information summation is incomplete and depends
on the retinal eccentricity.37 Second, visual sensitivity
decreases almost linearly with age.38 Consequently, it
would be useful to investigate the effects of adaptive
size (as a function of eccentricity), luminance, and
extent of the blob jump in the “displaced mode”on the
screening results of our approach.

Another limitation is that currently, our approach
does not provide visual field maps such that they can
be compared directly with those provided by the SAP.
However, such maps would typically require a large
corpus of normative data, which is beyond the scope of
this study. Moreover, we stress the fact that at present,
our approach is to be considered primarily as a screen-
ing tool. In other words, to diagnose patients still
requires considering other sources of information as
well, such as ocular pressure, fundus photography, or
optical coherence tomography images.

Although we tested the stability of STP of EM on
two ethnic groups (Indian and Dutch), future studies
could consider testing larger sample sizes and cover-
ing more ethnic groups to verify the robustness of the
screening results. Future studies could also consider
comparing our method with other recent screening
methods—for example, fundus photo-based artificial
intelligence systems39,40 have shown promising results
in the context of glaucoma screening. Tablet41 and
virtual reality–based42 perimetric approaches have also
been developed and should be compared to EM-based
approaches.

Conclusions

EMmade in a continuous tracking paradigm can be
used as a basis to screen for the underlying VFD. We
find that the STP of EM are unique to patients with
glaucomatous VFD, neuro-ophthalmological VFD
and healthy controls, respectively. The method also
corroborates well with the clinical characteristics
of glaucoma and neuro-ophthalmologic disorders.
Moreover, the EM parameters are stable across ethnic-
ity and two eye tracking setups. Consequently, our
methodmay be used across different ethnicities and eye
tracking equipment. Our approach eliminates the need
for manual responses, such as required as in SAP and
FDT. We conclude that the test has clear potential as a
screening tool in clinical practice, particularly in groups
unable to perform SAP.
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