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Abstract 

Recent large-scale genome-wide association studies (GWAS) have identified a number of new genetic variants 

associated with breast cancer. However, the degree to which these genetic variants improve breast cancer diagnosis 

in concert with mammography remains unknown. We conducted a case-control study and collected mammography 

features and 77 genetic variants which reflect the state of the art GWAS findings on breast cancer. A naïve Bayes 

model was developed on the mammography features and these genetic variants. We observed that the incorporation 

of the genetic variants significantly improved breast cancer diagnosis based on mammographic findings. 

Introduction 

High hopes for using genetic profiling for personalized medicine have been, in part, driven by the rapid progress of 

genome-wide association studies, which continue identifying more common genetic variants associated with 

diseases with high population prevalence. In particular, the recent Collaborative Oncological Gene-environment 

Study (COGS) [1], which pooled large quantities of genetic data via a massive international collaboration, more than 

doubled the number of known susceptibility loci that are associated to common cancers (breast, ovarian and prostate 

cancers). For breast cancer, over 130 institutions have collaborated and identified 41 new breast cancer associated 

variants [2]. One way these genetic variants could be used in clinical breast cancer care is in individualized 

screening recommendations and personalized diagnosis. Early attempts to incorporate genetic variants into breast 

cancer risk models revealed modest improvements in risk prediction accuracy. For example, adding seven SNPs to 

the Gail model only increased the area under the ROC curve (AUROC) from 0.607 to 0.632 [3, 4]. When ten SNPs 

were added to the Gail model, the AUROC increased from 0.580 to 0.618 on another dataset [5]. Incorporating these 

genetic variants with the mammographic findings to assess individualized risk will be highly relevant to clinical 

breast cancer diagnosis. In our prior study, we showed that when 22 SNPs were added to the 49 mammography 

features—the standard descriptors collected by radiologists on mammograms—the AUROC of the model increased 

from 0.693 to 0.731 [6]. This increase is statistically significant (P=0.021) [6], but the 22 SNPs only reflect the 

discoveries from the breast cancer GWAS up to 2010.  

In this paper, we incorporated the new genetic variants and consolidated a list of 77 SNPs which reflect the state of 

the art of breast cancer GWAS. A great proportion of the new SNPs were contributed by COGS [2]. 41 SNPs were 

identified through a meta-analysis of 9 GWAS on 10,052 cases and 12,575 controls, and further showed significant 

association (P<5× 10��) on 45,290 cases and 41,880 controls. The list also includes the 22 SNPs used in Liu et al. 

[6] as well as another 14 SNPs identified by several other recent studies [7-13]. We incorporated these genetic 

polymorphisms with the descriptors that radiologists observe on mammograms using the standardized lexicon in 

breast imaging, the Breast Imaging Reporting and Data System (BI-RADS). These mammography features included 

the shape and the margin of masses, the shape and the distribution of microcalcifications, background breast density 

and other associated findings. We built naïve Bayes models, using the 49 mammography features together with the 

77 genetic variants. We observed that the inclusion of the genetic variants significantly improved the breast cancer 

diagnostic model. We discovered that the mammographic findings were more predictive for high-risk women, 

whereas the genetic variants were more predictive for low-risk women, which demonstrated the potential benefit of 

combining genetic variants and mammographic findings for personalized breast cancer diagnosis. 

Data 

[Subjects] The Personalized Medicine Research Project [14] at the Marshfield Clinic was used as the sampling 

frame to identify cases and controls. The project was reviewed and approved by the Marshfield Clinic IRB. The 

subjects were from a retrospective case-control design, and used in our previous study [6]. Women with a plasma 
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sample available, a diagnostic mammogram, and a breast biopsy within 12 months after the mammogram were 

included in the study. Cases were defined as women having a confirmed diagnosis of breast cancer obtained from 

the institutional cancer registry. Controls were confirmed through the Marshfield Clinic electronic medical records 

as never having had a breast cancer diagnosis by ICD-9 diagnosis code (and absence from cancer registry). Cases 

included both invasive breast cancer and ductal carcinoma in situ. We employed an age matching strategy to 

construct case and control groups that were similar in age distribution. We selected a control whose age was within 

five years of the age of each case. We decided to focus on high-frequency/low-penetrance SNPs that affect breast 

cancer risk as opposed to low frequency SNPs with high penetrance or intermediate penetrance. We excluded 

individuals who had a known high-penetrance genetic mutation.  

[Genetic Variants] Our study included the 77 genetic variants (in Table 1) which were identified by the recent 

large-scale genome-wide association studies. 22 of these SNPs were evaluated in the previous study of Liu et al. 

(2013) [6]. Among the 55 new SNPs, 41 were identified by COGS [2], and 14 SNPs were included based on several 

other recent studies [7-13]. It is estimated that the current list of SNPs explains 14% of familial breast cancer risk [2]. 

 [Mammography Features] Mammography is the most common breast cancer screening test, and the only one 

supported by multiple randomized trials demonstrating reduction in mortality rate [15]. There is a long history of 

development and codification of features observed by radiologists on mammograms. The American College of 

Radiology developed the BI-RADS lexicon to standardize mammographic findings and recommendations. The BI-

RADS lexicon consists of 49 descriptors, including the characteristics of masses and microcalcifications, 

background breast density and other associated findings. Mammography data was historically recorded as free text 

reports in the electronic health record, and thus it was difficult to directly access the information contained therein. 

We used a parser to extract these mammography features from the text reports; the parser was shown to outperform 

manual extraction [16, 17]. After extraction, each mammography feature took the value “present” or “not present” 

except that the variable mass size was discretized into three values, “not present”, “small” and “large”, depending on 

whether there was a reported mass size and whether any dimension was larger than 30mm.  

A BI-RADS assessment category was assigned to each mammogram by the interpreting radiologist, which indicated 

the radiologist's assessment of the absence or presence of breast carcinoma. In our study, the BI-RADS assessment 

category took values, with an order of increasing probability of malignancy, of 1, 2, 3, 0, 4a, 4, 4b, 4c and 5. We 

used the BI-RADS assessment category as the predictions from the radiologists. Our study only included diagnostic 

mammograms, and all the screening mammograms were excluded. For cases, we selected the mammograms within 

one year prior to diagnosis. For controls, we selected the mammograms within one year prior to biopsy. If there 

were multiple diagnostic mammograms during that one year time period, we selected the mammogram with a more 

suspicious BI-RADS category, with subsequent tiebreakers being recency and the number of extracted features.  

Model 

We built breast cancer diagnosis models using Naïve Bayes, which can be regarded as the weighted average of risk 

factors. Naive Bayes assumes that all features are conditionally independent of one another given the class [18]. 

Although this assumption seems strong, it generally works well in practical problems and provides easy 

interpretation of the risk contribution from different factors. In our experiments, we used the Naïve Bayes 

implementation in WEKA [19].  

In total, we constructed three types of models on different sets of features. The first model was built purely on the 49 

mammography features, namely the Breast Imaging model. The second type of model was based purely on genetic 

variants, namely the genetic models. Since we would like to align our study with previous work, we tested three sets 

of genetic variants. The first set consisted of the 10 SNPs in the study of Wacholder et al. (2010) [5]. The second 

included the 22 SNPs in the study of Liu et al. (2013) [6].  The last set was our full list of the 77 SNPs. We denote 

the three genetic models as Genetic-10, Genetic-22 and Genetic-77 models. The third type of model was built on the 

49 mammography features and the genetic variants together, namely the combined models. Since we had three sets 

of genetic variants with different sizes, we had three combined models, namely Combined-10, Combined-22 and 

Combined-77 models. In both the genetic models and the combined models, we handled the genetic variants in the 

following way rather than using original genotypes of each SNP. We only introduced one additional variable, the 

total count of risky alleles the person carries in the DNA. This way of coding genetic variants was used in several 

models such as [5], and is helpful to build risk models when each SNP only has a small contribution to the risk.    

We treated the BI-RADS category scores from the radiologists as the predictions from the radiologists, namely the 

baseline clinical assessment. We constructed ROC curves for each model, and used the area under the curve (AUC) 

as a measure of performance. We also provided the precision-recall (PR) curves for the models. We evaluated the 

models using 10-fold cross-validation.  
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Table 1. The 77 SNPs identified to be associated to breast cancer. 

SNP Chr Ref Notes
1
 

 
SNP Chr Ref Notes 

rs11249433 1 [20] WL 
 

rs2380205 10 [12] 
 

rs616488 1 [2] 
  

rs10995190 10 [12] 
 

rs1045485 2 [21] GWL 
 

rs704010 10 [12] 
 

rs17468277 2 [22] L 
 

rs2981579 10 [12] 
 

rs4666451 2 [23] L 
 

rs7072776 10 [2] 
 

rs13387042 2 [20, 24] GWL 
 

rs7904519 10 [2] 
 

rs4849887 2 [2] 
  

rs11199914 10 [2] 
 

rs2016394 2 [2] 
  

rs11814448 10 [2] 
 

rs1550623 2 [2] 
  

rs2107425 11 [23] L 

rs16857609 2 [2]   rs3817198 11 [20, 23] GWL 

rs4973768 3 [25] L 
 

rs614367 11 [12] 
 

rs6762644 3 [2] 
  

rs3903072 11 [2] 
 

rs12493607 3 [2]   rs11820646 11 [2] 
 

rs9790517 4 [2]  
 

rs6220 12 [26, 27] L 

rs6828523 4 [2]  
 

rs1292011 12 [10, 13] 
 

rs10941679 5 [20, 28] WL 
 

rs17356907 12 [2] 
 

rs30099 5 [23] L 
 

rs10771399 12 [2]  

rs889312 5 [23] GWL 
 

rs12422552 12 [2]  

rs981782 5 [23] L 
 

rs11571833 13 [2]  

rs1353747 5 [2] 
  

rs999737 14 [20] WL 

rs1432679 5 [2] 
  

rs2236007 14 [2]  

rs10069690 5 [2]  
 

rs2588809 14 [2]  

rs10472076 5 [2]  
 

rs941764 14 [2]  

rs2046210 6 [29] L 
 

rs3803662 16 [20, 23, 24] GWL 

rs2180341 6 [30] L 
 

rs8051542 16 [23] L 

rs17530068 6 [9] 
  

rs12443621 16 [23] L 

rs3757318 6 [12] 
  

rs13329835 16 [2] 
 

rs11242675 6 [2] 
  

rs17817449 16 [2]  

rs204247 6 [2] 
  

rs6504950 17 [25] L 

rs720475 7 [2] 
  

rs1436904 18 [2] 
 

rs13281615 8 [20, 23] GWL 
 

rs527616 18 [2]  

rs9693444 8 [2] 
  

rs8170 19 [8] 
 

rs11780156 8 [2] 
  

rs4808801 19 [2] 
 

rs6472903 8 [2]  
 

rs3760982 19 [2] 
 

rs2943559 8 [2]  
 

rs2284378 20 [9] 
 

rs1011970 9 [12] 
  

rs2823093 21 [10] 
 

rs865686 9 [7, 11, 13] 
  

rs132390 22 [2] 
 

rs10759243 9 [2] 
  

rs6001930 22 [2] 
 

rs2981582 10 [20, 23, 28, 30, 31] GWL 
     

Results 

We identified 362 cases and 377 controls. Among the cases, there were 358 Caucasians, three non-Caucasians and 

one case whose race information was unknown. Among the controls, there were 373 Caucasians and four non-

Caucasians. We do not disclose the race/ethnicity information of these non-Caucasians for privacy concerns. Subject 

characteristics including age distribution and family history of breast cancer are described in Table 2. There were 

more young people (age <50) in the case group than in the control group, and the proportion of elderly people (age 

≥65) was roughly the same in the case group and in the control group. For the family history of breast cancer, we 

observed a considerable larger proportion of people with family history in the case group (45.3%) than in the control 

group (33.7%), which demonstrated the family aggregation of breast cancer. 

                                                           
1
 G stands for being used in the study by Gail (2008, 2009) [3, 4]; W stands for being used in the study by Wacholder et al. (2010) [5]; L stands 

for being used in the study of Liu et al. (2013) [6]. 
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Table 2. The distribution of age and family history of breast cancer. 

 
Cases Controls All   Cases Controls All 

Age Group 
  

 Family History   

<50 81 (22.4%) 58 (15.4%) 139 (18.8%)  Yes 164 (45.3%) 127 (33.7%) 291 (39.4%) 

50-65 123 (34.0%) 168 (44.6%) 291 (39.4%)  No 188 (51.9%) 236 (62.6%) 424 (57.4%) 

≥65 158 (43.6%) 151(40.0%) 309 (41.8%)  N/A 10 (2.8%) 14 (3.7%) 24 (3.2%) 

 

The Performance of the Three Combined Models 

The ROC and the PR curves for the baseline clinical 

assessment, the Breast Imaging model and the three 

combined models are provided in Figure 1. For each 

model, we vertically average [32] the ROC curves from 

the ten replications of the 10-fold cross-validation to 

obtain the final curve; we do likewise for the PR curves. 

The area under the ROC curves for the Breast Imaging 

model, the Combined-10 model, the Combined-22 

model and the Combined-77 model are 0.693, 0.712, 

0.733 and 0.760. The ROC curve of the Combined-77 

model almost completely dominates the ROC curve of 

the Breast Imaging model, which suggests that the 77 genetic variants can help to improve breast cancer diagnosis 

based on mammographic findings. We perform a two-sided paired t-test on the area under the ten ROC curves of the 

Breast Imaging model and the area under the ten ROC curves of the combined model from the 10-fold cross-

validation, and the difference between them is significant with a P-value 0.00047. We further compare the AUROC 

of the Combined-77 model and the Combined-22 model with a two-sided paired t-test, and the difference between 

them is significant with a P-value 0.0046, which demonstrates the discriminative power of the 55 recently identified 

SNPs. From PR curves, we note that the combined models dominate the Breast Imaging model and the baseline 

clinical assessment in the high recall region (>0.8) in which clinicians operate, and therefore we want to optimize.  

The Performance of the Three Genetic Models 

Furthermore, we compare the discriminative power of 

the three genetic models, namely the Genetic-10 model, 

the Genetic-22 model and the Genetic-77 model. The 

ROC curves and the PR curves for the three genetic 

models are provided in Figure 2, respectively. For 

each model, we vertically average the curves from the 

10-fold cross-valuation to obtain the final curve. The 

area under the ROC curves for the Genetic-10 model, 

the Genetic-22 model and the Genetic-77 model are 

0.591, 0.622 and 0.684, which demonstrates that the 

more associated SNPs the genetic model includes, the more discriminative the model becomes. We also use a two-

sided paired t-test to compare the area under the ROC curves yielded by the three genetic models. The Genetic-77 

model outperforms both the Genetic-22 model (P=0.028) and the Genetic-10 model (P=0.0068). 

Comparing Breast Imaging and Genetic-77 Model 

We compare the performance of the Breast Imaging 

model, the Genetic-77 model and the Combined-77 

model. The corresponding ROC curves and the PR 

curves for the three models are shown in Figure 3. 

We observe that the mammography features are more 

predictive for women with a high probability of 

cancer (low FPR region in ROC space) whereas 

genetic variants are more predictive for women with a 

low probability of cancer (mid/high FPR region in 

ROC space). Note that the Genetic-77 model describes 
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the patient’s inherited breast cancer risk in DNA. However, after the patient starts developing malignant features on 

mammograms, mammographic findings (Breast Imaging model) provide superior discrimination. Still, knowing the 

genetic information can further improve the accuracy of breast cancer diagnosis even at higher baseline risk.  

Discussion 

The primary contribution of our study is to show that the genetic variants can significantly improve breast cancer 

diagnosis on mammographic findings, resulting in reduced false positives and alleviated risk of overdiagnosis. This 

result indicates promise for translating discoveries from massive collaborative GWAS into clinical breast cancer 

diagnosis. Our study includes the most up-to-date breast cancer associated SNPs, the majority identified and/or 

verified through the massive COGS (over 55k cases and over 54k controls), and therefore these new SNPs are 

credible and can explain a larger proportion of familial breast cancer risk. Indeed, we observe that the Combined-77 

model  significantly outperforms the Combined-22 model used in our previous study [6]. We also demonstrate that 

the Genetic-77 model significantly outperforms the Genetic-22 model. The increased discriminative power derived 

from the new 55 SNPs identified by recent published studies [2] highlights the rapid progress the breast cancer 

GWAS community has made since 2010. Furthermore, we make a novel discovery that mammography features are 

more predictive for high-risk women whereas genetic variants are more predictive for low-risk women, which 

explains the benefit of combining genetic variants and mammographic findings for personalized breast cancer 

diagnosis. 

Our study, in a novel way, differs from the previous study of Wacholder et al. (2010) [5] which adds ten genetic 

variants to the Gail model, a risk model based on self-reported demographic and personal risk factors. The unique 

contribution in our study is that we include mammography features which represent richer phenotypic data directly 

relevant to breast cancer diagnosis and thus provide high signal. Therefore, our study contributes the potential 

clinical impact of translating exciting discoveries from GWAS to the patient experience at diagnosis. The additional 

discriminative power from these genetic variants can significantly rule out the false positives of mammogram 

screening, and therefore has the potential to decrease recommendations for unnecessary breast biopsies. Of course, it 

will be interesting to combine the epidemiology features in Gail model, the mammography features and the SNPs 

for more accurate personalized breast cancer diagnosis.  

Limitations of our study include small sample size and the pitfalls of data extraction from text reports. We 

understand that parsing mammography features from text reports may introduce noise into the data.  However, 

despite the challenges inherent in extracting accurate data, which may affect our results, we are encouraged that 

improvements in predictive accuracy remain, especially after observing the discriminative power of genetic factors 

alone in the genetic models. Furthermore, we recognize that methodological issues in our study may represent 

shortcomings but also signify opportunities for future investigation. First, we do not explicitly model how individual 

SNPs function to alter breast cancer risk, nor do we model potential SNP interactions [33]. Our current model only 

adds one extra feature which simply counts the totally number of risky alleles, assuming that the effect size of the 

genetic variants are the same and that the genetic effect of the genetic variants is non-mechanistic and additive. We 

do not model the individual SNPs for the curse of dimensionality concern; each individual SNP only confers a fairly 

mild relative risk and if we model them individually, the model will perform poorly on test data unless a larger 

cohort of training data is available. Modeling SNP-SNP interaction is even harder and requires more training data.   

Second, we do not differentiate the different subtypes of breast cancers (for example, the estrogen-receptor status 

and progesterone-receptor status) in the current study. Breast cancer is a complex and heterogeneous disease with 

different subtypes, including two main subtypes of estrogen receptor (ER) negative tumors (basal-like and human 

epidermal growth factor receptor-2 positive/ER− subtype) and at least two types of ER positive tumors (luminal A 

and luminal B) [34, 35]. These molecular subtypes are important predictors of breast cancer mortality [36] and have 

different genetic susceptibility [37]. Therefore it is desirable to tease them apart in the pursuit of increasingly 

personalized breast cancer care.  

Nevertheless, we are encouraged by these promising results in our current study, especially after the disappointment 

[38] and caution [39] in the early years of translating GWAS discoveries to personalized risk prediction. We hope 

that the rapid progress being made through these massive collaborative studies together with our growing knowledge 

about breast cancer mechanisms and genotype-phenotype relationships will bring us even closer to the practical 

personalized breast cancer diagnosis and treatment.  
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