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A B S T R A C T

Background: Little is known about the interplay among dairy intake, gut microbiota and cardiometabolic
health in human prospective cohort studies.
Methods: The present study included 1780 participants from the Guangzhou Nutrition and Health Study. We
examined the prospective association between habitual dairy consumption (total dairy, milk, yogurt) and gut
microbial composition using linear regression after adjusting for socio-demographic, lifestyle and dietary fac-
tors. The cross-sectional association of dairy-associated microbial features with cardiometabolic risk factors
was examined with a linear regression model, adjusting for potential confounders. Serum metabolomic pro-
files were analyzed by partial correlation analysis.
Findings: There was a significant overall difference in gut microbial community structure (b-diversity) com-
paring the highest with the lowest category for each of total dairy, milk and yogurt (P < 0.05). We observed
that dairy-associated microbes and a-diversity indices were inversely associated with blood triglycerides,
while positively associated with high-density lipoprotein cholesterol. A follow-up metabolomics analysis
revealed the association of targeted serum metabolites with dairy-microbial features and cardiometabolic
traits. Specifically, 2-hydroxy-3-methylbutyric acid, 2-hydroxybutyric acid and L-alanine were inversely
associated with dairy-microbial score, while positively associated with triglycerides (FDR-corrected P < 0.1).
Interpretation: Dairy consumption is associated with the gut microbial composition and a higher a-diversity,
which provides new insights into the understanding of dairy-gut microbiota interactions and their relation-
ship with cardiometabolic health.
Funding: This work was supported by the National Natural Science Foundation of China, Zhejiang Ten-thou-
sand Talents Program, Westlake University and the 5010 Program for Clinical Researches of the Sun Yat-sen
University.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Human gut microbiota consists of trillions of microbial cells and
thousands of bacterial species. Among those factors influencing the
gut microbiota, diet is a pivotal component [1,2]. Previous research
showed that gut microbiota could rapidly respond to an altered diet
within 1-2 days [3]. However, the long-term dietary intake seems to
be the dominant force that shapes the structure and activity of the
gut microbiota in humans [2,4]. While some studies have indicated
the effects of dairy consumption on the gut microbiota, they are gen-
erally cross-sectional or short-term intervention studies, or only
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focus on several gut bacteria [5-9]. So far, the prospective association
between long-term habitual dairy intake and gut microbial diversity
and composition remains unclear.

Dairy is a diverse food group with various nutrients. However, its
influence on host health cannot be characterized by individual
nutrients [10]. Compared with discrete nutrients, food groups may
play a more important role in the development of chronic diseases
[11]. Recent large cohort studies suggested that dairy food intake was
inversely associated with risk of cardiometabolic diseases, but the
specific protective mechanism has yet to be identified [12�14]. On
the other hand, growing evidence has revealed that the gut micro-
biota composition was associated with cardiometabolic diseases,
such as obesity, type 2 diabetes and arterial stiffness [15�17]. There-
fore, it is of great interest to investigate the relationship of dairy
food-related gut microbiota structure or composition with cardiome-
tabolic risk factors, which could help demonstrate the mechanism
behind the association of dairy food intake with cardiometabolic dis-
eases. We hypothesized that the gut microbial features and related
circulating metabolites modulated by dairy food intake may contrib-
ute to the beneficial association of dairy intake with the cardiometa-
bolic risk factors.

The primary aim of the present study was to examine the influ-
ence of habitual dairy consumption (total, milk and yogurt) on gut
microbiota structure and composition in a Chinese population with
relatively low dairy intake. As a secondary aim, we investigated the
association of the dairy-responsive gut bacteria and derived micro-
bial features with cardiometabolic risk factors. In addition, we inves-
tigated whether these associations might be accounted for by specific
serummetabolites.

2. Methods

2.1. Study design and participants

The present study was based on the Guangzhou Nutrition and
Health Study (GNHS), a community-based prospective cohort study
in Guangzhou, China. Between 2008-2013, a total of 4048 partici-
pants, aged 45-70 years, who lived in Guangzhou city for at least 5
years were enrolled in the GNHS. Of these participants, 3169 (part 1)
were recruited between 2008 and 2010, and 879 (part 2) were
recruited between 2012 and 2013. All participants were followed up
approximately every 3 years. Detailed information on the study
design has been described previously [18].

For the current study, those individuals with missing baseline
characteristics of age, BMI or sex (n = 5), without information of dairy
intake (n = 47) at baseline, or without fecal samples (n = 2127) at fol-
low-up visits were excluded. At baseline, we also excluded the partic-
ipants with prevalent type 2 diabetes (n = 101), self-reported cancers
(n = 7), chronic renal dysfunction (n = 2) or implausible dairy energy
intake (< 800 or > 4000 kcal/day for men and < 500 or > 3500 kcal/
day for women) (n = 16). In addition, participants who used antibiot-
ics within two weeks before the collection of fecal samples were
excluded (n = 17). Therefore, 1780 participants were finally included
in this analysis (Supplemental Fig S1), with a median follow-up of 6.2
years from the baseline visit to the collection of stool samples. The
study protocol was approved by the Ethics Committee of the School
of Public Health at Sun Yat-sen University (2018048) and Ethics Com-
mittee of Westlake University (20190114ZJS0003). All participants
provided written informed consent.

2.2. Data collection

Data on demographics, lifestyle, medical history and physical
activity were collected by questionnaires. Education attainment was
categorized into primary (0-6 years), secondary (7-9 years) and
higher education (� 10 years). Smoking status was categorized into
current smoker and non-smoker. Alcohol drinking was classified as
current drinker and non-drinker. Physical activity was assessed as
total metabolic equivalent for task (MET) hours per day based on a
validated physical activity questionnaire [19]. Body weight, height,
waist circumference, and blood pressure were measured by trained
nurses on site.

Fasting venous blood samples were collected at both baseline and
follow-up visits. Glucose, total triglycerides, high-density lipoprotein
(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and
total cholesterol in serum were measured on an automated analyser
(Roche cobas 8000 c702, Shanghai, China). Glycated hemoglobin
(HbA1c) was measured with the Bole D-10 Hemoglobin A1c Program
on a Bole D-10 Hemoglobin Testing System.

Habitual dietary intakes were estimated from a validated food fre-
quency questionnaire (FFQ), which recorded the frequencies of foods
consumed by the participants in the past 12 months [20]. Total dairy
includes various types of milk products (whole milk, skimmed milk,
whole milk powder, and skimmed milk powder) and yogurt. Milk
products consumed by the cohort participants are almost exclusively
regular dairy without fermentation, except for yogurt, which is fer-
mented. We computed standard serving size for total dairy and the
following subtypes of dairy products: whole milk, skimmed milk,
whole milk powder, skimmed milk powder, and yogurt. The amount
per serving for each dairy food was 250 g for whole milk and
skimmed milk, 250 g for yogurt, 40 g for whole milk powder and
skimmed milk powder [21]. Because cheese consumption in our
cohort was very low/minimal, it was not included in the analysis.

2.3. Gut microbiota data profiling

Fecal samples of 1780 participants were collected at a follow-up
visit. Microbial DNA was extracted from each sample using the
QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) per the manu-
facturer’s instruction. The V3-V4 hypervariable region of the 16S
rRNA gene was amplified from extracted genomic DNA using primers
341F(CCTACGGGNGGCWGCAG) and 805R(GACTACHVGGGTATC-
TAATCC). MiSeq Reagent Kits v2 (Illumina Inc.) was used to perform
amplicon sequencing on the Illumina MiSeq System (Illumina Inc.,
CA, USA), which generated 2 £ 250bp paired-end sequencing data
with dual-index reads.

Raw data were demultiplexed by the MiSeq Controller Software
(Illumina Inc.). The sequences were trimmed for amplification pri-
mers, diversity spacers, and sequencing adapters, merge-paired and
quality filtered by USEARCH [22]. UPARSE was used for operational
taxonomy units (OTUs) clustering equalling or above 97%, excluding
only singleton sequences prior to clustering [23]. For the taxonomy
annotation, the OTUs were aligned with the ribosomal database proj-
ect (RDP) classifier [24]. A representative sequence was picked for
each OTU and the Greengenes 13.8 reference database was used to
annotate taxonomic information for each representative sequence. In
addition, the OTUs were analyzed in the Quantitative Insights into
Microbial Ecology (QIIME) software version 1.9.0 [25].

2.4. Targeted serum metabolome profiling

The targeted metabolomics profiling of serum samples (n = 948)
at the follow up visit (the same time point as the stool collection) was
performed by an ultra-performance liquid chromatography coupled
to tandem mass spectrometry (UPLC-MS/MS) system. Briefly, the
order of all samples was randomly selected prior to preparation.
25ml serum vortexed vigorously with 100ml contain internal stand-
ards ice methanol for five minutes. At Biomek 4000 station (Biomek
4000, Beckman Coulter, Inc., Brea, California, USA), 30ml supernatant
was derived with 20ml freshly prepared derivatives and mixed with
internal standards in 30°C, 60min. The derivatization agents were
200 mM 3-NPH in 75% aqueous methanol and 96 mM EDC-6%
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pyridine solution in methanol. After derivatization, 350ml ice-cold
50% methanol solution was added to dilute the sample and then
retained at -20°C for 20 minutes. After 4000g centrifugation at 4°C
for 30 minutes, 135ml supernatant was mixed and sealed with inter-
nal standards for each sample. Subsequently, the derivatized samples
and serial dilutions of derivatized stock standards were analyzed ran-
domly and quantitated by the UPLC-MS/MS. The instrument setting
was: ACQUITY UPLC BEH C18 analytical column (2.1*100
mm,1.7mM); column temperature 40°C; flow rate 0.4 mL/min;
mobile phases A (water with 0.1% formic acid), mobile phases B (ace-
tonitrile: IPA, 90:10); 0-1 min (5% B), 1-12 min (5-80% B), 12-15 min
(80-95% B), 15-16 min (95-100%B), 16-18 min (100%B), 18-18.1 min
(100-5% B), 18.1-20 min (5% B); 1.5Kv (ESI+), 2.0Kv (ESI-) capillary.

Three types of quality control samples, i.e. test mixtures, internal
standards, and pooled biological samples were used in the metabolo-
mics platform. The internal standards (172 isotope-labeled com-
pounds) were added to the test samples in order to monitor
analytical variations during the entire sample preparation and analy-
sis process. The derivatized pooled samples for quality control were
injected per 14 samples. Raw data generated by UPLC-MS/MS were
processed using the QuanMET software (v2.0, Metabo-Profile, Co.,
Ltd, Shanghai, China) to perform peak integration, calibration, and
quantification for each metabolite. The list of metabolites was
selected to capture the microbiota-related metabolites and some key
host metabolites. Finally, 199 metabolites were selected. These
metabolites mainly include amino acids, bile acids, fatty acids, carbo-
hydrates, organic acids, nucleosides, indoles, benzenoids, phenylpro-
panoic acids, pyridines, and carnitines.

2.5. Statistical analysis

Statistical analysis was performed using Stata version 15 and R
version 3.5.3. We used a linear mixed model to examine the associa-
tion of sequencing depth and sequencing run (as a random effect)
with z-score normalized a-diversity indices (Shannon, Simpson and
Observed species). Residuals of the model were taken as technique-
adjusted a-diversity indices for subsequent analysis.

Participants were categorized into different groups based on their
dairy consumption (total dairy and milk: <1serving/month, 1 serv-
ing/month-1 serving/week, 1 serving/week-0.5 serving/day, �0.5
serving/day; as for yogurt, the highest group was �1 serving/week).
10000 randomly chosen 16S rRNA sequences were used to calculate
a-diversity indices (Observed species, Shannon index, Simpson
index). We examined the prospective association between each of
the dairy categorical variables (total dairy, milk and yogurt) and
a-diversity indices using a linear regression model, adjusted for
potential confounders as follows: model 1 - baseline age and sex;
model 2 � as model 1 plus baseline body mass index (BMI), total
energy intake, physical activity, smoking status, drinking status, edu-
cation attainment and household income level; model 3 � as model 2
plus baseline dietary intakes of vegetable, fruit, fish, egg and red
meat. We also used the same models to assess the linear trend of the
above associations by assigning the median value of intake to each
category. Principal coordinate analysis (PCoA) based on Bray-Curtis
distance and permutational multivariate analysis of variance (PER-
MANOVA) (999 permutations) were performed to examine the asso-
ciation between gut microbial community structure and dairy intake
using the vegan R package (v2.5-6) [26]. We compared the b-diver-
sity dissimilarities between the highest and the lowest dairy con-
sumption category at OTUs levels. At genus level, we applied LEfSe
(Linear discriminant analysis Effect Size) with default parameters (a
value for Wilcoxon tests:0.05; the logarithmic LDA score thresh-
old:2.0) to identify specific gut microbes associated with dairy
intakes [27]. As we only used the dairy intake information at baseline
of the cohort, it might be that the dairy intake would change over
time. To address this concern, we calculated the intraclass correlation
coefficients (ICC) for the dairy variables using FFQ data collected at
both two time points (n = 1098).

Subsequently, we generated a dairy-microbial score as a new gut
microbial feature to represent the gut bacteria group associated with
total dairy intake or different subtypes. Based on the relative abun-
dance of identified biomarkers (genus level) and LDA score from
LEfSe analysis, we used the below formula to compute dairy-micro-
bial scores (dairy-microbial score =

P
(+/� relative abundance of bio-

markers of genus; here +/� depends on LDA score, if LDA score > 0, it
is assigned a “+”, otherwise it is assigned a “�”). To test the reliability
of these scores, we performed a linear regression analysis to investi-
gate whether the scores were associated with each of the dairy intake
variables after multivariable adjustment. In addition, we conducted
analyses stratified by age (<65 vs �65), sex (men vs women) and
body mass index (<25 vs �25) to assess potential effect modification.

We used a multivariable linear regression model to assess the
cross-sectional association of the gut microbial features (including
a-diversity indices and dairy-microbial scores) with cardiometabolic
risk factors, including BMI, waist circumference, blood fasting glu-
cose, HbA1c, triglycerides, HDL cholesterol, LDL cholesterol, total cho-
lesterol, systolic blood pressure and diastolic blood pressure, adjusted
for potential confounders. The dependent variables with skewed dis-
tribution were log-transformed before analysis (TC/HDL-C, TG, glu-
cose and HDL cholesterol). The associations were expressed as the
difference in cardiometabolic risk factors (in SD unit) per 1 SD differ-
ence in each gut microbial feature. We then used a Spearman correla-
tion analysis to examine the correlations between dairy-related
specific gut bacteria and cardiometabolic traits. The relative abun-
dances of gut bacteria were normalized before correlation test. The
Benjamini-Hochberg method was used to control the false discovery
rate (FDR, 5%) for the multiple testing of the above cross-sectional
analyses and Spearman correlation analyses [28].

To test the potential effect modification of gut microbiota, we
used a linear regression model to examine the interaction of corre-
sponding dairy intakes with microbial features on the cardiometa-
bolic risk factors, adjusted for the same covariates as above cross-
sectional analysis model. If a significant interaction (P < 0.05) was
found, we further conducted subgroup analysis stratified by the dairy
consumption categories to assess the association between the gut
microbial features and the corresponding cardiometabolic trait. We
also conducted subgroup analysis stratified by gut microbial diversity
index to investigate the dairy-cardiometabolic trait association.

For the analysis of the potential role of serum metabolome, we
first used a partial Spearman correlation analysis to identified serum
metabolites associated with milk-microbial score or yogurt-microbial
score, adjusted for age, sex and BMI. Then, we examined the associa-
tions of the above-identified metabolites with dairy consumption and
cardiometabolic traits using the samemodel (FDR-corrected P< 0.1).

2.6. Role of the funding source

This work was supported by the National Natural Science Founda-
tion of China (81903316, 82073529, 81773416), Zhejiang Ten-thou-
sand Talents Program (2019R52039), Westlake University
(101396021801) and the 5010 Program for Clinical Researches
(2007032) of the Sun Yat-sen University (Guangzhou, China). The
funders were not involved in the study design, implementation, the
analysis or the interpretation of data.

3. Results

3.1. Characteristics of study population

The baseline mean value for age and BMI of 1780 participants in
the present study was 58 y (SD: 6.0 y) and 23.2 kg/m2 (SD: 3.0 kg/
m2), respectively (Table 1). Those individuals with higher total dairy



Table 1
Baseline characteristics of the study population by total dairy consumption (n = 1780)
a.

Characteristics Total dairy consumption (servings)

<1/mo 1/mo-1/wk 1/wk-0.5/d �0.5/d

No. participants 216 253 540 771
Age, y 58.8 (6.4) 58.4 (6.3) 58.1 (5.7) 58.5 (5.9)
Sex, n (%)
Female 114 (52.8%) 150 (59.3%) 381 (70.6%) 561 (72.8%)
BMIb, kg/m2 23.5 (3.0) 23.4 (2.9) 23.0 (3.1) 23.1 (2.8)
Education, n (%)
Primary 79 (36.6%) 70 (27.7%) 153 (28.3%) 180 (23.3%)
Secondary 92 (42.6%) 122 (48.2%) 262 (48.5%) 346 (44.9%)
Higher education 45 (20.8%) 61 (24.1%) 125 (23.1%) 245 (31.8%)
Income level, n (%)
� 500 </mo 7 (3.2%) 5 (2.0%) 7 (1.3%) 7 (0.9%)
501-1500 </mo 48 (22.2%) 62 (24.5%) 120 (22.2%) 163 (21.1%)
1501-3000 </mo 142 (65.7%) 159 (62.8%) 335 (62.0%) 481 (62.4%)
> 3001 </mo 19 (8.8%) 27 (10.7%) 78 (14.4%) 120 (15.6%)
Smoking status, n (%)
Nonsmoker 156 (72.2%) 200 (79.1%) 460 (85.2%) 696 (90.3%)
Smoker 60 (27.8%) 53 (20.9%) 80 (14.8%) 75 (9.7%)
Alcohol drinking, n (%)
Nondrinker 200 (92.6%) 223 (88.1%) 508 (94.1%) 724 (93.9%)
Drinker 16 (7.4%) 30 (11.9%) 32 (5.9%) 47 (6.1%)
Physical activityc, n (%)
Inactive 64 (29.6%) 68 (26.9%) 132 (24.4%) 181 (23.5%)
Moderately inactive 47 (21.8%) 65 (25.7%) 133 (24.6%) 200 (25.9%)
Moderately active 57 (26.4%) 59 (23.3%) 137 (25.4%) 192 (24.9%)
Active 48 (22.2%) 61 (24.1%) 138 (25.6%) 198 (25.7%)
Total energy intake, kcal/d 1682 (412) 1669 (534) 1762 (498) 1789 (473)
Vegetable intake, g/day 352.8 (170.2) 367.3 (351.8) 373.9 (157.2) 377.9 (176.0)
Fish intake, g/day 51.9 (81.1) 49.3 (38.6) 51.6 (46.9) 50.4 (49.2)
Red meat intake, g/day 87.4 (58.0) 83.0 (50.0) 83.8 (53.0) 79.5 (49.2)
Egg intake, g/day 28.6 (29.4) 26.7 (20.5) 30.8 (34.4) 31.7 (20.7)
Fruit intake, g/day 119.9 (111.0) 119.8 (95.0) 152.6 (112.8) 159.0 (107.9)

aData are mean (SD) unless otherwise indicated.
bBody mass Index.
cPhysical activity was classified into four groups according to quartiles.
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consumption were more likely to be women, non-smokers, at a
higher income level and had a higher education level (Table 1).

3.2. Dairy consumption and gut microbiota composition

Total dairy consumption was positively associated with Shannon
and Simpson index after adjusting for socio-demographic and life-
style factors (model 2, both P-trend = 0.04, Table 2). The association
was attenuated after further adjustment for dietary intakes (model 3,
P-trend = 0.07 and 0.08 respectively, Table 2). However, participants
in the highest (� 0.5 serving/d) and second highest (1 serving/wk-0.5
serving/d) total dairy intake category, compared with lowest cate-
gory (< 1 serving/mo), showed higher levels of Shannon and Simpson
index across all three statistical models (P < 0.05, Table 2). Moreover,
yogurt consumption was positively associated with Shannon and
Observed species after multivariable adjustment in model 2 or model
3 (P-trend < 0.05). There was no significant association between milk
intake and any a-diversity index.

At OTU level, we observed significant overall differences in gut
microbial community structure between the highest and the lowest
intake category of all three examined dairy variables using PCoA and
PERMANOVA analyses (all P-values < 0.05, Fig 1).

3.3. Taxonomy biomarkers of long-term dairy consumption

Our results suggested that multiple genera were enriched in the
highest total dairy intake group and the highest milk intake group,
respectively (Fig 2). Among those genera, Bifidobacterium, Strepto-
coccus, Clostridium and Gemellaceae_other were enriched in both
dairy groups. In contrast, a genus from family Enterobacteriaceae
was identified as biomarker of lower total dairy intake and lower
milk intake. Moreover, 7 genera: Ruminococcaceae_other, Lachno-
bacterium, Megasphaera, Veillonellaceae_other, Roseburia, Barnesiel-
laceae_other and Rikenellaceae_other were enriched in the highest
yogurt intake group, whereas genus Cetobacterium and Fusobacte-
rium were markers of lower yogurt consumption.

The dairy intake was relatively stable overtime, and the ICC for the
total dairy, milk and yogurt intake between the baseline and follow-
up visit was 0.54, 0.48, and 0.56, respectively.

We observed a significant association (P < 0.01) between the
dairy variable and its corresponding dairy-microbial score generated
from bacteria biomarkers after multivariable adjustment based on
16S data (Supplemental Table S1).

3.4. Dairy-related gut microbial features and cardiometabolic risk
factors

The multivariable linear regression analysis indicated that per 1-
SD increment in each of the dairy-microbial scores and a-diversity
indices was associated with a 0.08-0.14 SD lower levels of serum tri-
glycerides (P-value< 0.05 after correction of multiple testing for vari-
ous cardiometabolic traits) (Fig 3, Supplemental Table S2). We also
observed a positive association of total dairy-microbial score, milk-
microbial score and Shannon index with HDL cholesterol (Fig 3).
Moreover, the associations between dairy intake and corresponding
dairy-microbial score did not significantly vary by age (<65 vs �65),
sex or body mass index (<25 vs �25).

The correlation analysis showed that triglycerides was negatively
correlated with the genera Ruminococcaceae_other, Haemophilus,
Barnesiellaceae_other and Rikenellaceae_other, while positively
associated with the genera Cetobacterium and Fusobacterium (Fig 4).
In addition, HDL cholesterol was inversely correlated with the genus
Enterobacteriaceae_other, which was enriched in lower total dairy
and milk consumption category.

3.5. Interaction of dairy intake with gut microbiota on cardiometabolic
trait

We observed significant interactions with gut microbiota for total
dairy consumption on serum triglycerides (P for interaction < 0.05).
Per 1-SD difference in Shannon index [beta = -0.08, 95% CI: (-0.11,
-0.05)] and Observed species [beta = -0.09, 95% CI: (-0.12, -0.06)] was
associated with lower levels of triglycerides (in SD unit) only among
individuals with higher total dairy intake (� 1 serving/wk), but not
among lower total dairy intake participants (Table 3). Similarly, in
the participants with lower milk consumption (< 1 serving/wk),
there was no significant association with triglycerides for Shannon
index or Observed species, while in the higher milk consumption
group, there was an inverse association of Shannon index and
Observed species with triglycerides (P < 0.05). Yogurt-microbial
score and Observed species were negatively associated with trigly-
cerides only among higher yogurt intake participants [beta = -0.07,
95% CI: (-0.11, -0.04); beta = -0.09, 95% CI: (-0.13, -0.05)], but not
among participants with lower yogurt intake (P for interaction = 0.02
and 0.04, respectively) (Table 3). On the other hand, we found that
per 1 serving/d higher in total dairy and milk consumption was asso-
ciated with 0.12 and 0.19 SD lower triglyceride levels, respectively,
only among individuals with higher a-diversity (P < 0.05 for each of
the three a-diversity indices, Supplemental Fig S2).

3.6. Metabolites associated with dairy-microbial scores and
cardiometabolic traits

Using partial Spearman correlation analysis, we identified 6 serum
metabolites associated with milk-microbial score and 23 serum
metabolites associated with yogurt-microbial score, respectively



Table 2
Prospective association between dairy intake and a-diversity indices (n = 1780) a.

Group 1 Group 2 Group 3 Group 4 P-trend

Total dairy
Groups, servings <1/mo 1/mo-1/wk 1/wk-0.5/d �0.5/d
Dairy intakeb 0.01 (0.002-0.02) 0.08 (0.05-0.011) 0.31 (0.23-0.41) 0.81 (0.62-1.02)
Participants 216 253 540 771
Shannon Index
Model 1 Reference 0.11 (-0.06, 0.27) 0.17 (0.02, 0.31) 0.19 (0.05, 0.33) 0.03
Model 2 Reference 0.10 (-0.06, 0.27) 0.16 (0.01, 0.31) 0.18 (0.04, 0.33) 0.04
Model 3 Reference 0.11 (-0.06, 0.28) 0.16 (0.01, 0.31) 0.17 (0.03, 0.32) 0.07
Simpson Index
Model 1 Reference 0.20 (0.03, 0.38) 0.20 (0.05, 0.35) 0.23 (0.08, 0.37) 0.04
Model 2 Reference 0.20 (0.03, 0.38) 0.20 (0.04, 0.35) 0.23 (0.08, 0.38) 0.04
Model 3 Reference 0.21 (0.04, 0.38) 0.20 (0.04, 0.35) 0.22 (0.07, 0.37) 0.08
Observed Species
Model 1 Reference 0.07 (-0.1, 0.23) 0.15 (0.01, 0.3) 0.14 (-0.001, 0.27) 0.14
Model 2 Reference 0.07 (-0.1, 0.23) 0.15 (0.005, 0.29) 0.14 (-0.003, 0.28) 0.15
Model 3 Reference 0.07 (-0.1, 0.23) 0.15 (0.001, 0.29) 0.13 (-0.02, 0.27) 0.23
Milk
Groups <1/mo 1/mo-1/wk 1/wk-0.5/d �0.5/d
Dairy intake 0.004 (0.001-0.01) 0.08 (0.05-0.11) 0.31 (0.23-0.42) 0.84 (0.63-1.00)
Participants 405 279 561 535
Shannon Index
Model 1 Reference 0.02 (-0.13, 0.16) 0.07 (-0.05, 0.19) 0.11 (-0.01, 0.23) 0.07
Model 2 Reference 0.02 (-0.13, 0.16) 0.07 (-0.05, 0.19) 0.11 (-0.02, 0.23) 0.08
Model 3 Reference 0.03 (-0.12, 0.17) 0.07 (-0.05, 0.19) 0.10 (-0.03, 0.22) 0.13
Simpson Index
Model 1 Reference 0.06 (-0.09, 0.2) 0.06 (-0.07, 0.18) 0.12 (0.002, 0.25) 0.06
Model 2 Reference 0.06 (-0.08, 0.21) 0.06 (-0.06, 0.19) 0.13 (0.004, 0.25) 0.06
Model 3 Reference 0.07 (-0.07, 0.22) 0.06 (-0.06, 0.19) 0.12 (-0.01, 0.24) 0.10
Observed Species
Model 1 Reference 0.01 (-0.12, 0.15) 0.05 (-0.07, 0.16) 0.09 (-0.03, 0.2) 0.13
Model 2 Reference 0.02 (-0.12, 0.15) 0.05 (-0.07, 0.17) 0.09 (-0.03, 0.21) 0.13
Model 3 Reference 0.02 (-0.11, 0.16) 0.05 (-0.07, 0.16) 0.08 (-0.04, 0.2) 0.20
Yogurt
Groups <1/mo 1/mo-1/wk �1/wk -
Dairy intake 0.003 (0.001-0.01) 0.08 (0.05-0.10) 0.28 (0.20-0.48) -
Participants 925 380 475 -
Shannon Index
Model 1 Reference 0.05 (-0.06, 0.16) 0.14 (0.03, 0.24) - 0.01
Model 2 Reference 0.05 (-0.06, 0.16) 0.13 (0.02, 0.23) - 0.02
Model 3 Reference 0.05 (-0.07, 0.16) 0.13 (0.02, 0.23) - 0.02
Simpson Index
Model 1 Reference 0.07 (-0.04, 0.19) 0.10 (-0.01, 0.21) - 0.08
Model 2 Reference 0.07 (-0.04, 0.19) 0.09 (-0.02, 0.2) - 0.12
Model 3 Reference 0.07 (-0.05, 0.18) 0.09 (-0.02, 0.2) - 0.14
Observed Species
Model 1 Reference 0.05 (-0.06, 0.16) 0.15 (0.05, 0.25) - 0.004
Model 2 Reference 0.05 (-0.06, 0.16) 0.15 (0.04, 0.25) - 0.001
Model 3 Reference 0.05 (-0.06, 0.16) 0.14 (0.04, 0.25) - 0.01

aThe results are presented as the change (95%CI) in each a-diversity index (in SD unit) comparing each category of dairy
intake with the lowest intake group (reference, <1/mo). Beta (95% CI) and P-trend were calculated by using a linear
regression model, adjusted for the following covariates: model 1, age and sex; model 2, model 1 plus BMI, total energy
intake, physical activity, smoking status, drinking status, education attainment and household income level; and model
3, model 2 plus dietary intakes of vegetable, fruit, fish, egg and red meat. P-trend was assessed based on the median value
of intake for each category.
bData are median (IQR).
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(FDR-corrected P < 0.1) (Fig 5a, b, Supplemental Table S3). Among
the metabolites associated with milk-microbial score, we also
observed a positive association between undecylenic acid and milk
consumption (FDR-corrected P = 0.02), along with a negative associa-
tion of 2-hydroxy-3-methylbutyric acid with milk consumption
(FDR-corrected P = 0.006). Similarly, we found that 2-hydroxybutyric
acid and L-alanine were negatively associated with yogurt consump-
tion (both FDR-corrected P = 0.04) (Fig 5c). Further analysis revealed
a correlation profile between serummetabolites and HDL cholesterol,
triglycerides. Specifically, HDL cholesterol was positively associated
with undecylenic acid, while negatively associated with L-alanine.
Triglycerides was positively associated with 2-hydroxybutyric acid,
L-alanine and 2-hydroxybutyric acid, while inversely associated with
undecylenic acid (Fig 5b).
4. Discussion

In this prospective cohort study, we found that baseline habitual
total dairy intake and yogurt intake were both positively associated
with gut microbial diversity and with the abundance of specific
genus. Those dairy-regulated gut microbial features were beneficially
associated with cardiometabolic traits, such as blood triglycerides
and HDL cholesterol. The metabolomics analysis showed that dairy-
related gut microbiota was associated with the host circulating
metabolomics profile, suggesting the beneficial association of dairy
intake with the cardiometabolic risk factors.

Although some studies have explored the effects of dairy intakes
on gut microbial diversity, their results were not consistent
[6,29�31]. After a 3 week-daily ingestion of fermented milk products,



Fig 1. Variation of gut microbial community structure represented by PCoA plots based on Bray-Curtis distance. P value was calculated by PERMANOVA based on the participants
categorized by consumption levels of total dairy, milk or yogurt. Each point represents an individual from the study. Number of participants in the high and low intake group was
771 and 216 for total dairy intake, 535 and 405 for milk intake, 475 and 925 for yogurt intake, respectively. PCoA, principle coordinate analysis.
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the Shannon index of five healthy adults was decreased [29]. In con-
trast, several recent intervention studies did not find a significant
effect of yogurt intake on gut microbial diversity [30,32]. For exam-
ple, in a short-term (42 days) intervention of yogurt consumption, no
difference for a-diversity was observed before and after the interven-
tion [32]. On the population level, in a cross-sectional study from
Netherlands (n = 1179), sour milk was positively associated with
a-diversity, whereas drinking high-fat milk was inversely associated
[6]. However, another cross-sectional study involving 862 partici-
pants showed that higher dairy product intake (including milk,
cheese and other types) was correlated with lower a-diversity [5].
These inconsistencies may be due to the short-term and small sample
size for the trial, or the cross-sectional nature for the conducted
cohort study.

Accumulating evidence has shown the association between dairy
intake and specific taxa [5,33]. In line with our results, Bifidobacte-
rium—was increased in individuals with lactose malabsorption after
four weeks whole milk intervention [34]. Habitual intake of milk or
other dairy products (except cheese) was positively associated with
Streptococcus in a cross-sectional analysis of 862 French adults [5],
which was consistent with our current results. Nonetheless, some
genus detected in our analysis have not been investigated in the con-
text of their modulation by dairy intake yet, such as Lachnobacte-
rium, Roseburia and Megasphaera. In the present study, unclassified
genus of family Ruminococcaceae, unclassified genus of family Rike-
nellaceae and unclassified genus of family Barnesiellaceae were
enriched in the highest yogurt intake group. Interestingly, all these
dairy-related families were inversely associated with arterial stiffness
reported in a previous study [17]. Moreover, as the biomarker of high
dairy intake, several genera are producers of butyrate, such as Clos-
tridium, Roseburia and Lachnobacterium. Butyrate is the major
energy source of human colon cells and has a beneficial impact on
glucose and energy homeostasis, as well as preventing gut microbiota
dysbiosis [35].



Fig 2. Taxonomic biomarkers associated with total dairy, milk and yogurt con
sumption. These biomarkers at genus level were identified by linear discriminan
analysis (LEfSe). Color indicates the group in which a differentially abundant taxon
is enriched (orange: higher dairy consumption; blue: lower dairy consumption)
Number of participants in the high and low intake group was 771 and 216 for tota
dairy intake, 535 and 405 for milk intake, 475 and 925 for yogurt intake, respec
tively.
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We found that a-diversity indices (including Shannon index) and
dairy-microbial scores were negatively associated with blood trigly-
cerides. Shannon index represents the richness and evenness of the
gut microbiota. Similarly, results from the LifeLines-DEEP cohort
showed that after adjusting for age and sex, OTU richness was
inversely correlated with blood triglycerides among 893 participants
[36], and suggested that gut microbiota may contribute to the varia-
tion in blood lipids. Other cohort studies also supported that gut
microbial diversity was associated with other cardiometabolic dis-
eases, such as type 2 diabetes, hypertension and arterial stiffness
[16,17,37]. For example, gut microbial diversity (Shannon index) was
inversely associated arterial stiffness in 617 middle-age women from
TwinsUK cohort [17]. Although gut microbial a-diversity seems to be
a generally good indicator of a “healthy gut”, more mechanistic stud-
ies are required to clarify the causality [35]. In addition, although
there are significant differences in b-diversity based on dairy con-
sumption, there is so much overlap between dairy groups that
b-diversity does not seems to be a reliable diagnostic, as reflected
in R2.

Interestingly, results from our interaction analysis and subgroup
analysis lead to a hypothesis that gut microbiome may mediate the
association of dairy intake with blood lipids, although causality could
not be proved in the present study. These novel results indicated that
the beneficial effect of the gut microbiota diversity or dairy-associ-
ated microbial features on blood lipids may be abolished by a dietary
background with low dairy intake. Our data suggested that L-alanine
was inversely associated with yogurt-microbial score. Previous serum
metabolomics study reported that this metabolite was positively X X
associated with incident cardiovascular disease among 3569 partici-
pants [38]. Their results also showed that alanine was positively asso-
ciated with triglycerides while negatively associated with HDL
cholesterol, which were consistent with our results. In addition, we
found that both 2-hydroxy-3-methylbutyric acid and 2-hydroxybuty-
ric acid were negatively associated with dairy consumption and
dairy-microbial scores. It has been noted that elevated levels of 2-
hydroxybutyric acid in the plasma is a good marker for early-stage
type II diabetes [39]. Meanwhile, 2-hydroxy-3-methylbutyric acid is
a metabolite found in the urine of patients with propionic acidemia
and glyceroluria [40]. Taken together, these findings suggest that
consumption of dairy foods, especially yogurt, may contribute to the
prevention of cardiometabolic diseases [12,41,42].

The present study has several strengths. First, to the best of our
knowledge, this is the first prospective cohort study to examine the
association of dairy products with gut microbial diversity in a Chinese
population. Second, we have a larger sample size compared with
most available cross-sectional studies. Third, although the dairy
intake (milk: mean 93.2 g/d; yogurt: mean 29.4 g/d) in our cohort is
much lower than the recommendation of 300 g/d, it can reflect the
national dairy consumption in China (mean 34.5 g/d) [34,43]. Few
studies have investigated associations of dairy products with gut
microbiota and cardiometabolic health with low overall dairy con-
sumption. Despite the low level of intake, more dairy consumption is
associated with cardiometabolic heath in previous study [44,45].

The study also has several limitations. First, this study is based on
middle-aged and elderly Chinese with relatively low dairy intake,
and may not be generalizable to other age groups or ethnicities. Sec-
ond, our analysis only use information of dairy consumption at a sin-
gle time-point at baseline, and dietary pattern may change over time.
Nevertheless, we find that the dairy intake of the study participants
does not change substantially during the follow-up duration (with
fair ICC for each dairy variable). Third, our results were from an
observation study and we cannot rule out the potential influence of
some unmeasured confounders, more studies are needed to prove
causality. Finally, all the participants are from the same city in China.
Therefore, additional multi-centre and longitudinal studies are
needed to confirm our results.

In conclusion, results from the present large Chinese cohort sup-
ports that total dairy intake and yogurt intake are prospectively asso-
ciated with higher gut microbial diversity, and associated with gut
microbial community structure. Those dairy-related gut microbial



Fig 3. Associations between dairy-related gut microbial features and cardiometabolic risk factors. Linear regression models were adjusted for age, sex, BMI, smoking status, drinking
status, education attainment, household income, physical activity, and total energy intake, dietary intakes of vegetables, fruit, fish, egg and red meat. Total number of participants in
each analysis was 1713 for HDL cholesterol, LDL cholesterol, triglycerides and total cholesterol, 1767 for diastolic blood pressure, systolic blood pressure and BMI, 1712 for glucose,
1754 for waist circumference, and 1090 for HbA1c. HDL, high-density lipoprotein. LDL, low-density lipoprotein. BMI, body mass index. HbA1c, glycated hemoglobin. Triglycerides,
HDL cholesterol, TC/HDL ratio and Glucose were log-transformed. *FDR-corrected P < 0.05 (Benjamini-Hochberg method).

Fig 4. Association of dairy-related bacterial generawith cardiometabolic risk factors. The heat-map shows the Spearman correlation coefficients between individual genera and cardiome-
tabolic risk factors. The relative abundances of genera were normalized. Triglycerides, high-density lipoprotein (HDL) cholesterol, total cholesterol/high-density lipoprotein (TC/HDL) cho-
lesterol ratio and glucose were log-transformed. P value was corrected for multiple testing using the Benjamini-Hochberg false discovery rate. *FDR-corrected P< 0.05.
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Fig 5. Serum metabolites linking dairy consumption, dairy-microbial scores and cardiometabolic traits. (a) The volcano plot shows the serum metabolites associated with milk-micro-
bial score. The partial correlation analysis was adjusted for age, sex and BMI. The x axis shows the rho values and the y axis indicates the �log (base 10) of the FDR-corrected P values.
Red dash lines indicate the threshold of FDR-corrected P = 0.1. Most negatively associated metabolites are expected to be at the extreme left of the plot (blue point), while the most
positively associated metabolites are expected to be at the extreme right of the plot (red point). Points are colored based on the significance of the obtained associations (red and blue
indicates associations with FDR-corrected P < 0.1). (b) The volcano plot shows the serum metabolites associated with yogurt-microbial score. (c) The heat map shows the associations
between serum metabolites and dairy consumption and cardiometabolic traits. *FDR-corrected P < 0.05 (Benjamini-Hochberg method). Total number of participants with serum
metabolomics data in the above analyses was 948. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Subgroup analysis for the association of gut microbial features with cardiometabolic risk factors by different levels of dairy
consumptiona.

Gut microbial features Cardiometabolic trait Subgroup N Beta(95% CI) P P for interaction

Total dairy intake
Shannon index Triglycerides < 1 serving/wk 442 -0.03 (-0.08, 0.02) 0.2 0.022

� 1 serving/wk 1271 -0.08 (-0.11, -0.05) <0.001
Observed species Triglycerides < 1 serving/wk 442 -0.03 (-0.08, 0.02) 0.29 0.009

� 1 serving/wk 1271 -0.09 (-0.12, -0.06) <0.001
Milk intake
Shannon index Triglycerides < 1 serving/wk 649 -0.03 (-0.07, 0.01) 0.13 0.011

� 1 serving/wk 1064 -0.09 (-0.12, -0.06) <0.001
Observed species Triglycerides < 1 serving/wk 649 -0.04 (-0.08, 0.00) 0.051 0.039

� 1 serving/wk 1064 -0.09 (-0.12, -0.06) <0.001
Yogurt intake
Observed species Triglycerides < 1 serving/mo 889 -0.04 (-0.08, -0.01) 0.01 0.039

� 1 serving/mo 824 -0.09 (-0.13, -0.05) <0.001
Yogurt-microbial score Triglycerides < 1 serving/mo 889 -0.01 (-0.05, 0.02) 0.37 0.019

� 1 serving/mo 824 -0.07 (-0.11, -0.04) <0.001
a Associations were expressed as the difference in cardiometabolic risk factors (in SD unit) per 1 SD difference in each gut microbial fea-

ture. Beta (95% CI) and Pwere calculated in a linear regressionmodel after adjustment for age, sex, BMI, smoking status, drinking status, edu-
cation attainment, household income, physical activity, and total energy intake, dietary intakes of vegetables, fruit, fish, egg and redmeat.
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features are favourably associated with cardiometabolic risk factors.
The present findings suggest that dairy consumption should not be
discouraged and perhaps should even be encouraged, as to improve
gut health and maintain cardiometabolic health in a population of
low dairy intake. Nevertheless, more research is warranted to repli-
cate our findings and to further investigate the role of gut microbiota
in the link between diet and cardiometabolic health.
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Evidence before this study

Dairy products are important components of a common dietary
pattern, which may play an important role for the prevention of car-
diometabolic diseases. Growing evidence has revealed that the gut
microbiota composition was associated with cardiometabolic dis-
eases. However, only several moderate cross-sectional studies or
short-term intervention trials indicated the effects of dairy consump-
tion on the gut microbiota. In addition, little is known about the
health benefit of increasing dairy intake for gut microbiota in a popu-
lation with relatively low dairy intake.

Added value of this study

This is a large longitudinal human cohort which suggests that
higher dairy consumption is prospectively associated with a higher
gut microbiota a-diversity. The dairy-related gut microbial features
are favorably associated with cardiometabolic risk factors, such as
blood triglycerides and HDL cholesterol. Dairy-related gut microbiota
may influence the host circulating metabolomics profile, contributing
to the beneficial association of dairy intake with the cardiometabolic
risk factors.

Implications of all the available evidence

Our findings suggest that dairy consumption should be encour-
aged for the prevention of cardiometabolic diseases in a general pop-
ulation with low dairy intake. The identified dairy intake-related gut
microbiota and circulating metabolites biomarkers can serve as
potential therapeutic targets for cardiometabolic diseases in future.
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