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Abstract: To increase the number of estimable signal sources, two-parallel nested arrays are proposed,
which consist of two subarrays with M sensors, and can estimate the two-dimensional (2-D) direction
of arrival (DOA) of M2 signal sources. To solve the problem of direction finding with two-parallel
nested arrays, a 2-D DOA estimation algorithm based on sparse Bayesian estimation is proposed.
Through a vectorization matrix, smoothing reconstruction matrix and singular value decomposition
(SVD), the algorithm reduces the size of the sparse dictionary and data noise. A sparse Bayesian
learning algorithm is used to estimate one dimension angle. By a joint covariance matrix, another
dimension angle is estimated, and the estimated angles from two dimensions can be automatically
paired. The simulation results show that the number of DOA signals that can be estimated by the
proposed two-parallel nested arrays is much larger than the number of sensors. The proposed
two-dimensional DOA estimation algorithm has excellent estimation performance.

Keywords: decoupled estimation; sparse arrays; direction of arrival estimation; sparse Bayesian
learning; degrees of freedom

1. Introduction

The DOA estimation of multiple signal sources plays an important role in fields such as radar,
sonar, wireless communications and seismology. 2-D DOA estimation has important practical
significance. Therefore, a large number of super-resolution DOA estimation algorithms have
been proposed. One of the most popular methods is multiple signal classification (MUSIC) [1–3].
The MUSIC algorithm utilizes the orthogonality between signal subspace and noise subspace to
achieve high-resolution estimation of signal angles [4–8]. This kind of angle estimation algorithm
based on spatial orthogonality has some limitations [9–12]. That is to say, for a uniform array, whether
it is a one-dimensional (1-D) array or a 2-D array, there is a problem that the number of physical
elements M limits the number of signal sources K that can be estimated, namely, K < M [13].

In order to overcome this limitation, some nonuniform array structures have attracted wide
attention. The nonuniform arrays can increase the degree of freedom (DOF) for signal estimation so
that the number of signals that can be estimated is greater than the number of physical elements [14–17].
As a kind of nonuniform array, the minimum redundant array (MRA) was first proposed in Ref. [18].
This array structure can maximize the degree of freedom of parameter estimation when the number of
elements is given. However, the disadvantage of this structure is that there is no closed expression for
the position of elements. In Refs. [19,20], the generalized covariance matrix was proposed to enlarge the
degree of freedom. However, the generalized covariance matrix is not positive semidefinite for a finite
number of snapshots. In Ref. [21], nested arrays were proposed to estimate the DOAs of O

(
M2) signals

with M elements. Due to the mutual coupling effect caused by the small sensor spacing of nested
arrays, the coprime array structure was proposed in Ref. [22]. The element spacing of coprime arrays is
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sparse; nevertheless, the number of signal sources can be K ≤ MN with 2M+ N− 1 elements, where N
denotes the sensor number of subarray 1, and 2M− 1 denotes the sensor number of subarray 2. On the
basis of one-dimensional sparse nonuniform arrays, Ref. [23] presented a novel nonuniform L-shaped
array consisting of two-level nested arrays. A conjugate augmented spatial–temporal cross-correlation
matrix (CAST–CCM) was constructed to estimate the two-dimensional angles. Another array structure
used for 2-D angle estimation is the parallel array. Ref. [24] presents decoupled estimation for two
parallel arrays (DETPA). By this method, the 2-D angle estimation problem was transformed into a 1-D
search problem, which reduced the computational complexity of the original 2-D search algorithms.
A two-parallel coprime array (TPCA) was proposed in Ref. [25]. By constructing a cross-correlation
matrix of the received signals, 2-D angles were estimated using the sparse reconstruction technique. On
the basis of two-parallel arrays and sparse reconstruction, Ref. [26] proposed to enhance the sparsity
by using the double-threshold sigmoid penalty (DTSP) function. Then, the sparse reconstruction
technique was used to estimate the 2-D angles. A three-parallel nested array structure was proposed in
Ref. [27]. The three-parallel nested arrays with M elements can get DOF O

(
(M/2)2

)
. The continuity

of virtual array elements was proved. 2-D angles were estimated by sparse reconstruction.
In recent years, compressed sensing technology has become a hot spot in many fields, and the

problem of DOA estimation based on sparse reconstruction has attracted wide attention of researchers.
All of Refs. [25–27] use sparse reconstruction technology. The disadvantage of this method is its
high computational complexity when it is used in the angle estimation of sparse arrays [28–32].
A sparse array makes the original array aperture enlarged to increase the degree of freedom of angle
estimation by vectorizing a sample covariance matrix, which forms a single measurement vector (SMV)
model [33–36]. At the same time, the size of the sparse dictionary matrix is enlarged. The computational
complexity of sparse reconstruction is directly related to the size of the dictionary [37–41]. This paper
presents a solution to the problem of increasing computational complexity caused by the enlargement
of sparse dictionary size in 2-D nested arrays.

The main content of this paper can be summarized as follows:

(1) Two-parallel nested arrays are proposed, which can separate the angles of the two dimensions.
Two-parallel nested arrays can provide more continuous DOF than three-parallel nested subarrays
proposed by Ref. [26].

(2) 2-D angle estimation models are constructed. Then, the data of subarray 1 are rearranged in
reverse order, and the covariance matrix of rearranged subarray 1 data and subarray 2 data is
obtained. After vectorizing the matrix, the 2-D angles are decoupled, and the single measurement
vector (SMV) model is established.

(3) The SMV model of a virtual array is changed into multiple measurement vector (MMV) models
to reduce the size of sparse dictionaries by a smoothing reconstruction method. By processing
the SVD of the observation matrix, the algorithm further reduces the noise impact and
computational complexity.

(4) A method based on sparse Bayesian learning is derived for MMV models. The angles of one
dimension are estimated.

(5) The angles of the other dimension are estimated through the joint covariance matrix of the two
subarrays. The estimated values from two dimensions can be automatically paired.

The two-parallel nested array proposed in this paper can be used in the field of passive
reconnaissance and wireless networks.

The rest of this paper is organized as follows. The array model and signal model are introduced in
Section 2. The 2-D DOA estimation algorithm for the proposed two-parallel nested arrays is described
in detail in Section 3. Simulation results are presented to verify the performance of the proposed
two-parallel nested arrays and the 2-D DOA estimation algorithm in Section 4. Conclusions are drawn
in Section 5.
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The following notations are used throughout the manuscript. We use bold lowercase letters to
denote vectors (e.g., a), bold capitals for matrices (e.g., A) and hollow capitals for sets (e.g., A). For a
matrix A, the symbols A∗, AT and AH denote the conjugation, transpose and conjugate transpose,
respectively. [A]i,: denotes the vector consisting of the elements of the i-th row of the matrix A. [A]:,j
denotes the vector consisting of the elements of the j-th column of the matrix A. [A]i,j denotes the j-th
element of the i-th row of the matrix A. diag{a} denotes a diagonal matrix that uses the elements
of vector a as its diagonal elements. vec{A} denotes vectorization, which converts the matrix A into
a column vector by stacking the columns of A on top of one another. The symbol � denotes the
Khatri-Rao product. ‖ · ‖F denotes the Frobenius norm of a matrix.

2. Array Model and Signal Model

In this section, a two-parallel nested array is proposed, and the signal reception model of the
proposed array is established.

Unlike traditional uniform parallel arrays, a two-parallel nested array model is proposed,
as shown in Figure 1. Two-parallel nested arrays consist of two uniform linear arrays spaced at
half of the signal wavelength λ. One of them is a compact array and the other is a sparse array. The two
subarray elements have the same number of elements. In Figure 1, subarray 1 is a compact array
composed of M elements, whose interval is d = λ

2 . The number of elements in subarray 2 is M, and the
interval between elements is Md. The parallel nested array is located on the x− y plane [24].
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Figure 1. Two-parallel nested array structure.

In this paper, K narrowband far-field source signals impinging on the parallel nested array with
2M elements are considered. The K source signals come from the (θk, φk), k = 1, 2, · · · , K direction
where θk ∈ [0, π

2 ) and φk ∈ [0, 2π) denote the elevation and the azimuth angle of the k-th signal,
respectively. (αk, βk) is regarded as the direction of the k-th signal source, where cos αk = sin θk sin φk,
cos βk = sin θk cos φk. αk denotes the angle between the k-th signal source and the y-axis, and βk
denotes the angle between the k-th signal source and the x-axis. The two subarray outputs can be
given as

y1(t) =
K

∑
k=1

a1(αk)sk(t) + n1(t) = A1(α)s(t) + n1(t), (1)

y2(t) =
K

∑
k=1

a2(αk)a(βk)sk(t) + n2(t) = A2(α)A(β)s(t) + n2(t), (2)

where y1(t), y2(t) denote the t-th snapshot vector of subarray 1 and subarray 2. s(t) =

[s1(t), s2(t), · · · , sK(t)]
T is the source signal vector. n1(t), n2(t) denote temporarily complex-valued

white Gaussian noise with zero-mean and variance σ2
n, respectively. A1(α) = [a1(α1), a1(α2), · · · , a1(αK)],

A2(α) = [a2(α1), a2(α2), · · · , a2(αK)] are steering vector matrixes of subarray 1 and subarray 2, where
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a1(αk) = [1, ej2πd cos(αk)/λ, · · · , ej2πd(M−1) cos(αk)/λ]
T

, (3)

a2(αk) = [1, ej2πMd cos(αk)/λ, · · · , ej2πd(M−1)M cos(αk)/λ]
T

, (4)

where a(βk) = exp[j2πMd/ cos(βk)] is the scalar containing the angles relative to the x-axis. A(β) can
be expressed as

A(β) = diag{a(β1), a(β2), · · · , a(βK)}. (5)

3. The Proposed 2-D DOA Estimation Algorithm for Parallel Nested Array

This section is divided into four parts. In the first part, a nested array angle estimation model is
established, and the 2-D angle estimation is transformed into a 1-D angle estimation problem. In the
second part, the complexity of the angle estimation model is reduced through the method proposed
in this paper. In the third part, a sparse Bayesian learning algorithm is used to solve the problem of
MMV angle estimation. In the fourth part, the angles of two dimensions are estimated, separately,
and automatically paired.

3.1. Virtual Array Data Model

The data received by subarray 1 is rearranged in reverse order.

ỹ1(t) = JMy1(t) = JMA1(α)s(t) + JMn1(t) = Ã1(α)s(t) + ñ1(t), (6)

where JM is a M × M backward identity matrix. Ã1(α) denotes the steering vector matrix in
reverse order. Ã1(α) = JMA1(α) = [ã1(α1), ã1(α2), · · · , ã1(αK)]. The k-th column of Ã1(α) is

ã1(αk) = [ej2πd(M−1) cos(αk)/λ, ej2πd(M−2) cos(αk)/λ, · · · , 1]
T

. ñ1(t) is a noise vector in reverse order.
The cross-covariance matrix of the two subarrays can be expressed as

R = E{ỹ1(t)y
H
2 (t)}

= E{Ã1(α)s(t)sH(t)AH(β)AH
2 (α)}+ E{ñ1(t)nH

2 (t)}
= Ã1(α)RsA∗(β)AH

2 (α)

, (7)

where Rs = diag
{

ρ1, ρ2, · · · ρK
}

represents the covariance matrix of the K signals. ρk denotes signal
power of the k-th signal. A∗(β) = AH(β), because A(β) is a diagonal matrix. The covariance of the
noise is eliminated since the noise of the two subarrays is uncorrelated.

We define Ω = RsA∗(β) = diag{ρ1a(β1), ρ2a(β2), · · · , ρKa(βK)}. In order to expand the degree
of freedom, we calculate y by vectorizing cross-covariance matrix R.

y = vec(R) = vec(Ã1(α)Ω)

= (A∗2(α)� Ã1(α))p
= Avp

, (8)

where p = [ρ1a(β1), ρ2a(β2), · · · , ρKa(βK)] is regarded as the input value of the virtual array. Av =

A∗2(α)� Ã1(α) = [a∗2(α1)⊗ ã1(α1), a∗2(α2)⊗ ã1(α2), · · · , a∗2(αK)⊗ ã1(αK)] ∈ CMM×K is viewed as the
steering vector matrix for the virtual array.

av(αk) = [e−j(M−1)2πd cos αk/λ, e−j(M−2)2πd cos αk/λ, · · · , ej(M−1)M2πd cos αk/λ]
T
∈ CM2×1 (9)

The virtual array’s degree of freedom is M2. Unlike the virtual array corresponding to a 1-D nested
array [20], there is no duplicate term in the output of the virtual array of the parallel nested array.

According to the Equation (8), the angles of two dimensions, αk and βk are separated into two
items, Av and p, respectively. In order to estimate the value of the angle αk, k = 1, 2, · · · , K, a sparse
SMV model is established as follows.
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y = Φp̃ + e, (10)

where Φ is a sparse dictionary matrix in compressed sensing. {ϕ1, ϕ2, · · · , ϕN} is a fixed sampling
grid set covering all possible Φ = [a(ϕ1), a(ϕ2), · · · , a(ϕN)] ∈ CMM×N . p̃ is a sparse representation
of input values of the virtual array. In p̃, only K items are nonzero, and the rest are zeros. e is a data
error vector since the number of arrays sampling is finite, resulting in the error between the real value
of R and the measured value.

3.2. Reducing the Size of the Sparse Dictionary

The number of elements in the virtual array is M2, so the size of the dictionary matrix is M2 × N,
where N denotes the number of sparse divisions in airspace. The size of the dictionary matrix
increases squared with the array elements of nested array subarrays. More importantly, the size of
the dictionary determines the computational complexity of the sparse algorithm. It can effectively
reduce the computational complexity of the algorithm to reduce the size of the dictionary. As the
output of virtual array, y = [y1, y2, · · · , yM2 ]

T is smoothly divided into overlapping virtual subarrays
with L (K ≤ L ≤ M2) elements in order to reduce the size of the dictionary. The number of virtual
subarrays is M2 − L + 1, as shown in Figure 2. The output value of the i-th virtual subarray is
yi = [yi, yi+1, · · · , yi+L−1]

T, i = 1, 2, · · · , M2 − L + 1. A new observation matrix Y is constructed with
the output of each virtual subarray as a column, namely Y = [y1, y2, · · · , yM2−L+1]. The output sparse
model of the virtual array can be redefined as a MMV model, as shown below,

Y = Φ̃P + E, (11)

where Φ̃ = [ã(ϕ1), ã(ϕ2), · · · , ã(ϕN)] ∈ CL×N . ã(ϕ1) denotes the steering vector of virtual subarrays.
Obviously, the size of Φ̃ is much smaller than that of Φ. P ∈ CN×(M2−L+1) is the sparse input matrix
of virtual subarrays. There are K (K � N) nonzero rows in P, and the rest are 0. E denotes a sparse
representation of the noise term. Indexed set K of nonzero rows in P can be represented as

K =
{

k ∈ N
∣∣Pk,: 6= 0

}
. (12)

When the set K is known, the estimated value of αi (i = 1, 2, · · · , K) can be obtained by matrix Φ̃.
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To eliminate data noise, the SVD is applied to matrix Y. Y can be expressed as Y = UΓVT by SVD,
where U and V denote left and right singular matrices of Y, respectively. In this paper, we assume that
the value of the number of signal sources K is known. Γ is a diagonal matrix consisting of singular
values of Y. The first K values on the diagonal line in Γ correspond to the signal subspace in Y, and the
rest of the values correspond to noise subspace. Equation (11) can be rewritten as follows,
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Ys = Φ̃Ps + Es, (13)

where Ys = YVD, Ps = PVD, Es = EVD, D =

[
IK 0
0 0

]
. Through SVD, the size of the observation

matrix Y is further reduced, and some of the noise in the observation data is removed, which is
conducive to improving the signal-to-noise ratio (SNR).

3.3. Sparse Bayesian Learning Algorithm for MMV

Sparse Bayesian learning is applied to solve the MMV problem in Equation (13). We assume
that noise items Es in Equation (13) obey complex-value Gaussian distribution with zero mean and
variance σ2. The posterior probability density of the observed matrix Ys is

Pr(Ys

∣∣∣Ps; σ2 ) =
1

(πσ2)L(M2−L+1)
exp(−‖ Ys − Φ̃Ps ‖

2
F

σ2 ). (14)

Suppose the variable Ps obeys zero-mean complex-value Gaussian distribution. The variance
of Ps is Λ = diag(γ), where γ = [γ1, γ2, · · · , γN ]

T is a hyperparameter that needs to be estimated.
γi (i = 1, 2, · · · , N) is a scalar, which represents the variance of the i-th row in Ps. The i-th row in Ps is
a nonzero vector if γi > 0.

Pr(Ps; γ) =
N

∏
n=1

CN(0, Λ) (15)

Equation (12) can be rewritten as follows,

K = {k ∈ N|γk > 0}. (16)

According to the Bayesian principle, the conditional probability density of Ps is

Pr(Ps

∣∣∣Ys; γ, σ2 ) =
Pr(Ys

∣∣Ps; σ2 )Pr(Ps; γ)

Pr(Ys; γ, σ2)
. (17)

Ignoring the normalized denominator, we get

Pr(Ps
∣∣Ys; γ, σ2 ) ∝ Pr(Ys

∣∣Ps; σ2 )Pr(Ps; γ)

∝
exp

{
−tr
[
(Ps−µPs )

HΣ−1
P (Ps−µPs )

]}
(πLdet(ΣPs ))

M2−L+1

= CN(µPs , ΣPs
)

(18)

where µPs is the mean of Ps, and ΣPs
is the variance of Ps. According to Equations (14) and (15),

µPs and ΣPs can be estimated by the following formula,

µPs = ΛΦ̃HΣ−1
Ys

Ys, (19)

ΣPs =

(
1
σ2 Φ̃HΦ̃ + Λ−1

)−1
= Λ−ΛΦ̃HΣ−1

Ys
Φ̃Λ, (20)

where
ΣYs = E(Ys

HYs) = σ2IL + Φ̃ΛΦ̃H. (21)

Using the inverse lemma of matrix, Σ−1
Ys

can be obtained:

Σ−1
Ys

= σ−2IL − σ−2Φ̃
(

1
σ2 Φ̃HΦ̃ + Λ−1

)−1
Φ̃Hσ−2

= σ−2IL − σ−2Φ̃ΣPs Φ̃Hσ−2
. (22)
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The denominator of Equation (17) can be obtained

Pr(Ys; γ, σ2) =
∫

Pr(Ys|Ps ; σ2)Pr(Ps; γ)dPs =
exp

{
−tr(Ys

HΣ−1
Ys

Ys)
}

(πLdetΣYs)
M2−L+1

. (23)

The hyperparameters γ and σ2 can be estimated by

(γ̂, σ̂2) = argmax
γ≥0,σ2>0

log Pr(Ys; γ, σ2), (24)

where
log Pr(Ys; γ, σ2) ∝ −tr(Ys

HΣ−1
Ys

Ys)− (M2 − L + 1) log detΣYs

∝ −tr(Σ−1
Ys

RYs)− log detΣYs

. (25)

In Equation (25), RYs = YsYs
H/(M2 − L + 1). We can obtain

∂Σ−1
Ys

∂γm
= −Σ−1

Ys

∂ΣYs

∂γm
Σ−1

Ys
= −Σ−1

Ys
ã(ϕm)ãH(ϕm)Σ

−1
Ys

, (26)

∂ log detΣYs

∂γm
= tr

(
Σ−1

Ys

∂ΣYs

∂γm

)
= ãH(ϕm)Σ

−1
Ys

ã(ϕm). (27)

The derivatives of Equation (25) can be expressed as

∂ log Pr(Ys; γ, σ2)

∂γm
=

1
γ2

m(M2 − L + 1)
‖ µm ‖2

2 − ãH(ϕm)Σ
−1
Ys

ã(ϕm), (28)

where µm = γmãH(ϕm)Σ
−1
Ys

Ys, µm is the m-th row of µP. In order to calculate Equation (28), the iterative
formula of γm is

γnew
m =

1√
M2 − L + 1

‖ µm ‖2/
√

ãH(ϕm)Σ
−1
YS

ã(ϕm). (29)

According to Equation (21), the covariance of Ys can also be expressed as

ΣYS = σ2I +
[
Φ̃
]

:,K
ΛK
[
Φ̃H
]
K,:

, (30)

where
[
Φ̃
]

:,K
denotes a matrix, which is composed of columns of Φ̃ corresponding to set K in matrix

Φ̃. ΛK represents a diagonal matrix consisting of elements in Λ corresponding to K. When the optimal
solution of µPs and ΣYs is obtained, Equations (21) and (30) should be the same. The following equality
is obtained, [

Φ̃H
]
K,:

(RYs − ΣYs)
[
Φ̃
]

:,K
= 0. (31)

Substituting Equation (30) into Equation (31), we can obtain[
Φ̃H
]
K,:

(RYs − σ2I)
[
Φ̃
]

:,K
=
[
Φ̃H
]
K,:

[
Φ̃
]

:,K
ΛK
[
Φ̃H
]
K,:

[
Φ̃
]

:,K
. (32)

The iterative formula of σ2 can be expressed as

(σ2)
new

=
1

L− K
tr
[(

I−
[
Φ̃
]

:,K

[
Φ̃H
]†

K,:

)
RYs

]
, (33)
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where
[
Φ̃H
]†

K,:
=

([
Φ̃H
]
K,:

[
Φ̃
]

:,K

)−1[
Φ̃H
]
K,:

is the Moore-Penrose pseudo-inverse operation of[
Φ̃H
]
K,:

. Hyper parameters γ, σ2 can be estimated by Equations (29) and (33), and K can be obtained.

αi (i = 1, 2, · · · , K) can be estimated.

3.4. The Method to Estimate βi

The method of estimating βi (i = 1, 2, · · · , K) is presented in this section under the condition
of known estimated value α̂i. According to Equation (7), the cross-covariance matrix of the input of
subarray 1 and subarray 2 can be expressed as

R = Ã1(α̂)RsA∗(β)AH
2 (α̂), (34)

where Ã1(α̂) denotes the steering vector matrix of subarray 1 expressed with known estimations α̂i
(i = 1, 2, · · · , K). AH

2 (α̂) represents part of the steering vector matrix of subarray 2, and the other
part A∗(β) is unknown. The estimated value of A∗(β) can be expressed as a form of minimum mean
square error.

A(β) = arg min
A(β)
‖ R− Ã1(α̂)RsA∗(β)AH

2 (α̂) ‖
2
F, (35)

where R = 1
T

T
∑

t=1
JMy1(t)y

H
2 (t) is known. The autocorrelation matrix Rs of signals s(t) is unknown.

In order to estimate Rs, eigenvalue decomposition is applied to R.

R = UrΓrUH
r , (36)

where Ur = [Urs, Urn]. Urs denotes a matrix composed of eigenvectors corresponding to signal
subspaces. Urn denotes the eigenvector matrix corresponding to noise subspaces. Γr is a diagonal
matrix composed of eigenvalues in descending order.

R = UrsΓrsUH
rs + UrnΓrnUH

rn (37)

Γrs and Γrn denote diagonal matrixes composed of signal eigenvalues and noise eigenvalues,
respectively. The autocorrelation matrix R1 of subarray 1 can be expressed as

R1 = E
{

y1(t)y
H
1 (t)

}
= A1(α̂)RsAH

1 (α̂) + σ2
nI. (38)

According to Equations (37) and (38), the columns of A1(α̂) and Urs span the same space. Rs can
be estimated as follows.

Rs = A+
1 (α̂)UrsΓrsUH

rs

(
AH

1 (α̂)
)+

(39)

A(β) can be estimated by

Â(β) =
(

R̂−1
s Ã

+
1 (α̂)R(AH

2 (α̂))
+
)∗

. (40)

The closed-form expression of Â(β) estimation can be obtained by

Â(β) =

((
A+

1 (α̂)UrsΓrsUH
rs

(
AH

1 (α̂)
)+)−1

Ã
+
1 (α̂)R(AH

2 (α̂))
+

)∗
. (41)

βi (i = 1, 2, · · · , K) can be estimated by

β̂i = arg
βi

(Â(βi)). (42)
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The estimated values of αi and βi can be automatically matched.
The computational complexity of the proposed two-dimensional angle estimation is

O
{

M2N + 8MK2 + 4M(4M− K)K + 8(M− 1)K2}.

4. Simulation

In this section, several simulation experiments are provided to verify the superiority of the
two-parallel nested arrays and the proposed estimation algorithm. This section is divided into three
simulations. In the first simulation, the degree of freedom of two-parallel nested arrays is verified.
In the second simulation, the 2-D DOA estimation algorithm proposed in this paper is tested and
verified. In the third simulation, the proposed method is compared with the other three methods in
the literature. The simulation software I use is MATLAB R2014a. My personal computer’s CPU is Intel
Core i7.

4.1. Comparison of DOF in Parameter Estimation

The DOF of the two-parallel nested arrays proposed in this paper is compared with that of the
three-parallel nested arrays [26]. In Ref. [26], three-parallel nested arrays can offer M2 − 1 DOF with
2M sensors, while the two-parallel nested arrays proposed in this paper can offer M2 DOF with 2M
sensors. In Figure 3, when the elements of the two arrays are from 10 to 50, the continuous degree of
freedom changes of the array are counted. The blue line represents the continuous DOF of two-parallel
nested arrays proposed in this paper. The red line represents a continuous DOF of three-parallel nested
arrays proposed in Ref. [26].Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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As can be seen from the Figure 3, the continuous DOF of the two-parallel nested arrays is slightly
larger than that of the three-parallel nested arrays. This shows that the two-parallel nested arrays
proposed in this paper have better array structure than Ref. [26]. In practical applications, we can
estimate a greater number of radiation source angle values. Moreover, the array structure proposed in
this paper is simpler than the structure of Ref. [26].

4.2. Results of 2-D DOA Estimation

In this part, the DOA estimation performance of the proposed algorithm for 2-D angle
estimation is verified. The number of sensors in subarray 1 and subarray 2 is M = 5.
The directions of the 10 far-field narrowband signal sources are (αi, βi) ∈ {(10, 53), (15, 25) ,
(20, 45), (25, 55), (30, 16), (35, 20), (45, 37), (55, 55), (60, 12), (70, 33)} i = 1, 2, · · · , 10. The signal is
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received by the two-parallel array and estimated by the 2-D direction-finding algorithm proposed
in this paper with the signal-to-noise ratio SNR = 10 dB and the number of snapshots P = 500.
The initialization parameters of the DOA estimation algorithm are σ2

0 = 0.5, ε = 0.1, γ0 = 0.1, K = 10.
The angle interval in the sparse dictionary is 0.1◦.

As shown in Figure 4a, the angle αi (i = 1, 2, · · · , 10) is accurately estimated by the multiple
measurement vector based on the sparse Bayesian learning (MMV-SBL) direction finding algorithm
proposed in this paper. It can be seen from the Figure 4a that the proposed MMV-SBL algorithm can
estimate the angle αi (i = 1, 2, · · · , 10). The 10 peaks of the estimation result are obvious and sharp,
and there is no false sidelobe.Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 
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Figure 4. 2-D DOA estimation results.

Figure 4b shows the estimation result of angle βi (i = 1, 2, · · · , 10) through the Equations (41)
and (42) at the known angle αi. The angle order in Figure 4b is in one-to-one correspondence with
Figure 4a. As can be seen from Figure 4b, angle βi (i = 1, 2, · · · , 10) can be estimated by the algorithm
proposed in this paper (Algorithm 1), and the angles of the two dimensions are automatically paired.

Figure 4c shows the paired results of two-dimensional angles αi and βi with 50 Monte Carlo
experiments. The red crosses represent the true values of the 2-D angles, and the blue dots represent the
estimated angles. As shown in Figure 4c, the blue dots are concentrated near the red crosses. Obviously,
the 2-D DOA estimation algorithm presented in this paper shows excellent estimation results.
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Algorithm 1. The proposed algorithm steps for the 2-D angle estimation of parallel nested array.

Input: Data vectors obtained by subarray 1 and subarray 2, y1(t) and y2(t).
Step 1. By Equation (6), calculate ỹ1(t). By Equations (7) and (8), calculate R and vectorize R.
Step 2. Smooth reconstruct y and get Y. Use SVD to Y and get Ys.
Step 3. Initialize parameters σ2

0 , ε, γ0, j = 1, K.
Step 4. σ2

j = σ2
j−1, γj = γj−1, Λ = diag(γj). ΣYs and µPs are calculated by Equations (19) and (21), separately.

Step 5. By Equation (29), γm is calculated. The index of K maximum values of vector γj constitute the set K.

Step 6. According to K,
[
Φ̃
]

:,K
is obtained. σ2

j is calculated by Equation (33)

Step 7. If ‖ γj − γj−1 ‖1/‖ γj−1 ‖1 < ε, αi is obtained by
[
Φ̃
]

:,K
. If ‖ γj − γj−1 ‖1/‖ γj−1 ‖1 ≥ ε, let j = j + 1,

and execute step 4.
Step 8. By Equations (41) and (42), βi is obtained.
Output: 2-D angle estimation αi and βi (i = 1, 2, · · · , K).

4.3. Performance Comparison of Angle Estimation

In this subsection, TPCA [25], DTSP [26] and DETPA [24] with the respective 2-D DOA estimation
methods are used as contrast objects. They all take the two-parallel array as the research object, but the
array structure and direction-finding algorithm are different. Under different conditions, the array
structure and algorithm proposed in this paper will be compared with these three methods. In this
simulation, the sensor number of subarray 1 and subarray 2 in the proposed two-parallel array is
M1 = M2 = 6. The sensor numbers of two subarrays in Ref. [25] are M1 = 5 and M2 = 7. Those of
two subarrays in Ref. [26] are M1 = 6 and M2 = 5. Those of two subarrays in Ref. [24] are M1 = 5 and
M2 = 7. The number and angle information of the sources are the same as that in the simulation 2.
We conducted 500 Monte Carlo experiments with the root-mean-square error (RMSE) as the evaluation
criterion. The RMSE is defined as

RMSE =

√√√√ 1
QK

Q

∑
q=1

K

∑
i=1

((
α̂i,q − αi

)2
+
(

β̂i,q − βi
)2
)

, (43)

where Q denotes the number of Monte Carlo trials, and α̂i,q denotes the i-th angle estimation in the
q-th Monte Carlo trial.

In Figure 5a, the RMSEs of four different array structures with their DOA estimation algorithms
are calculated under different SNRs, from −10 dB to 20 dB, and the number of snapshots P = 500.
As shown in Figure 5a, under the same SNR condition, the DOA estimation performance of the
algorithm proposed in this paper is superior to the other three algorithms.

In Figure 5b, SNR is fixed at 20 dB. The RMSEs of the proposed algorithm and the other three
algorithms are counted with snapshots from 50 to 500. As shown in the figure, the RMSE of the
proposed method is smaller than the other three methods, indicating that the former has the best DOA
estimation performance.

In Figure 5c, the SNR is fixed at 20 dB and the number of snapshots is 500. The number of signals
ranges from 5 to 15. The RMSEs of the proposed algorithm and other three algorithms are counted.
The figure shows that the RMSE of the proposed algorithm is smaller than that of the other three
algorithms when the number of the parallel array sensors is the same, and the performance advantage
of the proposed algorithm is more obvious than that of the other three algorithms as the number of
sensors increases.
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All of the above are based on the simulation analysis under ideal conditions. In practical
application, the signal received by the array may be a nonstationary signal. The noise may be Gaussian
colored noise. The mutual coupling effect may exist between the elements of subarray 1, and the
inconsistency of each channel of the elements may exist. All these will seriously affect the accuracy of
DOA estimation. The corresponding models should be constructed to solve these practical problems.
This is a problem that needs further study.

5. Conclusions

In this paper, a two-parallel nested array is proposed, which can provide M2 degrees of freedom
with 2M sensors. In order to estimate the 2-D angles of the signal sources, a 2-D DOA angle estimation
algorithm based on sparse Bayesian learning is proposed. In this algorithm, the SMV model of
the previous nested array is transformed into the MMV model to reduce the size of the sparse
dictionary. Through SVD processing, the algorithm reduces the noise effect and computational
complexity. We derive a sparse Bayesian learning algorithm for the MMV model. The simulation results
show that the proposed two-parallel nested arrays have large DOF of parameter estimation, and the
proposed DOA estimation algorithm also has excellent DOA estimation performance. In practical
applications, the small interval between subarray 1 elements may result in a mutual coupling effect and
the decrease of angle estimation accuracy. We find that the sparsity of the array can be increased and
the degree of freedom can be improved by adjusting the position of subarray 1 elements, which leads
to better direction-finding performance. We will further study how to adjust the element location of
subarray 1 to achieve the optimal array structure.
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