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A B S T R A C T   

Objective: Antiretroviral therapy (ART)-conferred suppression of HIV replication limits neuronal injury and 
inflammation. ART interruption tests efficacy in HIV cure trials and viral rebound after ART interruption may 
induce neuronal injury. We investigated the impact of protocol-defined ART interruption, commenced during 
primary HIV-1 infection (PHI) on a biomarker of neuro-axonal injury (neurofilament light protein (NfL)), and its 
associations with inflammation (D-dimer and interleukin-6 (IL-6)) and HIV-1 reservoir size (total HIV-1 DNA). 
Design: Retrospective study measuring plasma NfL in 83 participants enrolled in SPARTAC randomised to receive 
48-weeks ART initiated during PHI, followed by ART interruption. 
Methods: NfL (Simoa immunoassay, Quanterix™) was measured before ART, after 48 weeks on ART, and 12 
weeks after stopping ART. Plasma D-dimer and IL-6, and total HIV-1 DNA in peripheral CD4+ T-cells results were 
available in a subset of participants. Longitudinal NfL changes were assessed using mixed models, and associ-
ations with clinical and laboratory parameters using linear regression. 
Results: NfL decreased following 48-weeks ART (geometric mean 6.9 to 5.8 pg/mL, p = 0.006) with no further 
significant change up to 12-weeks post-stopping ART despite viral rebound in the majority of participants 
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(median 1.7 to 3.9 plasma HIV-1 RNA log10 copies/mL). Higher baseline NfL was independently associated with 
higher plasma HIV-1 RNA (p = 0.020) and older age (p = 0.002). While NfL was positively associated with D- 
dimer (n = 48; p = 0.002), there was no significant association with IL-6 (n = 48) or total HIV-1 DNA (n = 51). 
Conclusions: Using plasma NfL as a surrogate marker, a decrease in neuro-axonal injury was observed in a cohort 
of participants following ART initiation during PHI, with no evidence of neuro-axonal injury rebound following 
ART interruption for up to 12 weeks, despite viral rebound in the majority of participants.   

1. Introduction 

Antiretroviral treatment (ART) has improved survival for people 
with HIV,1 however, upon ART cessation, plasma viral load rebound 
occurs in most people.2 The source of rebounding virus originates from 
latently infected cells, the ‘reservoir’.3 Whilst SMART4 identified that 
interrupting ART with a CD4+ count re-initiation criteria was unsafe, 
recent HIV-1 eradication research suggests that with monitoring, 
analytical treatment interruption (ATI) may be safe, whilst being the 
best way of testing efficacy and identifying remission.5 

The main HIV reservoir resides in resting memory CD4+ T-cells, but 
evidence suggests that the central nervous system (CNS)6–12 is another 
important site. A concern with HIV-1 eradication strategies and ATI is 
that viral rebound in the CNS could precipitate immuno-activation and 
neuro-inflammation, leading to neuronal injury.8 Evidence demon-
strates that within 4 weeks of stopping ART initiated during primary 
HIV-1 infection (PHI), plasma biomarkers of inflammation (IL-6 and 
D-dimer) which decreased during ART, return to pre-ART levels13 and 
that IL-6 and D-dimer mediate neuroinflammation and may cause 
neuro-axonal injury.14–16 Early ART initiation is associated with lower 
HIV-1 DNA (a measure of HIV-1 reservoir),17–19 and when stopping ART, 
is associated with a delayed time to virus rebound.20,21 

Reported CNS adverse events during HIV-1 eradication studies 
including ATI are rare.22–26 However, in many modern studies the 
period off ART is carefully monitored, with ART reinitiated at early viral 
rebound.27 Nonetheless, it remains imperative to ensure CNS safety. 
Cerebrospinal fluid (CSF) neurofilament light protein (NfL) is a vali-
dated, sensitive and dynamic biomarker of CNS neuro-axonal injury28–30 

with elevated concentrations reported in neurological disorders, 
including across the spectrum of HIV infection.31–33 The neurofilament 
complex form a major structural component of myelinated axons and 
sustain the structural and functional integrity of axons.29 Neurofila-
ments make up around 85% of the cytoskeleton proteins and contain 
four main subunits with different molecular weights: NfL (68 kDa), 
neurofilament medium (150 kDa), neurofilament heavy (190–210 kDa) 
and α-internexin (66 kDa), of which NfL is the most abundant and most 
soluble.28 In conditions involving cortical neuronal injury, neurofila-
ment proteins can be used as a biomarker of neuro-axonal injury. 
Following an injury, neurofilament proteins from the damaged 
neuro-axonal units are released proportional to the severity of injury 
into interstitial fluid and enters the CSF, where they can then be 
measured.33 However, restricted by accessibility, frequent CSF NfL 
measurement is difficult. A novel Simoa assay which can reliably mea-
sure blood NfL (usually 50–100 times lower than CSF NfL) has been 
developed,34 thus removing the barriers faced by CSF sampling. Pre-
liminary data demonstrates that blood NfL correlates moderately to 
strongly with CSF NfL34–38 across a variety of neurological disorders, 
including HIV disease34,39–42 and a recent meta-analysis demonstrated 
moderate correlations between CSF and blood NfL, especially when 
blood NfL was measured using Simoa or electrochemiluminescence as-
says, further strengthening the evidence for blood NfL as a reliable 
surrogate marker for CSF NfL.43 

The primary aim of our study was to determine whether stopping 
ART was associated with increased neuro-axonal injury. Secondary aims 
were to investigate associations between neuro-axonal injury, inflam-
mation and HIV-1 reservoir size. 

2. Materials and methods 

2.1. Participants 

Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC)44 

was a multicentre, randomised controlled trial comparing 12 weeks ART 
or 48 weeks ART, with deferred ART (standard of care at the time), 
amongst participants diagnosed within six months of HIV-1 serocon-
version. HIV-1 viral load and CD4+ count measurement was 12-weekly 
until CD4+ count <350 cells/mm3, reflecting international treatment 
guidelines at the time.45 Stored plasma samples from participants allo-
cated to the 48-week ART arm at baseline (before ART), week 48 (after 
48-weeks ART) and week 60 (12-weeks after stopping ART) were 
assessed. Plasma samples from participants were aliquoted and stored at 
− 80 ◦C in the Kings College London Infectious Diseases Biobank, before 
shipment to the UK Dementia Research Institute, University College 
London for analysis. All participants gave written informed consent for 
future use of their stored samples; the trial was approved by research 
ethics committees in each country.44 Further detail on the SPARTAC 
study including participant characteristics has previously been 
described.44 

2.2. Laboratory analyses 

Samples from weeks 0, 48 and 60 were analysed at the UK Dementia 
Research Institute, University College London, UK using the NF-light 
assay on the HD-X Simoa instrument (Quanterix™, USA).46 

Plasma D-dimer and IL-6 were measured previously in a subset of 
participants enrolled in Brazil, Australia, Italy and the United Kingdom 
at baseline, week 48 and week 60.13 Total HIV-1 DNA from CD4+ T-cells 
enriched from peripheral blood mononuclear cells was measured pre-
viously in participants with clade B virus at baseline and week 48.20 

2.3. Data analysis 

Statistical analyses were performed using Stata 17.0. P-values <0.05 
were considered statistically significant. NfL was considered high if >
10 pg/mL in participants aged <51 years, and if >15 pg/mL in partic-
ipants 51–61 years.34,47 The lower limit of quantification for HIV-1 RNA 
was <50 copies/mL, except in Africa, where it was <400 copies/mL 
which was the lower limit of detection using routine assays in Africa at 
the time of study. Longitudinal changes in NfL, D-dimer, IL-6 and total 
HIV-1 DNA were analysed using mixed models. Comparisons of high NfL 
between time-points was done using the exact McNemar test. Associa-
tions between baseline NfL with age, sex (sex assigned at birth), CD4+

T-cell counts, CD4+/CD8+ ratio, plasma HIV-1 RNA, duration between 
seroconversion and randomisation, weight, creatinine clearance 
(Cockcroft-Gault formula), and in subgroups with D-dimer and IL-6, and 
total HIV-1 DNA data were analysed using linear regression. Correla-
tions between NfL and laboratory parameters were assessed using 
Pearson’s correlation. Missing values for baseline NfL (n = 4) and weight 
(n = 5) were imputed using multiple imputations by chained equations 
under the missing at random assumption, including all factors listed 
above in the imputation model and creating 20 imputed datasets. Pre-
dictors of change in NfL from baseline were analysed, adjusted for 
baseline NfL. A two-sample T-test of equal variance was performed to 
investigate whether NfL differed significantly in those with detectable 
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versus undetectable plasma HIV-1 RNA at all timepoints. 

3. Results 

Of 123 participants randomised to receive 48 weeks ART, 83 had 
stored plasma available from at least two timepoints and were included. 
Participant demographics are described in Table 1. Baseline character-
istics of the participants included in this analysis were similar to the 
cohort of 123 participants allocated to 48 weeks ART.44 

3.1. Longitudinal NfL 

NfL geometric mean decreased from 6.9 (baseline) to 5.8 pg/mL 
(after 48 weeks ART), p = 0.006; (Table 2). There were no changes in 
NfL between weeks 48 and 60 despite plasma viral rebound in most 
during this time period (p = 0.70; Table 2). The proportion with high 
NfL was 17.7 % (14/79) at baseline, and 11.6 % (8/69), and 9.9 % (8/ 
81) at weeks 48 and 60 (p = 0.31), respectively. 5/8 participants with 
high plasma NfL at week 48 also had so at week 60 (p = 1.0). 

3.2. Factors associated with baseline NfL 

In multivariable regression analysis, higher baseline NfL was inde-
pendently associated with older age (0.13 [95% confidence interval (CI) 
0.05, 0.21], log10 NfL per 10 years increase in age higher, p = 0.002) and 
baseline HIV-1 RNA (0.08 [95% CI 0.01, 0.14] log10 NfL per 1 log10 rise 
in plasma HIV-1 RNA higher, p = 0.020). No significant associations 
were seen between baseline NfL and sex (p = 0.56), baseline CD4+ T-cell 
count (p = 0.28), creatinine clearance (p = 0.46) or weight (p = 0.88). 
Lower CD4+/CD8+ ratio and shorter time between seroconversion and 
randomisation were associated with higher NfL at baseline in uni-
variable models, however, this was not significant when including HIV-1 
RNA in the model (p = 0.23 and p = 0.10, respectively). None of the 
above factors were associated with change in NfL from baseline to week 

48. 
HIV-1 RNA was <400 copies/mL in 7.6 % (6/79), 83.8 % (57/68), 

24.7 % (20/81) of all participants at baseline, week 48, and week 60, 
respectively. Whereas participants with HIV-1 RNA ≥400 copies/mL 
had significantly higher NfL at baseline than participants with HIV-1 
RNA <400 copies/mL (geometric mean 7.2 versus 4.0 pg/mL; p =
0.028), there was no significant difference at week 48 (5.2 versus 5.9 
pg/mL; p = 0.57), or week 60 (6.0 versus 5.1 pg/mL; p = 0.29), 
respectively. 

3.3. D-dimer, IL-6 and total HIV-1 DNA per CD4+ T-cell analysis 

D-dimer and IL-6 results were available in 48/83 (Table 2). D-dimer 
decreased significantly from baseline to week 48 (from geometric mean 
0.36 to 0.28 mg/L, p = 0.017), with no further change to week 60 (p =
0.46). D-dimer significantly correlated with NfL at baseline (r = 0.66, p 
< 0.001), week 48 (r = 0.45, p = 0.010) and week 60 (r = 0.53, p <
0.001). Baseline D-dimer was also associated with baseline NfL (0.53 
[95% CI 0.20, 0.85] log10 NfL per 1 log10 rise in D-dimer, p = 0.002) 
when included into a multivariable model with age and baseline HIV-1 
RNA as independent factors, whereas there was no association between 
NfL and HIV-1 RNA (p = 0.91). In contrast, there was no change in IL-6 
between baseline, week 48 and week 60 (Table 2), and there was no 
significant association between NfL and IL-6 at any timepoint. Total 
HIV-1 DNA results were available in 51/83 participants (Table 2); total 
HIV-1 DNA decreased significantly between baseline and week 48 (from 
geometric mean 5689 to 1730 copies/106 CD4+ T-cells; p < 0.001, 
Table 2). However, there was no significant association between NfL and 
total HIV-1 DNA at baseline (r = 0.13, p = 0.40) or week 48 (r = 0.24, p 
= 0.13), or when analysing the two variables as change from baseline (r 
= 0.33, p = 0.064). 

4. Discussion and conclusion 

From this large, international cohort of individuals randomly allo-
cated to interrupt ART initiated during PHI, we observed that despite 
evidence of neuro-axonal injury (using plasma NfL) during untreated 
PHI, we saw no evidence of recurrence in neuro-axonal injury up to 12 
weeks post-ART interruption. Our results are in keeping with the study 

Table 1 
Baseline characteristics of participants in the 48-week ART arm with plasma NfL 
measured at any time point (n = 83).   

All participants 
n = 83 

Male n 
= 50 

Female n 
= 33 

Age, years 34 (27, 41) 36 (31, 
46) 

27 (22, 
37) 

Time from seroconversion to 
randomisation, weeks 

13 (9, 15) 11 (7, 
13) 

14 (12, 
17) 

Weight, kg 73 (65, 82) 75 (68, 
83) 

65 (54, 
79) 

Creatinine clearance, mL/min 107 (97, 130) 113 (98, 
128) 

103 (81, 
139) 

Virus subtype  
- B 44 (53.0) 43 (86.0) 1 (3.0)  
- C 26 (31.3) 1 (2.0) 25 (75.8)  
- Other 13 (15.7) 6 (12.0) 7 (21.2) 
Region  
- Europea 42 (50.6) 39 (78.0) 3 (9.1)  
- Africab 30 (36.1) 0 (0) 30 (90.9)  
- Australia & Brazil 11 (13.2) 11 (22.0) 0 (0) 
Clinical manifestations of 

symptomatic HIV seroconversion 
illness 

51 (61.5) 42 (84.0) 9 (27.3) 

ART regimen initiated  
− 2 NRTI and bPI 75 (90.4) 42 (84.0) 33 (100)  
− 2 NRTI and EFV 7 (8.4) 7 (14) 0 (0)  
− 1 NRTI and bPI and T20 1 (1.2) 1 (2) 0 (0) 

Values are median (IQR) or total (%). 
ART = antiretroviral treatment, NfL = neurofilament light chain protein, NRTI 
= nucleoside reverse-transcriptase inhibitors, bPI = ritonavir-boosted protease 
inhibitor, EFV = efavirenz, T20 = enfuvirtide. 

a Italy, Spain and United Kingdom. 
b South Africa and Uganda. 

Table 2 
Clinical parameter trends over the study period.   

Week 0: Before 
starting ART 

Week 48: After 48 
weeks of ART 

Week 60: 12 weeks 
after stopping ART 

Plasma NfL, pg/ 
mLa 

N = 79 N = 69 N = 81 
6.92 5.77 5.75 
(5.97–8.01) (4.94–6.74) (5.08–6.52) 

Plasma HIV-1 
RNA, log10 

copies/mL 

N = 79 N = 68 N = 81 
4.59 1.70 3.78 
(4.03–5.18) (1.70–2.60) (2.82–4.51) 

CD4+ T-cell count, 
cells/μL 

N = 79 N = 68 N = 80 
608 794 714 
(465–760) (597–995) (479–867) 

CD4: CD8 T-cell 
ratio 

N = 79 N = 68 N = 80 
0.53 0.98 0.70 
(0.38–0.82) (0.73–1.32) (0.47–1.00) 

Subgroup analysis 
D-dimer, mg/La N = 44 N = 32 N = 45 

0.36 0.28 0.31 
(0.29–0.44) (0.24–0.33) (0.25–0.38) 

IL-6, pg/mLa N = 44 N = 34 N = 45 
1.38 1.42 1.48 
(1.08–1.78) (1.08–1.88) (1.22–1.78) 

Total HIV DNA, 
log10 copies/106 

CD4+ T-cells 

N = 45 N = 51 n/a 
3.79 3.26  
(3.47–3.97) (3.09–3.44)  

Values are median (IQR) unless stated otherwise. 
n/a: not assessed at this timepoint. 

a Values are geometric mean (95 % confidence interval). 
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in individuals with treated chronic HIV-1 disease, where following ATI, 
no evidence of increased neuronal injury was demonstrated at the first 
point of plasma HIV-1 RNA >1000 copies/mL.48 

Data suggests that during very early HIV-1 infection, neuronal injury 
is often delayed compared to viral and inflammatory changes49; no 
detectable rise in CSF NfL was seen in participants with hyperacute 
HIV-1 infection50 whereas CSF NfL was elevated in half of individuals 
several months after acquiring HIV-1.51 A study of eight individuals on 
suppressive ART initiated during chronic infection who interrupted 
ART, demonstrated that while none developed neurological symptoms, 
three experienced significant rises in CSF NfL.52 Taken together, evi-
dence suggests that when closely monitored, short periods of ATIs are 
safe from a neurological perspective. 

The upper limit of normal for plasma NfL is age-dependant34,47; in 
our study the proportion of participants with plasma NfL above the 
threshold considered normal remained similar and low across all time-
points. This may reflect that amongst these individuals, there is little 
neuronal injury due to the short duration of infection. 

Our results are in keeping with published data demonstrating a 
positive association between NfL with age and plasma HIV-1 RNA.34 

While we saw a positive association between NfL and D-dimer 
(biomarker of pro-coagulation), we saw no evidence of an association 
with IL-6 (pro-inflammatory cytokine). Data from SPARTAC demon-
strated that within 4 weeks of interrupting ART initiated during PHI, 
78% had detectable plasma HIV-1 RNA ≥400 copies/mL,53 plasma 
biomarkers of inflammation (IL-6 and D-dimer) which decreased during 
ART had returned to pre-ART levels13 and plasma HIV-1 RNA strongly 
correlated with plasma D-dimer.54 These findings suggest a biological 
explanation why viral transcription might lead to a pro-coagulation and 
pro-inflammatory milieu, resulting in neuro-axonal injury. 

Strengths of our study include the protocol-indicated ART interrup-
tion, enabling us to assess the impact of ATI without risk of bias through 
confounding by indication. SPARTAC was an international study with 
40 % female participants, thus our results are uniquely generalisable. 
Limitations include the relatively short follow-up period after stopping 
ART and not all participants had D-dimer, IL-6, and total HIV-1 DNA 
results available. Stronger correlations between CSF and blood NfL have 
been reported in conditions with higher CSF and blood NfL concen-
trations.34–37 However, plasma NfL concentrations were generally low 
across all timepoints in this sub-study. Evidence suggests that the cor-
relation between blood and CSF NfL is lower at lower NfL concentra-
tions, thus the current assays may still be insufficiently sensitive to 
detect changes at these low concentrations, due to low signal-to-noise 
ratio. Furthermore, the lack of concurrent CSF NfL limits our knowl-
edge about parallel trends in CSF NfL during this time period. Data on 
underlying comorbidities in the participants throughout the study 
period were not available to us, thus potential confounding factors 
which may have independently affected NfL concentrations including 
central and peripheral neurological conditions, could not be controlled 
or accounted for. Of note, the participants enrolled into the SPARTAC 
study were a relatively young cohort (see Table 1), and the prevalence of 
comorbidities in this population is expected to be generally low. 

Our overall results are reassuring, but it is unclear whether they can 
be extrapolated to other populations, such as those undergoing HIV 
eradication strategies followed by ATI, with low nadir CD4+ counts, 
chronic HIV infection or receiving more contemporary antiretroviral 
regimens. 

When using plasma NfL as a surrogate marker, we observed a 
decrease in neuro-axonal injury in a cohort of participants following 
ART initiation during PHI, with no evidence of neuro-axonal injury 
rebound following ART interruption for up to 12 weeks. The ability to 
identify individuals undergoing ATI experiencing neuro-axonal injury 
with a blood test may be invaluable for ATI monitoring. 
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Conceptualization. Wolfgang Stöhr: Writing – review & editing, 
Methodology, Formal analysis, Data curation. Elizabeth Hamlyn: 
Writing – review & editing, Formal analysis. Kholoud Porter: Writing – 
review & editing, Methodology, Formal analysis. Jamie Toombs: 
Writing – review & editing, Investigation. Amanda Heslegrave: Writing 
– review & editing, Investigation. Henrik Zetterberg: Writing – review 
& editing, Resources, Methodology, Investigation, Funding acquisition, 
Formal analysis. Magnus Gisslén: Writing – review & editing, Meth-
odology, Investigation, Funding acquisition. Jonathan Underwood: 
Writing – review & editing. Mauro Schechter: Writing – review & 
editing, Investigation. Pontiano Kaleebu: Writing – review & editing, 
Investigation. Giuseppe Tambussi: Writing – review & editing, Inves-
tigation. Sabine Kinloch: Writing – review & editing, Investigation. 
Jose M. Miro: Writing – review & editing, Investigation. Anthony D. 
Kelleher: Writing – review & editing, Investigation. Abdel Babiker: 
Writing – review & editing. John Frater: Writing – review & editing, 
Investigation. Alan Winston: Writing – review & editing, Supervision, 
Resources, Methodology, Investigation, Funding acquisition, Concep-
tualization. Sarah Fidler: Writing – review & editing, Supervision, Re-
sources, Methodology, Investigation, Funding acquisition, 
Conceptualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

Jasmini Alagaratnam has received support to attend scientific con-
ferences and received speaker’s fees from MSD and Gilead Sciences and 
has received research grant funding from Gilead Sciences. Kholoud 
Porter has received funding from ViiV healthcare, Gilead Sciences and 
MSD. Henrik Zetterberg has served at scientific advisory boards for 
Denali, Roche Diagnostics, Wave, Samumed and CogRx, has given lec-
tures in symposia sponsored by Fujirebio, Alzecure and Biogen, and is a 
co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU 
Ventures-based platform company at the University of Gothenburg 
(outside submitted work). Henrik Zetterberg is a Wallenberg Scholar 
supported by grants from the Swedish Research Council 
(#2018–02532), the European Research Council (#681712), Swedish 
State Support for Clinical Research (#ALFGBG-720931 and #ALFGBG- 
717531)) and the UK Dementia Research Institute at UCL. Magnus 
Gisslen is supported by grants from the Swedish Research Council 
(#2021–05405 & #2021–06545), Swedish State Support for Clinical 
Research (#ALFGBG-965885 and #ALFGBG-717531), and by SciLifeLab 
from the Knut and Alice Wallenberg Foundation (#2020.0182 & 

J. Alagaratnam et al.                                                                                                                                                                                                                           



Journal of Virus Eradication 10 (2024) 100381

5

#2020.0241), research grants from Gilead Sciences and honoraria as 
speaker, DSMB committee member, and/or scientific advisor from 
Amgen, AstraZeneca, Biogen, Bristol-Myers Squibb, Gilead Sciences, 
GlaxoSmithKline/ViiV, Janssen-Cilag, MSD, Novocure, Novo Nordic, 
Pfizer and Sanofi. Jonathan Underwood has received honoraria for 
preparation of educational materials and has served on advisory boards 
for Gilead Sciences and Viiv Healthcare and is supported by the Medical 
Research Council [grant number MR/T023791/1]. Mauro Schechter has 
served on advisory Boards, received honoraria as speaker and received 
research grants from Gilead Sciences, Janssen, Merck, GSK/ViiV. Sabine 
Kinloch has received consultant honoraria from Janssen and Viiv. Jose 
M Miro has received consulting honoraria and/or research grants from 
AbbVie, Angelini, Contrafect, Cubist, Genentech, Gilead Sciences, Jan-
sen, Lysovant, Medtronic, MSD, Novartis, Pfizer, and ViiV Healthcare, 
outside the submitted work. Jose M Miro received a personal 80:20 
research grant from Institut d’Investigacions Biomèdiques August Pi i 
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