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The soil-borne plant pathogens cause serious yield losses and are difficult to control.
In suppressive soils, disease incidence remains low regardless of the presence of
the pathogen, the host plant, and favorable environmental conditions. The potential
to improve natural soil disease suppressiveness through agricultural management
practices would enable sustainable and resilient crop production systems. Our aim
was to study the impact of autumn tillage methods and crop sequence on the soil
carbon status, fungistasis and yield in boreal climate. The disease suppression was
improved by the long-term reduced and no tillage management practices with and
without crop rotation. Compared to the conventional plowing, the non-inversion tillage
systems were shown to change the vertical distribution of soil carbon fractions and the
amount of microbial biomass by concentrating them on the soil surface. Crop sequence
and the choice of tillage method had a combined effect on soil organic carbon (SOC)
sequestration. The improved general disease suppression had a positive correlation
with the labile carbon status and microbial biomass. From the most common Fusarium
species, the predominantly saprophytic F. avenaceum was more abundant under non-
inversion practice, whereas the opposite was true for the pathogenic ones. Our findings
furthermore demonstrated the correlation of the soil fungistasis laboratory assay results
and the prevalence of the pathogenic test fungus Fusarium culmorum on the crop
cereals in the field. Our results indicate that optimized management strategies have
potential to improve microbial related soil fungistasis in boreal climate.

Keywords: fungistasis, no-till, non-inversion, Fusarium spp., microbial biomass, general disease suppression,
crop rotation, labile carbon

INTRODUCTION

Diseases caused by soil-borne pathogens are among the most important limiting factors for plant
growth and productivity (Oerke, 2006). Due to the pathogens abilities to survive in the soil for long
periods of time, even without the plant host, they cause problems worldwide (Wang and Li, 2019).
Some of the soil-borne fungal pathogens produce mycotoxins, such as deoxynivalenol (DON) by
Fusarium spp. (Parikka et al., 2012; Hietaniemi et al., 2016; Hofgaard et al., 2016). In modern farm-
ing, simple crop sequence, conventional tillage, and cultivation of only a limited number of crop
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varieties favor the increased incidence and severity of diseases
caused by necrotrophic soil-borne pathogens (Cha et al., 2016).

The overall aim of sustainable farming is to cut down the
use of pesticides (European Commission, 2017). The greater
reliance on the beneficial functions and ecosystem services
provided by the soil microbiome is a promising approach forward
(Sipilä et al., 2012; Constanzo and Barberi, 2014; de Boer et al.,
2019). Disease suppressive soils, through the competitive activity
of the non-pathogenic residents of the total soil microbiota
(general suppression) or the antagonistic capabilities of specific
groups of microorganisms (specific suppression), are able to
reduce the occurrence or severity of diseases caused by soil-
borne phytopathogens (Weller et al., 2002; Dignam et al.,
2018). For most soil pathogens, however, the microorganisms
responsible for suppression and the suppression mechanisms are
not fully known, but it is likely that the soil suppressiveness
is a mixture of both types of suppressiveness (Postma et al.,
2008). The complex interplay of soil suppressiveness cannot
simply relate to a single microbial taxon or group (de Boer et al.,
2007; Legrand et al., 2019). The majority of rhizobacterial taxa
indicative of the suppressiveness status of the soil may differ when
comparing different types of suppressive soils or even different
soils suppressive to a same phytopathogen (de Boer et al., 2019;
Wang and Li, 2019).

Fungistasis is one form of soil suppressiveness, defined as
the ability of the soil to restrict the germination and growth
of fungi (Lockwood, 1977; Garbeva et al., 2011). The key
mechanism that explains soil fungistasis is intensive competition
for nutrients within the soil microbial community. Along with
this, the production of antifungal compounds in different forms,
including volatile organic compounds (VOC), may play a major
role (Garbeva et al., 2011; van Agtmaal et al., 2018). Most likely
suppressive soils are governed by microbial consortia where
saprotrophic fungi have an important role (Mendes et al., 2011;
Sipilä et al., 2012; Penton et al., 2014; van Agtmaal et al., 2017).

On global scale, conservation agriculture with either reduced
or no tillage management, crop rotation and crop cover has
increased rapidly during the last decades and was evaluated to
be ca. 180 million ha in 2016 (Prestele et al., 2018; Kassam et al.,
2019). Crop residues left untouched, as happens in non-inversion
management, accumulates organic matter on the surface layer of
soil (Muukkonen et al., 2007; Singh et al., 2015; Laine et al., 2018;
Ogle et al., 2019). The carbon allocation, mixing intensity, and
soil moisture and temperature conditions, affect the distribution
and living conditions of microbial communities in soil. Soil and
crop residue-borne plant pathogens have been reported to benefit
from crop residues on the soil surface (Hofgaard et al., 2016). On
the other hand, reduced tillage practices, crop species selection,
diverse crop rotation and practices to increase organic matter in
soils are all shown to increase the amount of microbial biomass in
soil, and also tend to improve disease suppressive activity of soil
(Janvier et al., 2007; Sipilä et al., 2012). However, the underlying
mechanisms and the relationship between disease suppression
and agrotechnological practices are still not fully understood.

In their cross-site study of soil microbial communities and
Fusarium sp. fungistasis on long-term no-till and moldboard
plowed treatments, Sipilä et al. (2012) ended up to a general

model of interlink between low and high amount of organic
matter resources for microbial metabolism together with
microbial biomass and interactions. Labile carbon has been
shown to be a sensitive soil quality indicator for impacts of
tillage and organic matter inputs on microbial pools and activity
(Bongiorno et al., 2019a,b). More studies comparing the different
carbon pools [Soil Organic Carbon (SOC), labile C, microbial
biomass C] of soil and their contribution to the general disease
suppressiveness are needed. Also, the prevalence of the actual
model disease for suppression on the field needs to be studied.
The emergence of soil-borne plant diseases is a result of the
interactions between micro-organisms, pathogens and plants in
the complex physical environment of soil. Farming practices that
affect these soil qualities have potential to influence the general
suppressiveness of soil against soil and residue-borne plant
pathogens, and further, the crop yield. More insight is needed on
the impact of reduced tillage practice and use of crop sequence.

The objectives of this study were to examine the impact
of autumn tillage methods (no-till, stubble cultivation, and
plowing) and crop sequence on the soil carbon status and the
development of the general plant pathogen suppressiveness (test
species pathogenic Fusarium culmorum fungus). The occurrence
of soil and plant residue transmitted plant diseases (Fusarium
spp.) were studied in a long term experimental field with two
different crop sequences [spring barley (Hordeum vulgare L.)
monoculture, 4-year crop rotation] in boreal climate.

MATERIALS AND METHODS

Field Site and Sampling
A long-term experimental field, located in Jokioinen in southwest
Finland (coordinates 60◦49′N, 23◦28′E), was used in the study
[Regina and Alakukku, 2010 (site 2); Sipilä et al., 2012 (site
2)]. The field consists of clay soil, 0-20 cm layer with a mean
clay content of 62% and 20-40 cm layer with a mean clay
content of 81%, and is classified as a Vertic Endostagtic Cambisol
(IUSS Working Group WRB, 2006). The field experiment was
established in year 2000 to compare different primary tillage
treatments: (i) autumn plowing (mouldboard plowed about 20-
23 cm depth), (ii) reduced tillage (autumn stubble cultivation 10-
12 cm), and (iii) no-till (direct drilling in spring). Since 2011, two
crop sequences were established as sub-plots to the main plots:
(i) Spring barley (Hordeum vulgare) monoculture was continued,
and (ii) a 4 year crop rotation system was started: spring barley
(2011), faba bean (Vicia faba) (2012), spring oats (Avena sativa)
(2013), spring turnip rape (Brassica rapa subsp. oleifera; 2014).
The split-plot experimental design contained two factors: tillage
(main-plot factor) and crop sequence (split-plot factor). Four
replicates were divided into three main plots each containing
two sub-plots (split plots). The three levels of the tillage factor
(plowing, reduced, and no-tillage) were randomized to the main
plots. The two levels of crop sequence factor (monoculture, crop
rotation) were randomized to sub-plots within each three main
plot. The randomizations were repeated at the four replications
separately. Each sub-plot (split plot) was 9 m wide and 40 m long,
a total 360 m2.
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In spring, autumn tilled treatments were sown by combined
rotary harrow and drill (one-pass method, combined drill). The
seedbed was prepared to 5 cm depth. No-tilled treatment was
directly sown to 3–5 cm depth with combined drill having double
disk coulters. Mineral fertilizers were used for barley 90 N, 3.3 K
kg/ha, for faba bean 30 N, 1.1 K kg/ha, and for oats 60 N,
2.2 K kg/ha (reduced amount due to presiding N-fixing faba
bean). Weather parameters in study year 2013 (mean of years
2003-2012 in parenthesis) were: annual precipitation 562 mm
(656 mm), annual mean air temperature 5.6◦C (5.1◦C), number
of temperature days where ground temperature minimum
>0.0◦C 195 (184).

Composite soil samples (minimum 20 subsamples with the
augers of diameter of 2 cm) from each treatment plot were
randomly collected in October 2013 before tillage. The soils were
sampled at depths of 0–5, 5-10, and 10–20 cm, and manually
homogenized on site. Samples were divided for air drying, cold
room storage (+4◦C in dark) and freezer (−18◦C).

Physical and Chemical Analyses of Soil
The physical and chemical properties of the soil samples were
analyzed as described in Regina and Alakukku (2010) and Singh
et al. (2015). Soil pH and electrical conductivity (EC) were
measured in water suspensions (1:2.5 v/v). Inorganic nitrogen
(NH4-N + NO3-N; Nmin) in soil was extracted with 1 M
KCl (v/v 1:2.5) and analyzed by Skalar autoanalyzer (SKALAR
SA 40 5101). Soluble reactive phosphorus (PAcetate) [extraction
with 0.5 M acid ammonium acetate, pH 4.65, Vuorinen
and Mäkitie (1955)] was analyzed by spectrophotometry by
molybdenum blue method.

Soil Carbon Fractions
The soil organic carbon (SOC) and total nitrogen (Ntot) content
was determined from air dried, ground samples sieved through
a 2 mm sieve and analyzed using the Leco CN-2000 analyzer
(LECO, St. Joseph, MI, United States). Particulate Organic
Matter Carbon (POM-C), which is the labile soil carbon fraction
most available for microbes, was analyzed based on wet sieving
(Cambardella and Elliott, 1992). The dry bulk density of soil
was determined using the volume accurate Kopec corer with a
diameter of 5 cm for sampling (three subsamples per plot).

The soil microbial biomass carbon (Cmic) was measured by
chloroform fumigation extraction method, for which the total
soluble organic carbon was determined from the 0.5 M K2SO4
extracts using a Shimadzu TOC-V CSH Total organic carbon
analyzer. Results are given as soil oven-dry basis (105◦C, 48 h).

The total amount of SOC and Cmic in the top soil layer was
calculated two ways: by using the content of SOC and Cmic on top
soil layers (0-20 cm) per m2 and by using the equivalent mineral
soil mass method (200 kg DM soil; soil layer corresponding
approx. 0-15 cm) to compare the total soil C stock between the
treatments (Ellert and Bettany, 1995; Wendt and Hauser, 2013;
Singh et al., 2015).

Fungistasis Surface Bioassay
Fungistasis bioassay was performed using the surface method
described by de Boer et al. (1998) and Sipilä et al. (2012), with

slight modifications. Three replicates were measured. Fusarium
culmorum was used as inoculum in fungistasis experiment
because of its relevance as a common pathogen of barley and oats
with soil and plant residue related dispersion (Knudsen et al.,
1999). Fungistasis plates were prepared by diluting the test soil
from the experimental field (soil depth 0–5 cm) with a sterile clay-
sand mixture. Sterile kaolin clay (Quality China Clay, Imerys)
and sand (0.2–1 mm) (50/50%) was used as diluent and in the
control petri dishes included in each assay. The soil 10/90%
dilution level was selected on basis of preliminary experiments.
The water content of each plate was adjusted to 75% of water
holding capacity of the soil mixture (fresh weight 50 g). Freshly
grown F. culmorum [from the growth margin on potato dextrose
agar (PDA) medium] was used in the bioassay as 1.5 cm diameter
circle and inoculated on sterile cover glass (diam. 1.8 cm), placed
on the test soil (50 g) in a petri dish (9 cm). The petri dishes were
sealed with double wrapping of parafilm and incubated 7 days
at 20◦C. The area (cm2) of fungal growth was measured using
microscopic photography. The average extension in sterile kaolin
clay and sand mixture (control) was 10.8 cm2.

Fusarium spp. Observations From the
Crops in the Field
Fusarium spp. contamination of developing grain was
investigated three times during the growth period. Samples
from the stem base were taken 2 weeks after the heading phase.
To investigate Fusarium species on stem bases, whole plants were
sampled (50 stems per sample) and 1 cm pieces of stem bases
were incubated on PCNB medium (Pentachloronitrobenzene;
Nash and Snyder medium; Nelson et al., 1983) at 22◦C. At the
same way, Fusarium species on stubble were investigated after
harvest. Fusarium contamination of harvested, dried grain was
determined of 100 grains/sample.

The resulting colonies were inoculated for identification
on PDA medium and cultured in the dark. Fusarium species
were determined from cultures using the microscope, and
contamination% values for each species were counted of the
identified colonies. The most common species were the toxins
forming pathogens F. culmorum (FC) and F. graminearum, (FG)
and predominantly saprophytic species F. avenaceum (FA).

Statistical Analysis
Statistical analysis based on a split-plot experimental design
(Box et al., 2005) where main plots included three different
tillage treatments, while two different crop sequence systems
(monoculture, and the 4 year crop rotation-system) were
randomly assigned to sub-plots. The experiment included four
replications (blocks). So, each response variables were analyzed
using the following model:

yijk = µ + blocki + tillagej + block∗tillageij + sequencek

+ tillage∗sequencejk + εijk, (1)

where sequencek, tillagej, tillage∗sequencejk are fixed effects of
sequence, tillage treatment and their interaction, respectively.
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While blocki, block∗tillageij and εijk are random effects of block,
main-plot error and sub-plot error (residual). The model was
fitted using SAS-software and MIXED-procedure using REML
estimation method. Data from the three different depths were
analyzed separately.

Assumptions about normal distribution and homogeneity of
error variance was checked using box-plots of residuals and
scatter plot of residual and fitted values. Some variables of
fungistasis activity were normally distributed only after arcsine
or square-root transformation. However, all presented estimates
were transformed back to the original scale.

Correlation analysis was performed using Pearson’s
correlation coefficient if scatter plot of variables showed that
the relationship of variables was linear, otherwise Spearman’s
rank-order correlation coefficient was used.

Several variables were measured from three different depths
in the plot. To test differences in the magnitude of variation in
the soil profiles, the coefficient of variation (CV) was calculated
for each plot: (standard deviation of observations from three
depths)/(mean of observations) × 100%. After that, calculated
CV-values were compared statistically using the model applied
to other variables.

RESULTS

Chemical and Physical Properties of Soil
In the plowed treatment, the values of the chemical and physical
variables (Tables 1, 2 and Supplementary Table S1) were
relatively even throughout the different top soil layers, whereas
both reduced tillage and no-till had steep gradient profiles in
most variables having higher values in the surface layers. Deeper
in the top soil profile, the differences in mean values were small
between treatments.

Crop rotation, which had been performed only two growing
seasons before the soil sampling, did not markedly affect
soil chemical and physical properties, compared to barley
monoculture, even though the mean values were consistently
higher at crop rotation. The only exception was Nmin, where
rotation (oats after faba bean) had statistically significantly higher
values than monoculture (Table 1), in spite of the reduced
mineral fertilizer use for oats.

Soil Organic Carbon and Microbial
Biomass Carbon in the Soil Profile
In no-till and reduced tillage treatments, soil organic carbon
(SOC) content decreased by depth and formed a resource
gradient for soil micro-organisms (Tables 2, 3). The gradient was
especially steep in soil surface (0–5 cm vs. 5–10 cm), and steeper
in no-till than in reduced tillage. On average, higher SOC content
was detected on no-till (3.36% C) or reduced tillage (3.01% C)
surface (0–5 cm) than plowed treatment (2.68% C) (p < 0.001).
Very similar but even steeper profile was detected in POM-C
(Particulate Organic Matter Carbon) values, carbon that is most
available for soil microbes (Tables 2, 3). However, the total carbon
to nitrogen ratio (C/N) of the soil stayed constant (Tables 2, 3).

The microbial biomass carbon (Cmic) content of soil
closely followed the vertical distribution of SOC and POM-C
(Tables 2, 3). The top 5 cm on reduced and no-till treatments
had clearly higher Cmic values than plowing (p < 0.001; Table 3).
Crop rotation had the tendency to increase the Cmic content of
soil, as well (p < 0.07). The amount of Cmic separated all tillage
treatments from each other both on the top-soil (0-5 cm) and
deeper at 10-20 cm (p < 0.001). The soil from plowing practice
had the most even distribution of Cmic (CV 6.0%; Table 2),
whereas the soil from no-till fields had highest amount of Cmic
on the surface, but the strongest decline deeper in the soil (CV
30.7%). The Cmic contains a mixture of soil microbial carbon with
no separation between e.g., bacterial and fungal origin.

The total amounts of SOC and Cmic on the topsoil layer
were calculated based on both fixed 0–20 cm depth and on the
equivalent soil mass method (equivalent mineral soil mass of
200 kg m−2, ≈15 cm depth; Wendt and Hauser, 2013; Singh
et al., 2015) which takes soil bulk density into account (Table 4).
Plowed treatment contained statistically significantly less SOC
(6.37 kg C m−2) on 20 cm depth compared to the reduced
tillage and no-till treatments (6.76 and 7.08 kg C m−2; p < 0.01,
respectively). The difference turned to non-significant with the
equivalent soil mass results between plow and reduced tillage
(5.24, 5.29, and 5.54 kg Cm−2 on plow, reduced tillage and
no-till treatments, respectively). Crop rotation did not change
SOC in tillage treatments (Table 4). Mean Cmic of the treatment
combinations ranged from 65.3 and 77.0 g Cmic m−2 in the soil
layer equivalent to 200 kg m−2 (Table 4), which is about 1.1–1.4%
of the total soil C stock.

Soil Suppressiveness Activity
Fungistasis is an inherent property of natural soil mediated
mostly by soil micro-organism and it is interlinked to soil plant
pathogen suppressiveness. Soil tillage methods had clear impacts
on the soil fungistasis activity in the arable soil. On the top
0-5 cm soil, the plowing treatment had the least suppressive
soil against the test fungus F. culmorum, whereas reduced and
no-till treatments increased the F. culmorum fungistasis activity
(Table 5). There were no statistically significant differences on
fungistasis between the treatments in deeper soil layers below
5 cm (Fung_mm2; Supplementary Table S1).

Growth of F. culmorum in bioassay correlated negatively
with the soil carbon fractions of SOC, POM-C and Cmic (SOC
r = −0.34, p = 0.10; POM-C: r = −0.40, p = 0.05; Cmic r = −0.40,
p = 0.06; Figures 1A–C), that is, the results correlated positively
with the fungistasis activity (negative correlation with the growth
of test fungus F. culmorum). The correlation was strongest with
the labile carbon POM-C and weakest with the total SOC. There
was no correlation between C/N ratio and the bioassay results
(r = 0.05, p = 0.82; Figure 1D).

Prevalence of Soil-Borne Fusarium spp.
in the Field and Crop Yield
During the growing season 2013, repeated samplings were
carried out to detect the prevalence of Fusarium spp. on cereals
growing on the experimental field. The most common species
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TABLE 1 | Test results of the fixed main effects in the generalized linear mixed models for soil chemical and physical properties in soil.

Management Soil layer Soil analysis

Depth (cm) pHH2O EC (10−4S cm−1) Bulk density (g cm−3) Nmin (mg kg−1) PAcetate (mg kg−1)

Crop sequence

Monoculture 0–5 6.49 1.01 a 1.14 7.93 a 20.20

Crop rotation 0–5 6.49 1.15 b 1.11 11.38 b 22.41

Tillage system

Plow 0–5 6.45 0.84 a 1.11 5.63 a 17.01(a)

Reduced tillage 0–5 6.56 1.19 b 1.13 11.56 b 24.73(b)

No-till 0–5 6.46 1.21 b 1.15 11.78 b 22.18(b)

Crop sequence

Monoculture 5–10 6.43 0.85 1.28 6.50 a 15.85

Crop rotation 5–10 6.37 0.91 1.25 9.36 b 17.75

Tillage system

Plow 5–10 6.43 a 0.82 a 1.22 a 6.76 a 16.39

Reduced tillage 5–10 6.47 a 0.99 b 1.29 b 9.54 b 20.70

No-Till 5–10 6.30 b 0.82 a 1.30 b 7.48 a 13.32

Crop sequence

Monoculture 10–20 6.44 0.79 1.35 5.33 a 14.67

Crop rotation 10–20 6.39 0.83 1.35 7.56 b 15.95

Tillage system

Plow 10–20 6.48 0.83 a 1.27 a 7.07 a 16.65

Reduced tillage 10–20 6.39 0.83 a 1.40 b 6.57 a 16.70

No-till 10–20 6.38 0.76 b 1.39 b 5.70 b 12.57

The number of observations (n) is 24 for each response variable. The different letters refer to statistically significant differences within each comparison; p ≤ 0.05,
(p ≤ 0.10).

were F. culmorum, F. graminearum and F. avenaceum. The
prevalence of the species in stem base, yield and stubble is
shown in Figure 2A (monoculture; barley) and Figure 2B (crop
rotation; oats). Generally, oats is seen to be especially susceptive
to Fusarium spp. pathogen strains in boreal environment
(Hofgaard et al., 2016), which was reflected on the results. Crop
species at crop sequence (barley monoculture vs. oats at crop
rotation) explained the differences in stem base (p < 0.01) and
stubble (p < 0.06).

Non-inversion management decreased the occurrence of the
toxins forming pathogens F. culmorum and F. graminearum
whereas the predominantly saprophytic species F. avenaceum
was detected more often (Figures 2A,B and Supplementary
Table S2). On barley monoculture, F. graminearum was the
main mycotoxin DON producer (Kaukoranta et al., 2019) in
grain (harvested and dried) and stubble (collected and analyzed
in September) under plowing. The toxins forming pathogen
F. culmorum was the test fungus for the fungistasis surface assay
(see section “Fungistasis Surface Bioassay”). Negative correlation
between fungistasis activity in soil and prevalence of test fungus
F. culmorum on stem base of crop plants was clear under
monoculture (r = 0.59, p = 0.04; Figure 3A).

Crop yield of the experiment in study year 2013 was
over the average of the area [Official Statistics of Finland
(2020); Supplementary Table S2, and Table 5]. From the
tillage treatments, no-till produced the highest yield per
hectare (p < 0.01), no-till with crop rotation being the

best treatment combination. However, there was statistically
significant correlation between crop yield and soil fungistasis
only in monoculture after removal of an outlier (∗r = −0.15,
p = 0.03; Figure 3B).

DISCUSSION

General Disease Suppressiveness of Soil
To our knowledge, this was the first study on the impacts
of reduced and no tillage combined with crop sequence on
the general disease suppressiveness of arable soil in boreal
climate. The long-term reduced and no tillage management
practices were shown to improve the disease suppressiveness of
soil compared to conventional plowing practice. The improved
disease suppressiveness was related to the improved labile carbon
status, and increased microbial biomass of the soil surface layer.
Our findings furthermore demonstrate the correlation of the soil
fungistasis bioassay results and the prevalence of the pathogenic
test fungus F. culmorum on the crop cereals in the field.

Soil-borne plant diseases are among the most important
limiting factors for plant productivity in agriculture and
difficult to control (Oerke, 2006). Crops lack genetic resistance
to most necrotrophic pathogens (Cha et al., 2016). The
possibility to improve natural soil disease suppressiveness
through agricultural management practices would offer a cost
effective and environmental friendly option, and show potential
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TABLE 2 | Test results of the fixed main effects in the generalized linear mixed models for soil carbon fractions.

Management Soil layer Soil analysis

Depth (cm) SOCa (%) C/N POM-Ca Cmic
a (mg C kg−1)

Crop sequence

Monoculture 0–5 2.99 11.38 69.90 432.4 (a)

Crop rotation 0–5 3.05 11.35 72.42 463.2 (b)

Tillage system

Plow 0–5 2.68 a 11.40 56.76 a 347.0 a

Reduced tillage 0–5 3.01 b 11.46 73.78 b 471.4 b

No-till 0–5 3.36 c 11.23 82.95 c 524.9 c

Crop sequence

Monoculture 5–10 2.68 11.50 53.85 328.11

Crop rotation 5–10 2.76 11.38 55.48 339.17

Tillage system

Plow 5–10 2.69 11.47 54.99 (a) 313.80 a

Reduced tillage 5–10 2.75 11.75 56.82 (a) 348.25 b

No-till 5–10 2.71 11.12 52.18 (b) 338.87 b

Crop sequence

Monoculture 10–20 2.56 11.28 47.94 301.97

Crop rotation 10–20 2.63 11.38 50.11 307.83

Tillage system

Plow 10–20 2.71 a 11.44 54.22 a 329.62 a

Reduced tillage 10–20 2.48 b 11.36 44.47 b 281.93 b

No-till 10–20 2.59 c 11.19 48.37 b 303.14 c

aSOC, soil organic carbon; POM-C, particulate organic matter carbon; Cmic, microbial biomass carbon.
The different letters refer to statistically significant differences within each comparison; p ≤ 0.05, (p ≤ 0.10).
The number of observations (n) is 24 for each response variable.

TABLE 3 | Coefficient of variation (CV) for chemical, physical, and biological
variables in the 0–5, 5–10, and 10–20 cm soil layers.

Variable Plow Reduced tillage No-till p-value

pH 0.6 a 1.5 b 1.5 b < 0.01

EC 6.2 a 18.1 b 25.9 c < 0.001

Bulk Density 7.3 a 11.0 b 9.8 (b) 0.03

Nmin 14.0 a 27.1 b 37.6 c < 0.001

Pavailable 2.4 a 20.4 b 34.1 c < 0.001

SOC 0.8 a 9.6 b 14.3 c < 0.001

C/N 2.5 3.9 3.1 0.57

POM-C 4.4 a 25.3 b 31.1 c < 0.001

Cmic 6.0 a 26.2 b 30.7 c < 0.001

The different letters refer to statistically significant differences within each
comparison; p ≤ 0.05, (p ≤ 0.10).

to the sustainable and resilient crop production system (Bailey-
Serres et al., 2019). Non-inversion management (reduced
and no tillage) with and without crop rotation improved
soil fungistasis compared to plowed barley monoculture in
boreal climate. Previously, van Agtmaal et al. (2018) suggested
that the natural pathogen suppression by volatile compounds
produced by soil microbes can be promoted via management.
Suppression of the pathogen Rhizoctonia solani was most related
to the organic matter content of soil, whereas suppression
of Fusarium oxysporum was driven by field management of

reduced tillage. Also, Friberg et al. (2019) found that OTUs
(Operational Taxonomic Unit) representing putative plant
pathogens Fusarium culmorum/graminearum were less abundant
after non-inversion tillage.

Sharma-Poudyal et al. (2017) concluded that tillage practices
have a profound impact on soil fungal communities in
agricultural systems. Their results suggest that taxa more
common in no-till are more suited to exploit decaying roots
as a food source and potentially perform as root endophytes.
The fungi would get an advantage in competition for colonizing
the dying root. However, another possibility is that tillage is a
mechanical disturbance to the fungal populations and hyphal
networks, and they are negatively impacted by it. Sipilä et al.
(2012) showed that the total microbial biomass was depth
dependent in no-till, i.e., no-till accumulated microbial biomass
in the surface soil but not in plowed fields and that the strong
difference could be seen especially in fungal biomass. Despite
that the fungal biomass was not separately measured in the
current study, it is very likely that the no-till surface soil,
with strongest fungistasis activity, accommodated a microbial
consortia with accelerated proportion of saprotrophic fungi
(Sipilä et al., 2012; van Agtmaal et al., 2017). Friberg et al.
(2019) pointed out that the tillage systems have a significant
effect on fungal community already in the first year with
non-inversion tillage. The effects on fungal community and
crop performance should be considered in relation to the
crop sequence used.
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TABLE 4 | Test results of the fixed main effects in the generalized linear mixed models for soil carbon pools in soil.

Management Soil carbon pools*

SOC20 cm SOCeq Cmic20 cm Cmiceq

Crop sequence

Monoculture 6.69 5.30 86.4 69.6

Crop rotarion 6.79 5.42 88.6 72.4

Tillage system

Plow 6.37 a 5.24 a 80.0 a 65.9 a

Reduced tillage 6.76 b 5.29 a 88.3 b 71.3 b

No-till 7.08 c 5.54 b 94.2 c 75.7 c

*Soil Organic Carbon (SOC; kg m−2) and Microbial Biomass Carbon (Cmic; g m−2) in the soil profile either calculated as carbon content on 20 cm top soil or as equivalent
soil mass (eq; 200 kg m−2; ≈15 cm depth). The number of observations (n) is 24 for each response variable. aThe different letters refer to statistically significant differences
within each comparison; p ≤ 0.05.

TABLE 5 | Test results of the fixed main effects in the generalized linear mixed
models for fungistasis activity in soil (mm2 at the surface bioassay; a smaller area
indicates a stronger fungistasis) in the layer of 0-5 cm, and for yield per hectare (kg
ha−1).

Management Soil Fungistasis (mm2) Yield per Hectare (kg ha−1)

Crop sequence

Monoculture 338.3 4523

Crop rotation 282.6 4968

Tillage system

Plow 363.5 a 4684 a

Reduced tillage 284.4 b 4440 a

No-till 283.5 b 5114 b

The different letters refer to statistically significant differences within each
comparison; p ≤ 0.05. The number of observations (n) is 24 for each
response variable.

Tillage methods have a clear impact on the physical and
chemical characteristics of arable soil. If the tillage is reduced,
more nutrients and carbon are accumulated on the surface and
less is placed to the deeper layers (Muukkonen et al., 2007;
Ogle et al., 2019). Our results show that soil conditions for
soil microbiome can be improved with reduced mechanical
disturbance and increased amount of soil organic carbon,
especially labile carbon (POM-C). This leads to improved general
soil suppression. However, we did not see strong correlation
between SOC content and the soil suppressiveness, which could
indicate the importance of SOC quality.

In line with this, Bongiorno et al. (2019b) found that soil
suppressiveness was explained by labile carbon and microbial
biomass in the soil, but not by the total content of soil organic
matter. Labile carbon is important for the maintenance of an
abundant and active soil microbiome, essential for the function
of suppressive soil. They analyzed several chemical, physical
and biological soil quality indicators from the study fields
across Europe. Only 25% of the soil suppressiveness could be
explained by the soil parameters measured, suggesting that other
mechanisms contribute to soil suppressiveness, as well, like the
presence and the activity of specific bacterial and fungal taxa with
high biocontrol activity.

However, there is accumulating evidence showing the
suppressive functions to be of the entire resident soil
microbial community, instead of individual, beneficial microbial
components (Toyota and Shira, 2018), and that the diversity of
microbial taxonomic diversity is not linked to suppressiveness
(Bonanomi et al., 2018). In fact, van Agtmaal et al. (2018)
showed that only a small portion of natural disease suppression
(caused by volatile organic compounds) was explained by
microbial community attributes. Soil functionality depends
on the community pattern, but not necessary in a direct way
(Siegel-Hertz et al., 2018). It is possible that the activity of the
microorganisms is directly involved in the targeted function
(like disease suppression) only in the presence of certain other
community members, without them to be directly involved
in the function (Tyc et al., 2014; Williams et al., 2014; Chao
et al., 2016). Plants typically lose >21% of all photosynthate
through the roots into the soil. In the same time, soil-borne
pathogens and pests reduce crop yields by ≥5–60% annually.
This is why the plant–microbe interactions in the rhizosphere
required for optimal root and soil health is critical to sustainable
intensification of agriculture and needs further investigations
(Cha et al., 2016).

Soil Labile and Organic Carbon
The improved disease suppressiveness was related to the
improved soil organic carbon status in the top surface soil
and depth related soil microbial biomass gradient. Globally,
the loss of soil carbon is of major concern and a goal to
increase SOC stock at an annual rate of 0.4% per year (or
4 per 1000 initiative) in all land uses has been set (Soussana
et al., 2019). In Finland, cultivated mineral soils have lost
SOC during the latest decades, relative decrease being 0.4%
yr-1. This corresponds to a C stock loss of 220 kg ha-1 yr-
1 (equivalent mineral soil mass; Heikkinen et al., 2013). The
loss has been strongest in fields of continuous annual crops.
Singh et al. (2015) studied the effects of tillage and straw
management on soil aggregation and soil carbon sequestration
in a 30-year split-plot experiment on clay soil in southern
Finland. They concluded that the chances to increase topsoil
carbon sequestration by reduced tillage or straw management
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FIGURE 1 | Correlation between fungistasis activity in soil (y-axis; mm2 at the surface bioassay; the smaller growth area of the test fungus F. culmorum, the stronger
the soil fungistasis) and different top soil (0–5 cm) organic carbon fractions. (A) Soil organic carbon (SOC), %; r = –0.34, p = 0.10); (B) Particulate organic matter
carbon (POM-C), mg C g−1; r = –0.40, p = 0.05); (C) Microbial biomass carbon (Cmic), µg Cmic g−1; r = –0.40, p = 0.06), and (D) C/N (Soil total carbon to nitrogen
ratio; r = 0.05, p = 0.82).

practices appear limited in cereal monoculture systems of
the boreal region.

Our results showed a clear impact of no-tillage and reduced
tillage on the organic carbon content and distribution in the
arable soil. Even if the total SOC stock did not change, more
carbon was concentrated on the surface (0-5 cm) and less carbon
was placed to the deeper layers. Similarly, Ogle et al. (2019)
concluded based on their extensive literature review that SOC
storage can be higher under no-till management in some soil
types and climatic conditions, however, uncertainties tend to
be large, and no-till may be better viewed as a method for
reducing soil erosion and adapting to climate change. It should
be noted that SOC improves the water holding capacity of
soil, which is an important feature under drought conditions.
This could explain that the importance of tillage system on
soil suppressiveness may vary depending on the overall soil
conditions and activity.

In our study, labile carbon stock, measured both as POM-C
and as microbial biomass carbon, was however, higher under no-
till. Even if the proportion of microbial biomass carbon is only ca.
1-2% of the total C stock, it is important to notice that the vertical
distribution and high concentration on the top surface soil may
be enough to cause changes in soil microbial functions.

Soil Fungistasis and Prevalence of
Soil-Borne Fusarium culmorum in the
Field
Fusarium head blight (FHB) disease, caused by several Fusarium
species, is a serious threat on cereal yield and grain quality and
is expected to benefit from future warmer and more humid
climate in boreal area (Parikka et al., 2012; Hofgaard et al., 2016).
According to Hofgaard et al. (2016), the increased amount of
cereal residues and inoculum potential was thought to cause
the increased occurrence of Fusarium mycotoxins in Norwegian
cereals during the last decades, as a result of increasingly common
non-inversion tillage practices. It had been a generally accepted
idea that plowing practices were a tool to reduce the potential for
Fusarium spp. to infect cereals. However, recently, Kaukoranta
et al. (2019) concluded from a large survey data of 804 spring-
oat fields in Finland that Fusarium spp., especially pathogenic
F. culmorum, tended to be more common under plowing than
under non-inversion tillage. In line with this, we found that the
predominantly saprophytic F. avenaceum was more abundant
under non-inversion practice, whereas the opposite was true
for the pathogenic ones. Sipilä et al. (2012) linked high fungal
biomass with high soil fungistasis activity.
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FIGURE 2 | The prevalence of toxins forming pathogens F. culmorum (FC) and F. graminearum (FG), and predominantly saprophytic species F. avenaceum (FA) on
tillage treatments in (A) barley monoculture and (B) oats (crop rotation; oats is known to be more susceptible to F. culmorum than barley), on stem base 2 weeks
after heading phase, yield during harvest, and at stubble after harvest (% ±SD; mean values, N = 4). See Supplementary Table S2 for statistical test results.

Our field observations confirmed the fungistasis bioassay
results: the general plant pathogen suppressiveness of soil
could be improved by agricultural management, even if

the impact of specific management practice may not be
directly and generally linked with the disease suppression
activity (Sipilä et al., 2012; Bongiorno et al., 2019b). Our

Frontiers in Microbiology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 534786

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-534786 May 19, 2021 Time: 17:25 # 10

Palojärvi et al. Arable Soil Management and Fungistasis

FIGURE 3 | Correlation between fungistasis activity in soil (y-axis; mm2 at the surface bioassay; the smaller area – the stronger fungistasis) and (A) prevalence of test
fungus F. culmorum (x-axis; %) on crop stem base; Triangle = monoculture (r = 0.59, p = 0.04), Square = rotation (oats), r = 0.45, p = 0.15 (all tillage treatments
combined), and (B) yield (kg ha−1); Triangle = monoculture (r = –0.29, p = 0.35; without an outlier (∗r = –0.15, p = 0.03), Square = rotation (oats), r = 0.18, p = 0.58
(all tillage treatments combined).

FIGURE 4 | Schematic summary of the study question, and the connections between soil conditions, soil carbon resources, soil microbiome, and natural soil
disease suppression.

findings furthermore demonstrated the correlation between
the laboratory surface assay for fungistasis and the prevalence
of the pathogenic test fungus F. culmorum on the crop
cereals in the field. This makes the laboratory assay a
potential tool to estimate the risk of Fusarium in cereals.
A clear correlation between soil fungistasis and crop yield
could not be seen, even though there were indications

of correlation especially in monoculture practice. Cereal
yields are affected by many different factors and long-term
observations would be needed to ensure the connection.
However, the no-till management and crop rotation tended
to increase the crop yield. The choice of agricultural
management practices is proved to be a key for sustainable
agricultural production.
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CONCLUSION

We demonstrated that agricultural management strategies can
be applied to improve the microbial related soil ecosystem
functions in the form of natural disease suppressiveness in
boreal climate (Figure 4). The conditions for soil microbial
communities can be manipulated by the choice of appropriate
tillage and crop sequence system. Non-inversion methods,
especially the no-tillage management, were shown to change
the vertical distribution of carbon fractions and accumulate
the SOC, labile carbon and microbial biomass carbon in the
soil surface layer. Crop sequence and the choice of tillage
method potentially have a combined effect on improved
SOC sequestration. General soil disease suppression correlated
with labile carbon and microbial biomass carbon, and had
a potential impact on crop production, shown as correlation
with the prevalence of the test pathogen F. culmorum on
crops and indications of correlation with yield. The soil surface
fungistasis bioassay is potentially a useful tool to monitor
general soil suppressiveness. In light of these results, it is
crucial to take into consideration the functionality of the
whole soil microbiome when planning optimal agricultural
management practices.
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