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ABSTRACT
Many layered superlattice materials intrinsically possess large Seebeck coefficient and low lattice thermal
conductivity, but poor electrical conductivity because of the interlayer transport barrier for charges, which
has become a stumbling block for achieving high thermoelectric performance. Herein, taking BiCuSeO
superlattice as an example, it is demonstrated that efficient interlayer charge release can increase carrier
concentration, thereby activating multiple Fermi pockets through Bi/Cu dual vacancies and Pb codoping.
Experimental results reveal that the extrinsic charges, which are introduced by Pb and initially trapped in
the charge-reservoir [Bi2O2]2+ sublayers, are effectively released into [Cu2Se2]2− sublayers via the
channels bridged by Bi/Cu dual vacancies.This efficient interlayer charge release endows dual-vacancy- and
Pb-codoped BiCuSeO with increased carrier concentration and electrical conductivity. Moreover, with
increasing carrier concentration, the Fermi level is pushed down, activating multiple converged valence
bands, which helps to maintain a relatively high Seebeck coefficient and yield an enhanced power factor. As
a result, a high ZT value of∼1.4 is achieved at 823 K in codoped Bi0.90Pb0.06Cu0.96SeO, which is superior to
that of pristine BiCuSeO and solely doped samples.The present findings provide prospective insights into
the exploration of high-performance thermoelectric materials and the underlying transport physics.

Keywords: layered superlattice material, interlayer charge release, carrier concentration, thermoelectric
performance

INTRODUCTION
As the core component of thermoelectric generators
and solid-state Peltier coolers [1–5], thermoelectric
materials enable direct and reversible conversion
between heat and electricity [6–9]. The conversion
efficiency of thermoelectric material is quantified by
the dimensionless figure of merit, ZT= S2σT/(κ lat
+ κele), where S, σ , T, κ lat and κele are the See-
beck coefficient, electrical conductivity, absolute
temperature, lattice and electronic components of
the total thermal conductivity (κ tot = κ lat + κele),
respectively [10–12]. Hence, high-performance
thermoelectric materials need to meet the following
criteria: (i) high electrical conductivity; (ii) large
Seebeck coefficient; and (iii) low total thermal
conductivity. However, for well-known reasons, im-
provement in ZT is greatly constrained by the inter-
coupled electrical and thermal transport parameters
[5,11,13–15]. Therefore, exploring effective

strategies for decoupling these interrelated param-
eters is of great importance for breakthroughs in
thermoelectric research [10–13].

Thermoelectric performance can be significantly
improved in layered superlattice materials [16],
arising mainly from an increase in Seebeck coef-
ficient as a result of the peculiar electronic struc-
ture. Meanwhile, the comparatively weak bonding
between the sublayers endows semiconductor su-
perlattices with intrinsic low lattice thermal con-
ductivity [17–22]. Unfortunately, the superlattice
structure does not favor fine electrical conductiv-
ity in the bulk state, which has proved a stum-
bling block to achieve high thermoelectric figure
of merit in two-dimensional superlattices [22–26].
Specifically, for a multi-layered superlattice with al-
ternating stacked insulating sublayers and conduc-
tive sublayers, charges are mostly trapped in the
insulating sublayers. The concentration of charges
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Scheme 1. Efficient interlayer charge release (taking hole carriers as an example) activating multiple Fermi pockets in layered
superlattice.

stored in the insulating charge-reservoir sublayers is
extremely low.Furthermore, releaseof thedominant
trapped charges into the conductive sublayers to be-
come conduction carriers is difficult because they
must surmount the interlayer energy barrier. As a re-
sult, intrinsically low carrier concentration is found
in thermoelectric superlattices, accounting for the
poor electrical conductivity. These issues urge us to
find a novel strategy to tailor the trapping and con-
duction characteristics of charges in a superlattice
system.

Generally, element or vacancy doping is the
primary choice for regulating the carrier concentra-
tion toward an optimal range of 1019–1021 cm−3

[3–5]. However, as discussed above, superlattice
compounds suffer from both intrinsic low charge
concentration and absence of charge-transport
channels, implying that the single doping is over-
stretched. It is therefore urgently necessary to
develop multiple doping for carrier concentration
optimization in thermoelectric superlattices. On the
other hand, it is well known that band convergence
has been demonstrated to be a robust strategy for
yielding high power factor (S2σ ) in thermoelectrics
[3–5,11]. For compounds exhibiting multiple
extrema with energy difference of no more than a
few kBT in the energy bands, it is essential to move
the Fermi level significantly in energy so that more
Fermi pockets can be populated. However, in most

cases, the intrinsic low carrier concentration is not
sufficient to activate the multiple converged bands.

In view of the above situation, one may ex-
pect that if additional charges and interlayer charge-
transport channels are provided simultaneously in
thermoelectric superlattice, the carrier concentra-
tion would be significantly increased. Furthermore,
the multiple converged bands could be expected to
be activated as the increase in carrier concentration
could regulate the position of Fermi level. We put
forward the idea of efficient interlayer charge re-
lease via multiple-defect codoping, in which some
defects construct channels for interlayer charge-
transport process, while others provide plentiful ex-
trinsic charges to diffuse along these channels (as
shown in Scheme 1). It is expected that efficient
interlayer charge release in superlattice will ensure
high carrier concentration and activatemultiple con-
verged bands if there are multiple extrema in the en-
ergy band.

BiCuSeO provides an ideal platform for the
above strategy. As a typical superlattice material,
BiCuSeO consists of [Bi2O2]2+ and [Cu2Se2]2−

sublayers [27–31] stacking alternately along the c
axis of the tetragonal cell. In BiCuSeO, the insulat-
ing [Bi2O2]2+ sublayers act as a charge reservoir,
while conduction takes place in the conductive
[Cu2Se2]2− sublayers [27,28]. Intrinsically low
electrical conductivity is found in pristine BiCuSeO
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[32–38], arising from the extremely low carrier
concentration. BiCuSeO has a complex electronic
structure withmultiple extrema in the valence bands
[27], but the intrinsically low carrier concentration
is insufficient to allow holes to populate those
multiple converged valence bands. In the present
study, for the purpose of achieving efficient inter-
layer charge release and thereby activating multiple
Fermi pockets in BiCuSeO, we demonstrate an
integrated strategy through Bi/Cu dual vacancies
and Pb codoping. Specifically, Bi/Cu dual vacancies
construct channels for interlayer charge-transport
process, and Pb-doping introduces plentiful extrin-
sic charges, which are initially trapped in [Bi2O2]2+

sublayers. As expected, our studies show that charge
concentration gradient drives release of these
confined charges, enabling the charges to almost
completely diffuse into [Cu2Se2]2− sublayers along
the interlayer transport channels and thus become
conduction carriers. As a result, the concentration
of conduction holes is remarkably increased in
vacancies/Pb codoped BiCuSeO, reaching the
theoretical limiting value. This efficient interlayer
charge release in Bi1-x-yPbyCu1-xSeO results in
significant enhancement in carrier concentration
and thus electrical conductivity. Meanwhile, the
substantial increase in carrier concentration pushes
the Fermi level into the valence band, activating
multiple converged valence bands, which enables
a relatively high Seebeck coefficient and yields an
increased power factor for Bi1-x-yPbyCu1-xSeO.
As a consequence, a maximum ZT value of ∼1.4
for Bi0.90Pb0.06Cu0.96SeO is derived at 823 K,
which is superior to that of (i) the pristine Bi-
CuSeO, (ii) BiCuSeO solely doped with Bi/Cu
dual vacancies, and (iii) BiCuSeO solely doped
with Pb. The present results open up a promis-
ing avenue for regulating transport properties in
thermoelectrics.

RESULTS AND DISCUSSION
The powder X-ray diffraction (PXRD) patterns of
Bi1-x-yPbyCu1-xSeO are shown in Supplementary
Fig. S1a. All samples in the present study are sin-
gle phase and every reflection in the PXRD pattern
can be indexed to the tetragonal P4/mmm space
group of the parent BiCuSeO oxyselenides. Sup-
plementary Fig. S1b shows a HAADF STEM im-
age of Bi0.90Pb0.06Cu0.96SeO taken along the [100]
zone axis, confirming the typical layered feature
of the BiCuSeO compound. The EDS mappings
of Bi0.90Pb0.06Cu0.96SeO (shown in Supplementary
Fig. S1c) demonstrate the homogeneous single
phase in BiCuSeO systems.

Figure 1 plots the temperature-dependent
electrical transport properties of Bi1-x-yPbyCu1-xSeO
samples. With increasing doping fraction of Bi/Cu
dual vacancies, the electrical conductivity in-
creases from ∼1.3 S cm−1 for pristine BiCuSeO
to ∼1.8 S cm−1 for Bi0.98Cu0.98SeO, and then to
∼3.1 S cm−1 for Bi0.96Cu0.96SeO at room tempera-
ture (Fig. 1a). An analogous relationship between
the electrical conductivity and concentration of
dual vacancies is also observed in dual-vacancy-
and Pb- codoped samples (Fig. 1b). Meanwhile,
for Pb-doped BiCuSeO, the electrical conductiv-
ity gradually decreases with rising temperature,
exhibiting characteristics of metallic conduction
and a heavily doped state. In addition, the electrical
conductivity of Pb-doped samples is significantly
increased compared to that of the Bi1-xCu1-xSeO
without Pb doping over the entire test temperature
range. Consequently, the dual-vacancy- and Pb-
codoped sample (that is, Bi0.90Pb0.06Cu0.96SeO)
features a maximum electrical conductivity of
∼629.9 S cm−1 at room temperature, which is
higher than that of the solely Pb-doped samples
(∼483.7 S cm−1 for Bi0.94Pb0.06CuSeO at room
temperature) and far higher than that of the solely
dual-vacancy-doped samples (∼3.1 S cm−1 for
Bi0.96Cu0.96SeO at room temperature). The trans-
port properties for the Bi1-x-yPbyCu1-xSeO samples
are listed in Supplementary Table S1, and it can be
concluded that the enhancement in electrical con-
ductivity of dual-vacancy- and Pb- codoped samples
ismainly a result of the significantly increased carrier
concentration.

Figure 1c depicts the Seebeck coefficients as
a function of temperature for Bi1-x-yPbyCu1-xSeO
samples. The positive Seebeck coefficient for
all samples in the entire temperature range re-
flects p-type conduction, which is consistent
with the conclusion given by the Hall measure-
ment. The room-temperature Seebeck coefficient
reduces from 576.5 μV K−1 for pristine Bi-
CuSeO to 134.3 μV K−1 for solely Pb-doped
Bi0.94Pb0.06CuSeO, and finally to 117.7 μV K−1

in codoped Bi0.90Pb0.06Cu0.96SeO, on account of
the increase in hole concentration (Supplementary
Table S1). The temperature-dependent power
factors for all Bi1-x-yPbyCu1-xSeO compounds are
plotted in Fig. 1d. Pristine BiCuSeO displays the
lowest power factor among all samples mainly
stemming from its extremely low electrical con-
ductivity. For solely dual-vacancy-doped samples,
the power factor is slightly improved relative to
pristine BiCuSeO. Compared with solely Pb-doped
samples, the power factors of dual-vacancy- and
Pb- codoped samples are improved in the medium
to high temperature range, originating from the
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Figure 1. Electrical transport properties as a function of temperature for
Bi1-x-yPbyCu1-xSeO: (a) electrical conductivity; (b) enlarged electrical conductivity rang-
ing from 130 to 650 S cm−1; (c) Seebeck coefficient; (d) power factor.

increased electrical conductivity together with the
considerable Seebeck coefficients. Details of the
cause of this phenomenon will be discussed below.

To clarify the underlying reasons of the im-
provement in carrier concentration and electrical
conductivity, we calculated the three-dimensional
charge density distribution (Fig. 2a) and charge
density difference (Fig. 2b–d) for BiCuSeO
compounds, respectively. Figure 2a shows the
electron charge density distribution of pristine
BiCuSeO, where the charges feature a typical
localized behavior along the in-plane direction.
The three-dimensional charge density differences
for the solely Pb-doped BiCuSeO, solely dual-
vacancy-doped BiCuSeO, as well as dual-vacancy-
and Pb- codoped BiCuSeO are shown in Fig. 2b–d,
respectively. After doping Pb at the Bi site, it is clear
that the charges are still confined within [Bi2O2]2+

sublayers for Bi1-yPbyCuSeO without Bi/Cu dual
vacancies (Fig. 2b). Interestingly, for solely Bi/Cu
dual-vacancy-doped compound (Fig. 2c), there is a
distinct accumulation of holes between the adjacent
Bi vacancy and Cu vacancy, signifying noteworthy
charge delocalization behavior from [Bi2O2]2+ sub-
layers to [Cu2Se2]2− sublayers. The same interlayer
delocalization feature of charges is also observed in
dual-vacancy- and Pb- codoped material (Fig. 2d),
which means that Pb-doping does not destroy the
above delocalization behavior. From the above re-
sults, it can be concluded that the presence of Bi/Cu

dual vacancies is essential for charge delocalization
character along the out-of-plane direction. The
interlayer charge delocalization character arising
fromBi/Cu dual vacancies indicates the existence of
interlayer charge-transport channels, which would
motivate interlayer charge release. Once there is a
charge concentration gradient between the two sub-
layers, it could be expected that charges trapped in
[Bi2O2]2+ sublayers would diffuse into [Cu2Se2]2−

sublayers along the interlayer charge-transport
channels bridged by Bi/Cu dual vacancies.

In fact, dual vacancies and Pb play different
but complementary roles in tailoring the electri-
cal transport performance of BiCuSeO. Specifically,
Bi/Cu dual vacancies give rise to delocalized dis-
tribution of charges between [Bi2O2]2+ sublayers
and [Cu2Se2]2− sublayers, which offers channels
for interlayer charge release. However, although the
interlayer delocalization of charges is favorable for
the interlayer charge transfer, Bi1-xCu1-xSeO mate-
rial without external dopant lacks sufficient charges
for diffusion.Therefore, the increase in the observed
carrier concentration is not significant in the solely
dual-vacancy-doped samples compared with the
pristine BiCuSeO (Supplementary Table S1). On
the other hand, upon solely doping external dopant
(such as Pb, Ba, Sr andCa) [32–34,38] at the Bi site,
the external dopant can indeed introduce plenty of
charges into the charge-reservoir [Bi2O2]2+ sublay-
ers of BiCuSeO material. However, because of the
absence of interlayer transport channels, these ex-
trinsic charges are still partially confined within the
insulating [Bi2O2]2+ sublayers. The weak interlayer
bonding blocks trapped charges from completely
diffusing into the conductive [Cu2Se2]2− sublayers,
therebypreventing the trappedcharges frombecom-
ing conduction carriers. The theoretical hole con-
centration as a function of Pb content is plotted in
Fig. 3a, assuming that each Pb atom (that is acceptor
atom) contributes one hole to the effective hole con-
centration. The experimental carrier concentrations
for solely Pb-doped BiCuSeO [38] are significantly
lower than the theoretical value, indicating that there
is still plenty of room for improvement. Fortunately,
dual-vacancy- and Pb- codoped BiCuSeO combines
the merits of solely dual vacancy doping and solely
Pb doping. Benefiting from the combination of dual-
vacancy-induced charge delocalization and extrin-
sic charges arising from Pb, charge transfer channel
and charge concentration gradient exist simultane-
ously between [Bi2O2]2+ sublayers and [Cu2Se2]2−

sublayers. For dual-vacancy- and Pb- codoped Bi-
CuSeO, the charge concentration gradient triggers
release of charges initially trapped in [Bi2O2]2+

sublayers, enabling these charges to diffuse into
[Cu2Se2]2− sublayers along transport channels and
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Figure 2. (a) Three-dimensional charge density distribution of pristine BiCuSeO. (b–d) The three-dimensional charge density difference of solely Pb-
doped BiCuSeO, solely dual-vacancy-doped BiCuSeO, as well as dual-vacancy- and Pb-codoped BiCuSeO, respectively. The light blue region represents
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thus become conduction carriers. As a result, the
carrier concentration is remarkably increased in va-
cancies/Pb codoped BiCuSeO. As shown in Fig. 3a,
the experimental carrier concentrations of vacan-
cies/Pb codoped BiCuSeO deviate strongly from
that of the solely Pb-doped BiCuSeO and a the-
oretical limiting value of ∼8.69 × 1020 cm−3 is
reached, suggesting efficient interlayer charge re-
lease in codoped BiCuSeO.

To understand the influence of efficient inter-
layer charge release on the Seebeck coefficient
and power factor for Bi1-x-yPbyCu1-xSeO, it is nec-
essary to examine the relationship between the
Seebeck coefficient and carrier concentration (the
so-called Pisarenko plot) at room temperature. Us-
ing the single parabolic band (SPB) model [39,40],
we calculated Pisarenko curves for different effec-
tive masses (Fig. 3c and d; details in the Supple-
mentary data). For pristine BiCuSeO and solely
dual-vacancy-doped BiCuSeO (carrier concentra-
tion ranges from 1.22× 1018 to 5.32× 1018 cm−3),
the experimentally observedSeebeck coefficients are
mainly located on the solid royal blue line, which
indicates an effective mass of 3.01 m0 (Fig. 3c).
For solely Pb-doped sample (Bi0.94Pb0.06CuSeO,
carrier concentration ∼384 × 1018 cm−3), the

measured Seebeck coefficient falls on the the-
oretical Pisarenko curve with effective mass of
3.86 m0. For dual-vacancy- and Pb- codoped sam-
ples (carrier concentration ranging from 789× 1018

to 946× 1018 cm−3), it is remarkable that the exper-
imental Seebeck coefficients gradually deviate to the
Pisarenkocurvewithhigher effectivemassof 5.95m0
(Fig. 3c). Specifically, as can be seen from Fig. 3d,
the experimental points of Bi0.92Pb0.06Cu0.98SeO
and Bi0.90Pb0.06Cu0.96SeO fall on the Pisarenko plot
with different effective masses of 5.36 m0 (olive
line) and 5.95 m0 (red line), respectively. It can
be seen that the effective masses of dual-vacancy-
and Pb- codoped BiCuSeO compounds are signif-
icantly larger than those of pristine, solely dual-
vacancy-doped or solely Pb-doped samples. The
increase in effective mass of holes is closely re-
lated to the multiple valence bands of BiCuSeO
[15,41,42]. As shown in Fig. 3b, the first-principles
simulations for the electronic band structure of Bi-
CuSeO indicate complex multiband valence states
that lie near each other in energy. The efficient
interlayer charge release from [Bi2O2]2+ sublay-
ers into [Cu2Se2]2− sublayers in real space en-
dows dual-vacancy- and Pb- codoped BiCuSeO
with drastically increased carrier concentration.
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Correspondingly, with increasing carrier concentra-
tion, in reciprocal space [7] the Fermi level is pushed
into the valence band and more hole pockets are
populated with hole carriers [3] for the p-type dual-
vacancy- and Pb- codoped BiCuSeO (see Fig. 4).
The activated multiple converged valence bands

account for the increase in effective mass, which is
thought to be responsible for the increase in the See-
beck coefficient and the associated power factor at
the similar carrier concentration.

The total thermal conductivities κ tot, the elec-
tronic thermal conductivities κele and the lattice
thermal conductivities κ lat as a function of temper-
ature for Bi1-x-yPbyCu1-xSeO samples are plotted in
Fig. 5a–c, respectively. The electronic thermal con-
ductivity κele is calculated by theWiedemann-Franz
law κele = LσT, where L is the Lorenz number, σ
is the electrical conductivity, and T is the absolute
temperature [43]. Herein, theL value was estimated
from theSPBmodelwith acoustic phonon scattering
[44–47] (details in the Supplementary data). The
lattice part of thermal conductivity κ lat was obtained
by subtracting the electronic part from the total ther-
mal conductivity. For samples solely doped with
Bi/Cu dual vacancies, the electronic thermal con-
ductivity accounts for a very low percentage of the
total thermal conductivity because of the low electri-
cal conductivity (Fig. 5b). Meanwhile, both the to-
tal thermal conductivity and the lattice thermal con-
ductivity decrease with increasing concentration of
Bi/Cu dual vacancies.This is because vacancies have
the capacity to enhance phonon scattering, which
reduces the mean free path of low-frequency heat-
carrying phonons [47].Upondopingwith Pb for the
samples containing Bi/Cu dual vacancies, as a result
of the much increased carrier concentration and en-
hanced electrical conductivity, the electronic ther-
mal conductivity of dual-vacancy- and Pb- codoped
BiCuSeO samples is obviously increased in com-
parison with that of solely dual-vacancy-doped or
Pb-doped samples (Fig. 5b). Where the content of
point defects in Bi1-x-yPbyCu1-xSeO is gradually in-
creased after doping dual vacancies and Pb, the lat-
tice thermal conductivity for codoped BiCuSeO is
significantly reduced arising from the enhancement
in phonon scattering. The minimum lattice thermal
conductivity of 0.2 W m−1 K−1 is obtained for the
Bi0.90Pb0.06Cu0.96SeO compound at 823K (Fig. 5c),
which compensates for the increase in electronic
thermal conductivity, and ensures a very low total
thermal conductivity in the codoped BiCuSeO.

Combining the electrical and thermal transport
properties, the figure of merit ZT as a function
of temperature for Bi1-x-yPbyCu1-xSeO samples
are plotted in Fig. 5d. The dual-vacancy- and Pb-
codoped BiCuSeO combines the merits of solely
dual-vacancy-doping and solely Pb-doping, that
is the figure of merit ZT values are enhanced
over the entire test temperature range. Because
of the high power factor of ∼8.1 μW cm−1 K−2

coupling with the low total thermal conductivity of
∼0.5 W m−1 K−1, a maximum ZT value of
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Figure 5. Total thermal conductivity (a), electronic thermal conductivity (b), lattice
thermal conductivity (c), and dimensionless figure of merit ZT (d) as a function of
temperature for Bi1-x-yPbyCu1-xSeO.

∼1.4 is obtained at 823 K in the codoped
Bi0.90Pb0.06Cu0.96SeO, which is about 250%
higher than that of the pristine BiCuSeO (ZT ∼
0.4), 100% higher than that of the solely dual-
vacancy-doped Bi0.96Cu0.96SeO (ZT ∼ 0.7), and
40% higher than that of the solely Pb-doped
Bi0.94Pb0.06CuSeO (ZT ∼ 1.0). Combined with
the aforementioned discussions, the notable en-
hancement in the thermoelectric figure of merit is
unambiguously correlated to the efficient interlayer
charge release effect caused by Bi/Cu dual vacancies
and Pb codoping.

CONCLUSION
In conclusion, we present a promising strategy for
activating multiple Fermi pockets and optimizing
the thermoelectric properties in the BiCuSeO sys-
tem by means of efficient interlayer charge release.
This typeof efficient charge release is realizedby con-
structing channels for interlayer charge-transport
process and providing plenty of extrinsic charges to
diffuse along these channels. The efficient interlayer
charge release produces substantial enhancement of
carrier concentration while maintaining a consider-
able Seebeck coefficient as the released carriers ac-
tivate multiple converged valence bands. Benefiting
from the combination of improved power factor and
low thermal conductivity, a significant enhanced ZT
value of ∼1.4 is achieved in Bi0.90Pb0.06Cu0.96SeO
at 823 K. The present strategy could be applied to
other materials with layered structures and could

inject fresh energy into the field of thermoelectric
studies.

METHODS
The experimental details are given in the Supple-
mentary data.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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