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Abstract: The gut microbiome has been recognized as a tool for understanding adiposity
accumulation and for providing personalized nutrition advice for the management of obesity
and accompanying metabolic complications. The genetic background is also involved in human
energy homeostasis. In order to increase the value of nutrigenetic dietary advice, the interplay
between genetics and microbiota must be investigated. The purpose of the present study was to
evaluate interactive associations between gut microbiota composition and 95 obesity-related single
nucleotide polymorphisms (SNPs) searched in the literature. Oral mucosa and fecal samples from 360
normal weight, overweight and obese subjects were collected. Next generation genotyping of these
95 SNPs and fecal 16S rRNA sequencing were performed. A genetic risk score (GRS) was constructed
with 10 SNPs statistically or marginally associated with body mass index (BMI). Several microbiome
statistical analyses at family taxonomic level were applied (LEfSe, Canonical Correspondence Analysis,
MetagenomeSeq and Random Forest), and Prevotellaceae family was found in all of them as one
of the most important bacterial families associated with BMI and GRS. Thus, in this family it was
further analyzed the interactive association between BMI and GRS with linear regression models.
Interestingly, women with higher abundance of Prevotellaceae and higher GRS were more obese,
compared to women with higher GRS and lower abundance of Prevotellaceae. These findings suggest
relevant interrelationships between Prevotellaceae and the genetic background that may determine
interindividual BMI differences in women, which opens the way to new precision nutrition-based
treatments for obesity.
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1. Introduction

Obesity prevalence is rising dramatically around the world, which is associated with important
public health burdens [1,2]. In this context, it has been largely demonstrated that obese subjects have
a different gut microbiota composition than lean subjects [3]. Genome-wide association studies in
humans [4,5] have identified multiple loci that contribute to obesity and its associated metabolic
abnormalities. A major challenge in the field is deciphering how host genetics and gut microbiome
interact and the role of this interplay in the context of obesity [6]. Several quantitative trait locus
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analyses in mice have recognized genetic regions associated with the abundance of several bacterial
taxa and community structure [7]. Genome-wide association studies in human twins have already
identified heritable bacterial taxa and single nucleotide polymorphisms (SNPs) associated with specific
gut microbes. In fact, gut microbiomes of monozygotic twins have been reported to be more similar
than those of dizygotic twins, suggesting a potential association between genetic background and gut
microbiome components [8,9]. In addition, some trials in mice revealed that the removal of most of the
gut microbiota with broad-spectrum antibiotics effectively reduced the development of adiposity in
genetically obese mice, showing that these two factors are interplaying in the development of obesity
disease [4,5]. Further research in humans have described that some SNPs are associated with the
abundance of specific microbial taxa. For example, human variants near the lactase gene have been
linked with the abundance of Bifidobacteria [10,11], while the genus Akkermansia has been associated
with a variant near a gene (PLD1) that has been previously implicated in body mass index (BMI) [12].
In addition, certain fundamental aspects of metabolic homeostasis are regulated differently in males
and females [13]. Interestingly, some studies have recently found that gut microbiota composition may
differ between sexes and that these differences may be influenced by the severity of obesity [14,15].

Although some studies have showed that some gene variants (such as FTO) [5] are associated
with the abundance of certain bacterial taxa, very few individual microbe-polymorphism associations
have been identified that have reached genome-wide significance. Consequently, the role of gut
microbiota in genetically predisposed obesity in humans has not been adequately characterized so
far [16]. To determine the relative impact of these obesity factors, their hierarchy and interactions is
a challenging task. The understanding of the complex network of factors related to obesity, such as
host genetic and gut microbiome, could be the key for designing new strategies targeted to achieve
a personalized nutrition for obesity patients based on genetic background and gut microbiome
composition [17].

The current study aimed to provide novel data and characterize potential interactive associations
between the gut microbiome and the human host genetics in relation to BMI as a marker of adiposity,
as well as the eventual role of sex in this interplay.

2. Materials and Methods

2.1. Study Participants

The current prospective study encompassed baseline data of 296 Spanish subjects from the OBEKIT
study (reg. No. NCT02737267, clinicaltrials.gov), who were recruited for a weight loss nutritional
intervention at the Center for Nutrition Research of the University of Navarra in the city of Pamplona
(Navarra, Spain) as well as 64 normal weight subjects as a control group. All participants self-reported
Caucasian ethnicity. The major exclusion criteria were a previous history of cardiovascular disease,
diabetes mellitus, and hypertension; women who were pregnant or lactating; reports of weight change
within the 3 months before the study; and medication use for weight control and hyperlipidemia
management. All research procedures were implemented in accordance with the ethical principles of
the 2013 Declaration of Helsinki [18]. All participants voluntarily provided written informed consent
before entry into the study. The study protocol was approved by the Research Ethics Committee of the
University of Navarra on March 2016 (Ref. 132/2015).

2.2. Anthropometric Measurements

Anthropometric measurements, including weight, height, waist and hip circumference, were
collected at the beginning of the study by trained nutritionists using conventional validated
procedures [19]. BMI was calculated as the ratio between body weight and squared height (kg/m2) and
the BMI classification criteria was following according to the World Health Organization (normalweight
BMI < 24.9 kg/m2; overweight BMI < 29.9 kg/m2; obese BMI > 30 kg/m2) [20]. The percentage of
body fat was assessed by bioelectrical impedance using the BC-418 Segmental Body Composition
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Analyzer (Tanita, Tokyo, Japan). Both systolic and diastolic blood pressures were measured with
a sphygmomanometer using the standardized criteria of the World Health Organization and the
International Society of Hypertension [21].

2.3. Habitual Dietary Intake and Physical Activity

Habitual dietary intake at baseline was collected with a validated food frequency questionnaire
that included 137 food items with corresponding portion sizes as described elsewhere [22]. All enrolled
participants were asked to provide information about the number of times they had consumed each
food item during the previous year according to four frequency categories: daily, weekly, monthly,
or never. Total energy (kcal) and macronutrient intakes (%) were determined with an ad hoc computer
program that was specifically developed for this purpose, by calculating it as the sum of frequency
of consumption multiplied by nutrient composition of a specified portion size available from valid
Spanish food composition tables [23,24]. Physical activity at baseline was estimated using a previously
validated 17-item questionnaire expressed in metabolic equivalents (METS), as detailed elsewhere [25].

2.4. Biochemical Measurements

Venous blood samples were drawn by venipuncture after a 12 h overnight fast in a clinical
setting. Blood tests were conducted with an automatized analyzer Pentra C200 and suitable kits were
provided by the company (HORIBA Medical, Madrid, Spain). The following biochemical markers
were assessed in the blood samples: glucose, total cholesterol, high-density lipoprotein cholesterol
(HDL-c), triglycerides, alanine-aminotransferase (ALT), aspartate-aminotransferase (AST) and uric
acid. Low-density lipoprotein cholesterol (LDL-c) was estimated using the Friedewald equation
(LDL-c=TC−HDL-c−triglycerides/5) [26]. Homeostatic model assessment for insulin resistance
(HOMA-IR) was calculated using fasting insulin and glucose concentrations [27]. Adiponectin,
insulin, leptin, C-reactive protein (CRP), thyroid-stimulating hormone (TSH) and tumor necrosis factor
alpha (TNFα) were measured using specific enzyme-linked immunosorbent assays and read with an
automated analyzer system (Triturus, Grifols, Barcelona, Spain). The following kits were used: insulin
(Mercodia, Uppsala, Sweden), TNFα (R&D Systems, Minneapolis, MN, USA), CRP (Demeditec, Kiel,
Germany), adiponectin (BioVendor, Brno, Czech Republic), leptin (Mercodia, Uppsala, Sweden), TSH
(Demeditec, Kiel, Germany) following the instructions provided by the manufacturers.

2.5. Fecal Sample Collection and Metagenomic Data

Volunteers self-collected fecal samples at baseline using OMNIgene.GUT kits from DNA Genotek
(Ottawa, ON, Canada), according to the standard guidelines provided by the supplier. The isolation
of DNA from fecal samples was performed with the QIAamp® DNA kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol. Bacterial DNA sequencing was performed by the Servei de
Genòmica i Bioinformàtica (Autonomous University of Barcelona, Barcelona, Spain). The Illumina
16S protocol was followed, which is based on the amplification of the V3-V4 variable regions
of the 16S rRNA gene. Paired-end sequencing was performed in the MiSeq System (Illumina,
San Diego, CA, USA). In the process, two PCR reactions were carried out. In the first one, 12.5 ng of
genomic DNA and the 16S-F and 16S-R primers were used (16S Amplicon PCR Forward Primer =5′

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG; 16S Amplicon PCR
Reverse Primer = 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCT
AATCC). The protocol in this first PCR was 95 ◦C for 3 min and 25 cycles of: 95 ◦C for 30 s, 55 ◦C
for 30 s, 72 ◦C for 30 s. Finally, 72 ◦C for 5 min and hold at 4 ◦C. Five microliters of the first PCR
was used in the second PCR, after the cleaning process. The primers used in this PCR were part of
the Nextera® XT DNA Index Kit (96 indexes, 384 samples) FC-131-1002 (Illumina). The protocol
for the second PCR was 95 ◦C for 3 min, 8 cycles of: 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s.
Finally, 72 ◦C for 5 min and hold at 4 ◦C. After each PCR, the quality of the process was checked in
a Labchip Bioanalyzer (Agilent Technologies Inc, Santa Clara, CA, USA). Once all the samples were
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obtained, up to 40 samples were multiplexed in each run of 2 × 300 cycles. For this purpose, equimolar
concentrations of each of the samples were mixed and the pool diluted up to 20 pM. A total of 3 runs
were performed on the MiSeq sequencer with the MiSeq® Reagent Kit v3 (600 cycle) MS-102-3003.
Negative controls were always used and included in each run. Samples were randomized by sex, age
and category of obesity/no obesity in order to avoid the batch effect. Adapters and barcodes were
removed following the standard Illumina methods. The maximum of reads obtained was 3,986,821 and
the minimum 102 (mean = 257,499.8; SD = 268,612.5). Those samples that correspond to good quality
readings not obtained at a sequence depth of 40,000 readings were discarded. In total, 4 samples of
a total of 364 sequenced samples (1.1%) were removed, resulting 360 samples. Resequencing was
performed but the required depth was not obtained. The 16S rRNA sequences were trimmed and
filtered following quality criteria of the processing pipeline LotuS (release 1.58) for MiSeq sequencer,
as shown in the supplementary file [28]. The parameters recommended by LotuS have been used for
sequencing with MiSeq. The sequences that do not meet an average quality higher than Q27 were
filtered and trimmed for those reads (20 bp) with a quality lower than Q25. The final sequences less than
170 bps were discarded, obtaining the same length (170 bps). This pipeline includes UPARSE de novo
sequence clustering and removal of chimeric sequences and phix contaminants for the identification
of Operational Taxonomic Units (OTUs) and their abundance matrix generation [28–30]. OTU refers
to organisms clustered by similarities in DNA sequence, with a sequence similarity threshold of 97%
in this case [31]. Finally, taxonomy was assigned using BLAST and HITdb, a reference database
for human intestinal 16S rRNA sequences, achieving up to species-level sensitivity [32]. Richness
indices, diversity and non-metric multidimensional scaling (NMDS) of the OTU matrix based on the
Bray-Curtis distance were calculated using raw counts and phyloseq R package [33]. The abundance
matrices were then filtered and normalized in R/Bioconductor at each classification level: OTU, species,
genus, family, order, class and phylum [34]. All sequencing data have been submitted to the NCBI
SRA repository under the accession number PRJNA623853.

2.6. SNP Selection and Genotyping

A total of 95 genetic variants related to obesity and weight loss as well as interactions with
dietary prescriptions were analyzed after an exhaustive bibliographic review following PRISMA
criteria [35–38], whose genomic characteristics are presented. Oral epithelium samples were collected
with a liquid-based kit (ORAcollect-DNA, OCR-100, DNA Genotek Inc, Ottawa, ON, Canada).
Genomic DNA was isolated using the Maxwell® 16 Buccal Swab LEV DNA Purification Kit (Promega
Corp, Madison, WI, USA). Genotyping was performed by targeted next generation sequencing on
Ion Torrent PGM equipment (Thermo Fisher Scientific Inc, Waltham, MA, USA) [39], as described
elsewhere [40,41]. Overall, the amplicon mean size was 185 bp. Library construction was carried out
using the custom-designed panel and the Ion AmpliSeq Library Kit 2.0 (Thermo Fisher Scientific) as per
the manufacturer’s protocol. The raw data were processed with the Ion Torrent Suite Server Version
5.0.4 (Thermo Fisher Scientific Inc, Waltham, MA, USA) using Homo sapiens (genome assembly Hg
19) as the reference genome for the alignment. A custom-designed Bed file was used to locate the
SNPs of interest. Variants were identified with the Torrent Variant Caller 5.0 (Thermo Fisher Scientific)
with a minimum coverage value of 20. Genetic tests including Hardy-Weinberg equilibrium, linkage
disequilibrium, and haplotype inferences were estimated using the Convert program (Version 1.31)
and the Arlequin software (Version 3.0).

2.7. Genetic Risk Score (GRS)

The construction of the GRS was based on 95 SNPs previously associated with obesity in published
literature. Additional information about these obesity-related SPNs can be found in previously
reports [42] and Table S1 in supplementary materials. In order to confirm the association of these
SNPs with BMI in Obekit population, the following steps were carried out. Firstly, Kruskal-Wallis tests
were performed to identify SNPs statistically or marginally associated with baseline BMI (absence of
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allele, presence of one allele or presence of two alleles) in our samples, obtaining a total of 17 SNPs
with a p value lower than 0.20. Secondly, post hoc tests (Mann-Whitney U test pairwise) were run to
define differences between genotypes in order to be differentially coded as risk and non-risk groups in
these 17 SNPs. A risk genotype was defined as the one that was associated with higher values of BMI.
Genotypes with similar effects were clustered in a single category. In a third step, Mann-Whitney U
test was applied to confirm statistical differences between the categorized genotype groups (risk vs.
non-risk), selecting those SNPs showing at least a marginal statistical trend (p < 0.10) and excluding
those with low sample (<10%) in either category or due to collinearity. To evaluate the combined
effects of the previously selected SNPs on baseline BMI, the GRS was calculated by summing of the
number of risk alleles at each locus [43], meaning that, e.g., an individual with 6 points has risk alleles
for 6 out of the 10 SNPs included in this GRS.

2.8. Statistical Analyses

Results were expressed as means ± standard error of the mean (quantitative variables) and as
numbers and percentages (qualitative variables). The normality of analyzed variables was screened
with the Shapiro-Wilk test. Statistical differences in baseline characteristics between men and women
and between normal weight and overweight+obese participants were assessed by Student’s t-test or
Wilcoxon rank-sum test depending on the distribution of data.

Population was divided into two groups of BMI (normalweight and overweight+obese) according
to the World Health Organization criteria [20] and two groups of GRS (high and low genetic risk
score split according to the mean of the population in order to obtain a similar number of subjects
in each group for the statistical analyses). Linear discriminant analysis (LDA) effect size (LEfSe)
(http://huttenhower.sph.harvard.edu/galaxy/) was used to compare groups and visualize the results
using taxonomic bar charts. Zero-inflated Gaussian (metagenomeSeq) analysis was for finding
families that differed significantly in abundance between normal-weight and obese subjects, using the
cumulative sum scaling (CSS) normalization (https://www.microbiomeanalyst.ca/). Random forest,
an ensemble learning method for classification and regression, was used to rank the importance of
predictive variables related to BMI and GRS, using R 3.5.3 (https://www.R-project.org/) and Receiver
Operating Characteristic curve (ROC) was performed to validate the random forest results (Figure S1,
Supplementary material) [44]. Each input (feature) in random forest was given an importance score
(MDA: mean decrease accuracy) based on the increase in error caused by removing that feature
from the predictors. Random forest uses 500 trees and about two-third of the samples in the dataset
as training set by randomly sampling with replacement and validates the selected features using
the remaining “out-of-bag” samples. Thus, 70% of the samples were randomly chosen to train the
classifier, and the remaining samples were used for validation. Canonical correspondence analysis were
conducted by PAST 4 (https://folk.uio.no/ohammer/past/). Also, batch effect of samples was analyzed
by principal component analysis based on Euclidean distances (Figure S2, Supplementary materials).
Potential interactions between Prevotellaceae family and BMI were investigated with general linear
regression models that introduced the corresponding interaction terms into the models, which were
adjusted for age, sex, physical exercise and total energy intake using Stata 12. (StataCorp LLC, College
Station, TX, USA; http://www.stata.com). The microbial data normalization was performed accordingly
to the type of analysis. A p value of < 0.05 was considered statistically significant.

3. Results

3.1. Baseline Characteristics of the Study Population

Baseline characteristics of the participants, separated by sex and by weight status, including age,
anthropometric measures, and biochemical, dietary and clinical determinations are shown in Table 1.
According to the BMI classification criteria of the World Health Organization, 18% (n = 64) of individuals
were normal weight, 30% (n = 110) overweight and 52% (n = 186) obese [20]. Anthropometric variables

http://huttenhower.sph.harvard.edu/galaxy/
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https://www.R-project.org/
https://folk.uio.no/ohammer/past/
http://www.stata.com
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were statistically different between normalweight men and women, except hip circumference. When
comparing overweight+obese separating by sexes, all anthropometric variables were significantly
different with the exception that BMI and dietary variables were statistically different, except fat intake.
Some biochemical measurements such as total cholesterol, TSH and TNFα showed a difference between
sexes in both groups. Also, physical exercise was influenced by sex, and was higher in men.

Table 1. Baseline characteristics of the entire population and separated by sex or weight status. Values
correspond to the mean ± SEM.

Variables
All

Population
(n = 360)

BMI <
24.9 kg/m2

Women
(n = 46)

BMI <
24.9 kg/m2

Men
(n = 18)

p Value a

BMI > 25
kg/m2

Women
(n = 205)

BMI ≥ 25
kg/m2

Men
(n = 91)

p Value b

Age (y) 44.8 ± 0.5 39.1 ± 1.3 41.5 ± 2.5 0.751 45.8 ± 0.7 46.3 ± 1.0 0.628
Weight (kg) 83.1 ± 0.8 57.8 ± 0.9 71.9 ± 1.9 <0.001 83.6 ± 0.8 97.1 ± 1.2 <0.001
BMI (kg/m2) 29.9 ± 0.2 21.7 ± 0.3 23.0 ± 0.3 0.009 31.6 ± 0.3 31.7 ± 0.3 0.694

Waist circumference (cm) 97.4 ± 0.8 73.1 ± 0.9 82.1 ± 1.4 <0.001 99.5 ± 0.7 108.1 ± 0.9 <0.001
Hip circumference (cm) 108.7 ± 0.6 94.3 ± 0.9 95.5 ± 1.2 0.497 113.4 ± 0.6 107.9 ± 0.7 <0.001

VAT (kg) 1.3 ± 0.1 0.2 ± 0.03 0.4 ± 0.08 0.001 1.1± 0.04 2.3 ± 0.9 <0.001
SBP (mmHg) 122 ± 1 104 ± 3 119 ± 3 <0.001 122 ± 1 132 ± 3 <0.001
DBP (mmHg) 76 ± 1 66 ± 1.9 73 ± 2.3 0.044 76 ± 1 80 ± 2 0.001

Glucose (mg/dL) 95 ± 1 83 ± 0.9 90 ± 1.3 <0.001 95 ± 1 100 ± 1 <0.001
Total cholesterol (mg/dL) 212 ± 2 191± 5.4 199 ± 6.2 0.381 215 ± 3 219 ± 4 0.407

HDL-c (mg/dL) 57 ± 1 64 ± 1.6 58 ± 2.6 0.052 59 ± 1 47 ± 1 <0.001
LDL-c (mg/dL) 136 ± 2 113 ± 5 127 ± 6 0.035 137 ± 2 147 ± 4 0.018

Triglycerides (mg/dL) 98 ± 3 68 ± 5.5 68 ± 5.1 0.555 94 ± 3 125 ± 8 <0.001
ALT (U/L) 22.6 ± 0.7 13 ± 0.4 24 ± 4.3 <0.001 21 ± 1 31 ± 1 <0.001
AST (U/L) 21.8 ± 0.4 18 ± 0.6 26 ± 1.6 <0.001 21 ± 1 25 ± 1 <0.001

Uric acid (mg/dL) 5.1 ± 0.1 3.9 ± 0.1 5.3 ± 0.2 <0.001 4.7 ± 0.1 6.0 ± 0.1 <0.001
Adiponectin (µg/mL) 11.9 ± 0.3 15.4 ± 0.7 9.6 ± 0.7 <0.001 12.8 ± 0.4 8.4 ± 0.3 <0.001

Insulin (mU/L) 7.1 ± 0.2 4.7 ± 0.3 3.5 ± 0.5 0.007 8.0 ± 0.3 8.7 ± 0.5 0.254
Leptin (ng/mL) 31.0 ± 1.6 14.2 ± 1.2 2.6 ± 0.3 <0.001 48.1 ± 1.9 14.6 ± 0.9 <0.001
CRP (µg/mL) 2.6 ± 0.2 1.5 ± 0.8 0.7 ± 0.4 0.519 2.1 ±0.2 3.2 ± 0.2 0.003
TSH (mIU/L) 1.3 ± 0.5 1.4 ± 0.1 1.3 ± 0.1 0.692 1.4 ± 0.1 1.2 ± 0.1 0.192

TNFα (pg/mL) 0.9 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.221 1.0 ± 0.03 1.0 ± 0.03 0.258
HOMA-IR 1.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.038 1.8 ± 0.1 2.2 ± 0.2 0.036

Carbohydrate intake (%) 41.1 ± 0.4 43.0 ± 1.0 44.9 ± 1.2 0.296 40.8 ± 0.5 40.4 ± 0.8 0.928
Protein intake (%) 16.9 ± 0.2 17.2 ± 0.4 15.7 ± 0.7 0.087 17.4 ± 0.2 16.0 ± 0.3 <0.001

Fat intake (%) 40.1 ± 0.3 38.3 ± 0.9 37.5 ± 1.1 0.598 40.6 ± 0.4 40.1± 0.6 0.461

Energy intake (kcal) 2907 ± 48 2560 ±
106.2

2779 ±
149.9 0.271 2849 ± 63 3237 ± 104 <0.001

Physical activity (METs) 25.3 ± 1.1 25.7 ± 2.8 47.8 ± 6.8 0.002 20.7 ± 1.2 30.9 ± 2.6 <0.001

VAT: visceral adipose tissue; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL-c: HDL cholesterol;
LDL-c: LDL cholesterol; ALT: alanine aminotransferase; AST: aspartate aminotransferase; CRP: C-reactive protein;
TSH: thyroid-stimulating hormone; TNFα: tumor necrosis factor alpha; HOMA-IR insulin resistance index; METs:
metabolic equivalent of task. Comparisons of means between normalweight (BMI < 24.9 kg/m2) women and men (a),
and overweight+obese (BMI > 25 kg/m2) women and men (b) by Student’s t-test or Mann-Whitney U test according
with the distribution of data.

3.2. Genetic Risk Score (GRS)

To study the genetic risk association with BMI, of a total of 95 genotyped related-obesity SNPs,
10 SNPs were chosen because they were statistically or marginally associated with BMI in our
population were used for calculating the GRS (Table 2). The genetic score was statistically different
when comparing normalweight (5.6 ± 0.2) with overweight+obese (6.3 ± 0.1) subjects (p < 0.001),
showing a higher value in subjects with higher BMI. The score was not significantly different between
sexes in normalweight group (p = 0.737) and the same results were obtained when comparing this
score between sexes in overweight+obese group (p = 0.232). The genetic score average did not differ
between men (6.3 ± 0.1) and women without separating by BMI status (6.0 ± 0.1) (p = 0.186).
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Table 2. Genotype codifications of the 10 single specific SNPs statistically or marginally associated in this population with BMI, which were used for the calculation of
the Genetic Risk Score. Values correspond to the mean ± SEM.

SNP Non-Risk
Genotype

Risk
Genotype

Non-Risk
Group (n)

Risk
Group (n)

Non-Risk
Group

Women
BMI

(kg/m2)

Non-Risk
Group Men

BMI
(kg/m2)

Risk Group
Women

BMI
(kg/m2)

Risk Group
Men BMI
(kg/m2)

p Value a p Value b

rs4731426_LEP GC GG+CC 168 191 29.0 ± 0.5 29.5 ± 0.6 30.4 ± 0.4 31.0 ± 0.6 0.032 0.069
rs1800006_UCP3 AG GG+AA 111 248 28.5 ± 0.5 29.8 ± 0.8 30.3 ± 0.4 30.4 ± 0.5 0.008 0.959
rs1052700_PLIN1 TT AA+TA 46 313 28.2±0.9 28.8 ± 1.2 30.0 ± 0.3 30.5 ± 0.4 0.089 0.096
rs1042713_ADRB2 AA+AG GG 230 129 29.5 ± 0.4 29.6 ± 0.5 30.3 ± 0.5 31.3 ± 0.7 0.217 0.034
rs11605924_CRY2 CC AA+AC 104 255 28.7 ± 0.6 29.8 ± 0.7 30.2 ± 0.4 30.4 ± 0.5 0.024 0.455
rs1800592_UCP1 CC+CT CT 246 113 29.3 ± 0.4 30.1 ± 0.5 30.7 ± 0.5 30.6 ± 0.8 0.092 0.321
rs2734827_UCP3 GG AA+AG 147 212 29.1 ± 0.4 30.1 ± 0.6 30.3 ± 0.4 30.3 ± 0.5 0.039 0.714

rs1440581_PPM1K CC TT+TC 78 281 28.7 ± 0.8 29.6 ± 0.8 30.1 ± 0.4 30.4 ± 0.5 0.122 0.410
rs7799039_LEP GA GG+AA 178 178 29.3 ± 0.5 29.8 ± 0.6 30.3 ± 0.5 30.7 ± 0.6 0.101 0.223

rs12255372_TCF7L2 TT GG+GT 51 308 28.7 ± 0.7 29.3 ± 1.1 29.9 ± 0.3 30.3 ± 0.4 0.097 0.400

Comparisons of means between non-risk women BMI and risk women BMI (a), and between non-risk men BMI and risk men BMI (b) by Mann-Whitney U test.
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3.3. Relationship between BMI, GRS and Gut Microbiome.

A lack of association was found between alpha-diversity (evaluated by Shannon index and Chao1)
and BMI and GRS, when taking into account the whole population. However, when the population
was separated by sex, Shannon diversity index of the families was negatively associated with BMI
in men (rho = −0.21, p = 0.02), but not in women. On the other hand, Shannon diversity index of
the families was positively associated with GRS in women (rho = 0.14, p = 0.02), but not in men.
No association with age was found taking into account the whole population or separated by sex.

LEfSe analysis was used in order to evaluate microbiome differences between normal weight
and overweight+obese subjects (Figure 1). Mean of abundance of these bacteria can be found in
supplementary materials (Table S2).

Microorganisms 2020, 8, x FOR PEER REVIEW 9 of 19 

3.3. Relationship between BMI, GRS and Gut Microbiome. 

A lack of association was found between alpha-diversity (evaluated by Shannon index and 
Chao1) and BMI and GRS, when taking into account the whole population. However, when the 
population was separated by sex, Shannon diversity index of the families was negatively associated 
with BMI in men (rho = −0.21, p = 0.02), but not in women. On the other hand, Shannon diversity 
index of the families was positively associated with GRS in women (rho = 0.14, p = 0.02), but not in 
men. No association with age was found taking into account the whole population or separated by 
sex. 

LEfSe analysis was used in order to evaluate microbiome differences between normal weight 
and overweight+obese subjects (Figure 1). Mean of abundance of these bacteria can be found in 
supplementary materials (Table S2). 

 
Figure 1. Linear discriminant analysis effect size between normal weight and overweight+obese 
subjects. Red, bacterial taxa statistically overrepresented in normal weight participants; green, 
bacterial taxa overrepresented in overweight and obese volunteers. 

The linear discriminant analysis effect size showed that the microbiota of the normal weight 
group was characterized by a preponderance of families from the Clostridiales order, such as 
Catabacteriaceae or Christensenellaceae.  

By contrast, the gut microbiota of the overweight+obese group gut microbiota was characterized 
by a preponderance of microorganisms from the Bacteroidales order (Bacteroidetes phylum), such as 
Prevotellaceae, and microorganisms from Bacilli class such as Lactobacillaceae (Figure 1). 

In order to evaluate whether gut microbiota differs by genetic background, we assessed the 
global differences of gut microbiota composition between subjects with high and low GRS by LEfSe 
analysis (Figure 2). Mean of abundance of these bacteria can be found in supplementary materials 
(Table S3). 
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The linear discriminant analysis effect size showed that the microbiota of the normal weight group
was characterized by a preponderance of families from the Clostridiales order, such as Catabacteriaceae
or Christensenellaceae.

By contrast, the gut microbiota of the overweight+obese group gut microbiota was characterized
by a preponderance of microorganisms from the Bacteroidales order (Bacteroidetes phylum), such as
Prevotellaceae, and microorganisms from Bacilli class such as Lactobacillaceae (Figure 1).

In order to evaluate whether gut microbiota differs by genetic background, we assessed the global
differences of gut microbiota composition between subjects with high and low GRS by LEfSe analysis
(Figure 2). Mean of abundance of these bacteria can be found in supplementary materials (Table S3).

Results showed that the Prevotellaceae family was the most predominant in subjects with high
genetic risk score, including Prevotella genus. On the other hand, the low GRS group presented high
abundance of Barnesiella and Allistipes genus (Bacteroides phylum) and Peptostreptococcaceae family
from Firmicutes phylum (Figure 2).

In order to visualize the relationship between bacterial families with BMI and GRS, a canonical
correspondence analysis was performed. BMI and GRS were used as environmental variables with
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the families obtained by previous analysis. The biplot shows high correlation between BMI and GRS
(Figure 3). The location of Prevotellaceae on the plot shows its association with BMI and GRS.Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 19 
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Figure 3. Biplot of the analysis of multivariate ordination with canonical correspondence analysis
(CCA) applied to taxonomic abundance comparison at family level (including families obtained by
LEfSe). CCA was performed to assess the variance in microbiota profiles at the family level in lean and
overweight+obese, high GRS and low GRS and men and women. Vectors represent the environmental
variables (in red) and black points represent abundance of families.

Moreover, metagenomeSeq analysis was performed to identify bacterial families significantly
different between normal-weight and overweight+obese subjects. The figure below shows that
Prevotellaceae was the only different bacterial family between groups of BMI (Figure 4A). The same
analysis between high and low GRS groups showed that only Prevotellaceae family was statistically
significant (Figure 4B).
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Figure 4. (A) Box plot of Prevotellaceae abundance in metagenomeSeq analysis between normal weight
and overweight+obese subjects. (B) Box plot of Prevotellaceae abundance in metagenomeSeq analysis
between low-GRS and high-GRS subjects. FDR: false discovery rate adjusted p value.

Interestingly, metagenomeSeq showed that the only significant genus was Paraprevotella, following
by Prevotella. These genera are the most abundant component of Prevotellaceae family.

Furthermore, to determine the bacterial families that might be biomarkers for discriminating
normalweight patients from obese, a random forest based on BMI and GRS was applied with the
relative abundances of the 64 identified families included as inputs. Ten random forest models were
repeated in order to rank microbial signatures that are able to differentiate groups of BMI (normalweigth
and overweight/obese) or GRS (low and high) (Figure 5). To obtain a robust result, the mean of the
MDA importance values was calculated for each bacterial family. Prevotellaceae showed the highest
mean of importance in both approaches.

In order to achieve the purpose of the study, to evaluate interactive associations between gut
microbiota composition and polymorphisms influencing BMI, the bacterial families that presented
association with both variables (BMI and GRS) in previous analyses (Prevotellaceae, Leuconostocaceae
and Lactobacillaceae) were chosen to construct the linear regression models.

Linear regression models adjusted for sex, age, physical exercise and energy intake were
constructed for each one and the presence of interaction between microbiota and the GRS was
evaluated. Only a marginal interaction between Prevotellaceae family and GRS was found (model
A, Table 3). In order to evaluate the role of sex, the interaction regression models were stratified by
gender (Table 3 Men and Women columns). Data revealed that a significant interaction only appeared
in women (model A, p = 0.039) and the interaction model with Prevotellaceae and GRS improved the
adjusted R2 value from 0.21 (Figure 6C).
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Figure 5. Ranking of mean decrease in accuracy (MDA) values in random forest analysis, a statistical
classification that indicates the importance of each variable. Random forest calculates feature importance
by removing each feature from the model and measuring the decrease in accuracy (for presence) or the
increase in the mean-square error (for abundance). According to these importance scores, features were
ranked in increasing order across models. The plot shows each variable on the y-axis, and their importance
on the x-axis. Thus, the most important variables are at the top and an estimate of their importance is
given by the position of the dot on the x-axis. (A) The Figure Shows the hierarchical rank of 30 families
listed as responsible for the differences between groups of BMI. (B) The graph shows the hierarchical rank
of importance of 30 bacterial families implicated in the differences between groups of GRS.

Table 3. Linear regression models constructed with BMI as dependent variable, relative abundance of
Prevotellaceae family, and genetic risk score (GRS) as independent variables.

Model
Whole Population (n = 360) Men (n = 109) Women (n = 251)

β ± SE p Value adjR2 β ± SE p Value adjR2 β ± SE p Value adjR2

Model A <0.001 0.18 0.007 0.11 <0.001 0.21
Prevotellaceae −0.27 ± 0.25 0.276 0.004 ± 0.38 0.992 −0.44 ± 0.31 0.164
GRS 0.07 ± 0.50 0.887 0.70 ± 0.80 0.383 −0.23 ± 0.63 0.713
Prevotellaceae#GRS 0.06 ± 0.04 0.098 −0.006 ± 0.06 0.925 0.10 ± 0.05 0.039

Model B <0.001 0.18 0.003 0.13 <0.001 0.19
Leuconostocaceae −1.37 ± 1.02 0.179 −2.12 ± 1.75 0.228 −0.17 ± 1.38 0.903
GRS 0.76 ± 0.16 <0.001 0.51 ± 0.26 0.053 0.96 ± 0.21 <0.001
Leuconostocaceae#GRS 0.23 ± 0.15 0.121 0.29 ± 0.28 0.305 0.08 ± 0.19 0.657

Model C <0.001 0.17 0.17 0.003 <0.001 0.19
Lactobacillaceae 0.42 ± 0.35 0.231 0.48 ± 0.48 0.316 0.42 ± 0.48 0.382
GRS 0.99 ± 0.24 <0.001 0.79 ± 0.36 0.032 1.15 ± 0.31 <0.001
Lactobacillaceae#GRS −0.03 ± 0.05 0.506 −0.05 ± 0.07 0.511 −0.03 ± 0.07 0.648

β represents changes in outcomes for the increasing number of units of BMI in the whole population and separating
by sex; SE: standard error. Regression was adjusted for age, sex, physical exercise and energy intake excepting
models stratified by sex in which the gender was not considered.
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Figure 6. Predicted values of BMI in all population studied (A), men (B) and women (C) according
to the Genetic Risk Score (GRS) calculated with 5 (dash line and square dots) and 15 (solid line and
circle dots) relative abundance of Prevotellaceae, using linear regression models adjusted for age, sex,
physical activity and energy intake, showing association between relative abundance of Prevotellaceae
family and GRS.

4. Discussion

Obesity is caused by an imbalance between energy intake and energy expenditure, where complex
genetic and environmental factors are involved [45,46]. Several publications have appeared in recent
years documenting that genetics as well as microbiome take part in the development of obesity and
others comorbidities [47–49]. However, the complex interactions between the intestinal microbiome,
host genetics, and their mutual effects on health and disease have been scarcely studied so far. In this
context, this paper is a modest contribution to the ongoing discussion about the complex relationship
between gut microbiome composition and the host genotype on BMI, as well as the potential influence
of the sex.

On the one hand, the contribution of genetics to obesity has been widely recognized in humans [50].
However, most of the investigations deal with only one SNP and few of them examine the contribution
of a set of several SNPs in the apparition of obesity. In this current work, a GRS construction using a
set of 10 related-obesity SNPs was proposed in order to better understand the contribution of host
genetics in the context of obesity, including gut microbiome composition as another important factor in
this disease. It is important to underline that these SNPs have shown association with BMI in previous
studies [51–59]. Thus, as expected, this GRS was statistically associated with BMI in our population.
These findings are in line with previous studies estimating the clinical discriminative accuracy of
multiple genetic testing in the prediction of common complex diseases [60,61]. Other studies have
previously described different GRS in the context of obesity. Goni et al. showed that the construction
of a GRS confirmed that the high genetic risk group showed greater values of adiposity than the low
risk group and demonstrated that macronutrient intake modified the association between GRS and
adiposity traits [62]. In the study of Hung et al., authors described a GRS with 32 well-established risk
loci from a meta-analysis of Genome Wide Association Studies on BMI, which was a useful tool to
predict obesity [63].

On the other hand, in recent years a great number of previous studies have documented
several structural patterns of the gut microbial community linked to obesity, such as a high
Firmicutes/Bacteroidetes ratio and low gene richness or some specific microbial families, genus
and species have shown association to obesity in mice and humans [3,64–68]. Nevertheless, the specific
members of the gut microbiota and their functional interactions contributing to obesity and associated
metabolic deteriorations remain inconclusive [16]. Actually, according to the results obtained in this
work, other studies that have reported a correlation between Prevotellaceae abundance and obesity.
Prevotellaceae seems to be associated with an elevated level of circulating succinate concomitant with
impaired glucose metabolism in obese people [69].
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Therefore, a large body of data indicates a clear contribution of gut microbiota to many human
diseases, but the mechanisms that mediate these associations are poorly understood, highlighting the
need to better understand genetic and environmental factors affecting microbial composition.

In this paper, particular attention was paid to how the combination of these two factors, host genetics
and gut microbiome, can contribute to obesity disease. In this line, some previously research suggested that
the individual microbiota composition is involved in genetically predisposed obesity. Certain studies have
shown that family members have more similar microbiota than unrelated individuals [7]. For example,
the concordance rate for carrying the methanogen Methanobrevibacter smithii is higher in monozygotic than
dizygotic twin pairs [70], and some studies comparing microbiota between human subjects differing at
specific genetic loci have shown gene-microbiota interactions [14–17]. In this context, Org et al. found, in a
controlled environment, that the genetic background accounts for a substantial fraction of abundance of
most common microbiota in mice [71–75]. In line with the data showed in this paper, other investigations
reported a relationship between Prevotellaceae family members and host genetics. A positive correlation
between AMY1 copy number and Prevotella (main genus of the Prevotellaceae family) abundance highlights
the role of genetics in the modulation of intestinal microbiota. In that study, authors found a positive
correlation between AMY1 copy number and gut Prevotella abundance, probably because this genus
has enzymes and gene clusters essential for complex polysaccharide degradation and utilization [76].
Genetic variants in several genes, including SLC9A2, ELAVL4 and LINGO2, are associated with both
obesity and Blautia abundance, which could suggest that the mechanism of these variants acts through
the gut microbiome [77]. For example, a positive association exists between a variant in SLC9A2, a gene
that expresses a sodium/hydrogen exchanger in the colon that is upregulated in mouse models of obesity,
and the abundance of the genus Blautia [78]. These investigations evidenced that, although it is not clear if
a gut microbiota shift is the cause or the effect or obesity, the role of host genetic is this scenario is critical.
Host genetics determines the metabolism and absorption of dietary nutrients, and these nutrients may
influence and conditionate the presence, prevalence and the survival of a certain group of bacteria. Alike,
these bacteria present important functions in the defense against foreign pathogens and the breakdown of
indigestible dietary polysaccharides to produce short chain fatty acids (acetate, butyrate, and propionate),
which can serve as a direct energy source for intestinal epithelial cells. Moreover, bacteria produce a wide
range of other metabolites, as well as modifying human produced metabolites, such as bile acids, that can
be taken up into the bloodstream where they have the potential to modulate host metabolism and other
functions, even behavioral functions [79,80]. Nevertheless, in contrast to some reports in the literature,
some authors consider that gut microbiome composition is shaped predominantly by environmental
factors (specially the type of diet) but is not significantly associated with genetic ancestry or with individual
SNPs, and, previously reported associations have not been replicated across different studies [81].

Another important issue in this complex tangle is the role of sex. In the literature, several
investigations have shown sex-related differences in gut microbiota. For example, the genera Bilophila,
Veillonella, and Methanobrevibacter were previously found to have distinct abundances in European
men and women [15]. One of the most interesting approach to this issue has been proposed by
Santos-Marcos et al. presenting that subjects with the same combination of metabolic syndrome
criteria, showed different composition of gut microbiota depending on sex [13]. Also, the investigation
of a Chinese cohort, demonstrated statistically significant differences in gut bacterial community
diversity, composition, phenotypes, functions, and ecological networks, and these diverse profiles
were associated with BMI but were also sex-specific [82–84].

Thus, a big number of studies show host genetic and gut microbiota are essential factors for
understanding obesity; but the mechanisms by which these factors interplay with each other are poorly
understood, highlighting the need to better understand genetic and environmental factors affecting
microbial composition and its relationship with human health and disease. The study of the interaction
between several factors, such as gut microbiota and host genetic, could explain some interindividual
differences found in people with the same complex disease, such as obesity. Our finding evidenced
that women with higher GRS scores and higher abundance of Prevotellaceae showed a higher BMI,
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while women with lower Prevotellaceae presented a lower BMI. To date, no studies have investigated
the association between microbiota and a set of SNPs, and the effect on BMI. Also, other bacterial
families showed an association with BMI and GRS in our research, such as Lactobacillaceae, suggesting
that more research is necessary to extend our knowledge in others populations.

Nonetheless, one limitation of this research lies in the fact that the analyses were performed
at family level, and different bacterial species may be contributing to the prevalence of the family.
Moreover, the problem with this approach is that the investigations concerning the influence of host
genetics on the gut microbiome are difficult because gut microbiome composition can be influenced
by environmental aspects such as the type of diet, physical activity or antibiotics consumption [79].
Furthermore, to determine more robust genetic associations, a larger sample size is required. However,
an important strength of this investigation is the screening of multiple SNPs related to BMI, which
resulted in the construction of a specific GRS. Moreover, to our knowledge, this is the first study that
has evaluated the combined effects of a set of obesity-related SNP and gut microbiota composition on
human obesity.

5. Conclusions

This proof of principle study has statistically shown that a sex-specific association occurs between
host genetics and Prevotellaceae, evidencing differences in BMI according to the sex. This outcome
supports the association of Prevotellaceae family with BMI, and indicates that gender differences
should be taken into account.

Furthermore, the proposed GRS interacts with the Prevotellaceae family, which modulates obesity
predisposition. Developing strategies to manipulate gut microbiota that drive specific components of
obesity, especially those components that interact with a permissive host genetic background, may
open the door to new more personalized, effective and durable approaches to prevent and treat human
obesity-related diseases.

In summary, our findings should be considered as a model, which support the hypothesis that host
genetics interact with the gut microbiome, and this association may play a role in obesity development,
especially in women.
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