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Expansion of an initial population of T cells is essential for cellular immunotherapy. In
Chronic Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell
proliferation, as these cells frequently show signs of exhaustion. This report seeks to
identify specific biomarkers or measures of cell function that capture the proliferative
potential of a starting population of cells. Mixed CD4+/CD8+ T cells from healthy
donors and individuals previously treated for CLL were characterized on the basis of
proliferative potential and in vitro cellular functions. Single-factor analysis found little
correlation between the number of populations doublings reached during expansion
and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However,
inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned
features of activating proteins as factors identified three distinct groups of donors.
Notably, these group assignments provided an elegant separation of donors with
regards to proliferative potential. Furthermore, these groups exhibited different motility
characteristics, suggesting a mechanism that underlies changes in proliferative potential.
This study describes a new set of functional readouts that augment surface marker
panels to better predict expansion outcomes and clinical prognosis.

Keywords: T cell, Leukemia, machine learning, immunotherapy, cell migration

INTRODUCTION

T cells have emerged as a compelling agent in the treatment of diseases ranging from cancer to
autoimmunity. However, clinical use of T cells as a therapy relies on the production of cells of
sufficient quantity and quality from a small starting population; the inability of an individual’s
cells to carry out this expansion would make a cellular approach inappropriate for both therapy
and participation in clinical trials (Frey, 2015). This poses a particular challenge as disease state
often dampens immune function and response including expansion. As a key example, T cells from
individuals with Chronic Lymphocytic Leukemia (CLL) show defects in expansion and subsequent
function (Wherry, 2011; Tonino et al., 2012; Riches et al., 2013; Palma et al., 2017; McLane et al.,
2019), which resembles exhaustion and is associated with lower remission of CLL than Acute
Lymphoblastic Leukemia through autologous CAR-T cell therapy (Maude et al., 2014; Porter et al.,
2015). CLL is also associated with higher levels of key exhaustion markers such as PD-1, TIM-3,
LAG-3, CTLA-4, TIGIT, and CD160 (Wherry, 2011; Long et al., 2015; McClanahan et al., 2015;
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Wherry and Kurachi, 2015), as well as deficits in cell function
such as migration and formation of immune synapse structures
(Ramsay et al., 2008, 2012, 2013). However, a clear understanding
of how biomarkers are associated with cellular function, disease
progression, and potential treatment remains elusive. Using
a machine learning approach, this report seeks to develop a
framework for combining molecular biomarkers, measures of cell
function, and other inputs to characterize T cells from individuals
with CLL, ultimately in an effort to improve production of cells
for cellular immunotherapy.

MATERIALS AND METHODS

Cell Culture
Mixed CD4+/CD8+ populations of primary human T cells were
isolated from peripheral blood lymphocyte fractions (Leukopaks,
New York Blood Center) by negative selection (Rosette-Sep kit,
Stem Cell Technology) and density centrifugation (Ficoll-Paque
PLUS, GE). Mixed CD4+/CD8+ T cells from individuals who
were previously treated for CLL were purified using identical
selection techniques. Clinical biomarkers were collected over
the course of treatment. In particular, Rai stage, a standardized
measure of CLL spread, was determined during patient care
from blood tests (cell counts) and physical exams (tissue
enlargement). For all experiments, cells were cultured in RPMI
1640 supplemented with 10% fetal bovine serum, 10 mM HEPES,
2 mM L-glutamine, 50 U/mL penicillin, 50 µg/mL streptomycin,
and 50 µM β-mercaptoethanol (Sigma or Life Technologies,
unless otherwise noted). T cell populations were analyzed for
PD-1 expression by flow cytometry using α-PD-1 (PE-Cy7, clone
EH12.2H7, Biolegend).

Design and Fabrication of Microscopy
Chambers
Conical-well, open-bottom wells were used to improve the
efficiency of microscopy-based cell function analysis. Individual
wells had a cylindrical well geometry of 5 mm in internal diameter
and 4.5 mm depth, but with a 45◦ conical bottom ending with a
1-mm diameter opening at the bottom of the structure. Multiple
wells in a 2 × 4 rectangular array were arranged into chambers
following the layout and center-to-center distance of standard 96-
well plates. Chambers were fabricated out of polypropylene by
injection molding (Protolabs). For use in microscopy, chambers
were affixed onto test surfaces using transfer tape (3 M) that was
laser cut to provide correct overall dimensions and provide holes
for the 1-mm openings.

Surface Micropatterning
Micropatterned surfaces were created by microcontact printing
(20, 21). Briefly, glass coverslips were patterned with 2-µm
diameter circular features of activating proteins, spaced in square
arrays at a center-to-center distance of 15 µm. Microcontact
printing was carried out by coating topographically defined,
polydimethylsiloxane stamps with a mixture of α-CD3 (clone
OKT3, Bio X Cell) and α-CD28 (clone 9.3, Bio X Cell) antibodies.

The strength of TCR/CD3 activating signal was modulated by
changing the amount of α-CD3 in the stamping solutions,
which contained α-CD28 at 15 µg/ml, α-CD3 at a specified
concentration (5, 3, 1.5, or 1 µg/ml), and an inert antibody
(chicken α-goat IgG, Life Technologies) for a total concentration
to 20 µg/ml. The strength of α-CD3 signal was expressed
as percent of antibody solution associated with OKT3 (e.g.,
15 µg/ml α-CD28+ 3 µg/ml α-CD3+ 2 µg/ml α-gt was denoted
as 15% OKT3). A microscopy chamber was then adhered onto the
coverslips, aligning the wells with the patterned regions. Finally,
open areas of the coverslip were coated with 2 µg/ml of ICAM-1
(ICAM-1/Fc chimera protein, R&D Systems).

Expansion
Assays of cell expansion were carried out as previously described
(O’Connor et al., 2012; Dang et al., 2018). Briefly, mixed
CD4+/CD8+ populations of 1× 106 T cells were stimulated with
Human T-Activator CD3/CD28 Dynabeads (ThermoFisher) at a
bead to cell ratio of 3:1 on day 0 of an expansion process. On
day 3 and every second day after that, the number of T cells was
counted, and additional media added to reduce cell concentration
to 5 × 105 cells/ml. Proliferative capacity was quantified as the
maximum number of doublings achieved over the expansion,
after which cell number decreased; the expansion process was
terminated at that point.

Microscopy-Based Assays of Cell
Function
Cell alignment, motility, and IL-2 secretion assays were carried
out by seeding 1 × 104 T cells in a 50 µl volume into prepared
microscopy chambers attached to micropatterned coverslips
or other experimental surface. Cell culture was carried out
under standard conditions (37◦C, humidified environment, 5%
CO2 environment).

Cell alignment and IL-2 secretion were measured 6 h after
seeding. IL-2 secretion was measured using a surface capture
method (Shen et al., 2008; Bashour et al., 2014). Briefly, cells
were incubated with a bi-reactive antibody, which binds to the
T cell surface and presents a site for IL-2 capture. Secreted
IL-2 is captured over the course of the 6 h incubation, and
then detected using an APC-labeled α-IL2 antibody. Cells were
fixed with 4% paraformaldehyde. Amplification of the IL-2 signal
was provided by incubation with a tertiary, biotinylated α-APC
antibody followed by streptavidin-AF647. Interference reflection
microscopy provided an outline of each cell, which was used to
determine the fraction of cells that had aligned with an activating
pattern. Fluorescence imaging allowed cell-by-cell measurement
of surface-captured IL-2, which was collected for cells aligned
to the patterns.

Cell motion was recorded by live-cell microscopy in the
first hour after seeding using a stage top incubator (Tokai).
Images were collected at 30 s intervals over the 60 min
observation period. Only T cells with fully formed lamellipodia
were considered for motility analysis. Velocity was defined as
average velocity before cells stopped on an activation feature.
A stop was defined as a cessation of overall motion for longer
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than 3 min, thus not including encounters where cells crossed a
feature without halting. For a subset of experiments, T cells were
stained with α-PD1 BB515 (clone EH12.1, Becton Dickinson)
prior to seeding.

Statistics and Analysis
Analysis of donor cells was carried out in the R and MATLAB
software environments. To identify the smallest set of factors
that can account for the majority of variance in the donor data
set (Supplementary Table 1), Factor Analysis of Mixed Data
(FAMD) was carried out using the “FactoMineR” and “factoextra”
libraries in R. Sex and IgVH were treated as categorical
factors. Rai stage, represented by the integer associated with
the analysis (0–4) was rank transformed and then treated as a
numerical factor, noting that increasing Rai stage corresponds
to greater CLL spread. Missing data was imputed by Multiple
Imputation by Chained Equations (MICE) using the “mice”
library in R. Numerical data was normalized (mean = 0, standard
deviation = 1) prior to analysis by FAMD. Once variables to
be included for clustering were identified, data was analyzed by
k-medoids using the “cluster” library in R. Resampling analysis
was carried out using the R “boot” library. MATLAB was used to
reconcile cluster assignments between runs.

Quantitative comparisons between multiple conditions
were carried out using two-tailed ANOVA methods. When
validated by ANOVA (α = 0.05), comparison of data between
multiple conditions was carried out using Tukey’s honest
significance test methods. As specified in the figure captions,
data were alternatively analyzed using Kruskal-Wallis test
by ranks (α = 0.05). These tests, including permutation
analysis when specified, were carried out using the MATLAB
software environment.

Study Approval
All experiments were performed in accordance with protocols
approved by either the Dana-Farber Cancer Institute or
Columbia University. Clinical information was provided
from patient records from the Dana-Farber Cancer Institute.
Informed consent was obtained for each patient on an ongoing
research protocol approved by the Dana-Farber Cancer Institute
Institutional Review Board (no. 99-224).

RESULTS

CLL T Cells Show Reduced Proliferative
Capacity
As a measure of cell suitability for production, we compared
ex vivo expansion of T cells from individuals being treated for
CLL to those from healthy counterparts. Mixed CD4+/CD8+
populations of T cells were activated using Dynabeads (α-CD3
+ α-CD28) then expanded in media supplemented with serum
but without additional cytokines. Cells from healthy donors
entered a phase of rapid growth, after which expansion decreased
and cells came to rest (Figure 1A). Cells from CLL patients
was often less robust, manifested as a shorter period of

rapid growth and/or slower rate of doubling; three examples
illustrating strong (similar to healthy donors), moderate, and
minimal growth are shown in Figure 1A. Toward a systematic
understanding of this variability, we examined a larger set of
donors (Supplementary Table 1) seeking to identify parameters
that can be associated with different degrees of expansion. This
report uses the maximum number of doublings reached during
growth, illustrated in each profile of Figure 1A by an open
symbol, as an indicative measure of proliferative potential during
expansion. We first examined Rai stage, a clinical designation
based on disease progression (Apelgren et al., 2006). Cells
from healthy donors exhibited 5.5 ± 0.4 (mean ± SD, n = 5)
doublings. Cells from CLL patients showed a wider range, with
no dependence on Rai stage (P < 0.72, permutation on Kruskal-
Wallis test). We next considered the percentage of cells in the
starting population expressing the checkpoint inhibitor PD-
1 (Arasanz et al., 2017). An overall negative correlation was
observed between maximum doublings and PD-1 expression
(Figure 1C), but with a dip in doublings for intermediate
values of PD-1 expression. Analysis of maximum doublings
as a function of sex and IgVH mutation status showed no
significant effect of the individual parameters (P < 0.43 and
P< 0.29, respectively, two-tailed t-test). Recognizing that cellular
functions are central to disease progression, we next turned to
more complex measures of cell state.

Cell Sensitivity to Micropatterned,
Activating Signals Is Dependent on PD-1
Expression
CLL impacts cellular-level functions of T cells, including motility,
migration, and activation (Ramsay et al., 2013; Dupre et al.,
2015). In this section, we seek to characterize such functions
under well-defined conditions, potentially leading to a new
quantifier that can be used to determine cell state. These
assays typically require observation of live cells, and have been
complicated by both the limited number of cells available
from diagnostic samples and large, unobservable dead volumes
associated with microscopy systems. To address the microscopy-
associated limitation, we introduced the use of conical wells to
collect cells into a small region of observation. The chambers
are based on 96-well plates, with each well concentrating cells
that would settle onto the 5-mm diameter bottom surface to a
1-mm diameter observation area (Figure 2A). By concentrating
cells onto the observation area, the number of cells needed
for an experiment was reduced by a factor of 20, facilitating
experiments with smaller diagnostic samples and/or testing of
more parameters from a single sample. Here, these chambers
were used in conjunction with a second experimental system,
protein-micropatterned surfaces for measuring response of living
cells (Figure 2A). Microcontact printing (Mayya et al., 1950,
2018; Chen et al., 1997; Shen et al., 2008; Bashour et al., 2014;
Kumari et al., 2015) was used to create arrays of 2-µm diameter,
circular features containing antibodies to CD3 and CD28 which
provide activation and costimulatory signals, respectively. The
intervening regions were coated with ICAM-1. This approach
was used previously (Shen et al., 2008) to investigate sensitivity
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FIGURE 1 | T cells from CLL patients show deficits in expansion. (A) Timecourse of expansion for cells from three individuals, including a control condition of cells
from a healthy donor, a CLL patient with cells showing moderate deficit in expansion (D57), and one with minimal proliferative potential (D2). The maximum number
of doublings reached over an experiment (indicated by the open symbols) was used as a single, characteristic measure of expansion. (B) Maximum doublings for
cells as a function of Rai stage (not including healthy donors) were compared by permutation analysis applied to Kruskal Wallis test, indicating no significant
difference (P < 0.72; 1 × 106 permutation samples). Data are mean ± SD The donors included in (A) are indicated in this figure. (C) Maximum doublings as a
function of percentage of cells that were PD-1+. Data are presented as means, and when included, error bars indicate standard deviations over technical replicates
for that donor. The symbols in (C) correspond to Rai stage indicated in (B).

FIGURE 2 | Measurement of cell function from limited samples. (A) Microcontact printing was used to pattern isolated features containing activating antibodies to
CD3 and CD28, allowing microscopy-based analysis of cell function. These micropatterned surfaces were attached under custom-made, open-bottomed conical
chambers, which provide a 20-fold improvement in cell utilization. Cell-substrate contact areas were determined by interference reflection microscopy (gray), which
allowed determination of alignment with activating features of α-CD3 + α-CD28 (red). (B) Alignment of T cells to the activating features was dependent on both the
concentration of α-CD3 antibody (OKT3) and PD-1 expression. Data are mean ± SD from 3 to 14 donors for each condition. An OKT3 concentration of 15% was
selected as a standard condition for subsequent experiments. (C) Maximum doublings as a function of Pattern Alignment. Data are means, and when included error
bars indicate standard deviations over technical replicates for that donor. The symbols in (C) correspond to Rai stage as indicated in Figure 1B.

of T cells to localized CD3 activation, assayed by measuring
the percentage of cells that stopped on and aligned with the
features as a function of α-CD3 concentration. Repeating that
approach here, primary human T cells from healthy donors
aligned with micropatterned features of OKT3 (α-CD3) and
9.3 (α-CD28) as shown in Figure 2A. The amount of CD3
activating signal was controlled by specifying the concentration
of OKT3 in the printing solution, as detailed in section “Materials
and Methods.” The percentage of cells that aligned with the
patterns increased as OKT3 concentration increased. Cells from
CLL donors similarly showed increasing alignment with higher
concentrations of α-CD3, but also exhibited a dependency
on PD-1 expression (Figure 2B). For this analysis, cells with
PD-1 expression levels within the 95% confidence interval of
healthy donors were designated as “PD-1 low,” while those
above this confidence interval were notated as “PD-1 high.” At
each OKT3 concentration, cells from the “low” group showed
lower alignment with features than the corresponding cells from
healthy donors. Surprisingly, this deficit in cell response was lost
for cells from the “high” PD-1 group, illustrating the complex

relationship between maximum doublings and PD-1 expression
suggested in Figure 1C. Notably, these experiments were made
practical by the improvement in cell utilization provided by
the conical chamber system. Subsequent experiments, facing
similar limitations in cell availability, were carried out at
an OKT3 concentration of 15% (see section “Materials and
Methods”), corresponding to the greatest difference between
cells of the healthy and PD-1 low donors. Cell proliferative
potential is plotted as a function of pattern alignment at
this standardized concentration of 15% OKT3 in Figure 2C.
While lower levels of alignment were associated with decreased
proliferative potential, the number of doublings reached by
cells exhibiting higher alignment varied across the range of
observed values; the distribution of maximum doublings for
alignment above 60% was not statistically different than those
below this cutoff (P < 0.61, permutation of Kruskal-Wallis test,
1 × 106 random permutations). Finally, IL-2 secretion by cells
adherent to these micropatterned surfaces was measured using
a previously described surface capture method (Shen et al.,
2008; Bashour et al., 2014). Like pattern alignment and other
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biomarkers, no clear correlation between maximum doublings
and IL-2 secretion alone was observed. Given these results, we
next pursued a multi-factor approach toward characterizing cell
proliferative potential.

Clustering Analysis Reveals Three
Groups of Donors
In this section, an unsupervised clustering approach was
used to identify patterns in biomarker expression within the
populations of T cells isolated from CLL donors. Factors for
this analysis included pattern alignment, IL-2 secretion, Rai
stage, PD-1 expression, age at time of diagnosis, sex, and
IgVH mutation status. Before clustering, Factor Analysis of
Mixed Data (FAMD, Figure 3A) was used to identify which
factors have the largest impact of explaining data variance.
Dimensions 1 and 2 together comprised over 50% of data
variability (37.3 and 19.4%, respectively, Figure 3A). As such,
we examined the contributions of the seven input factors to
combined Dim1 + Dim2. Pattern alignment, IL-2 secretion,
and PD-1 expression each contributed over 14.3%, a cutoff
representing equal contributions from all factors (Figure 3B),
and were thus identified as the factors to be used in k-medoids

clustering analysis. A cluster number of three was selected using
the elbow method (Supplementary Figure 1), leading to group
assignments shown in Figure 3C. Most strikingly, the groups
stratify maximum doublings (Figure 3D): Group 2 is significantly
lower than Group 1 (P < 0.05), while Group 3 is lower than
both Healthy and Group 1 cells (P < 0.05 and P < 0.005,
respectively). These assignments thus provide a single parameter
that describes cell expansion potential without the complex
relationships observed for individual factors (Figures 1B,C, 2C).
These group assignments also provided insight into the three
factors that were used in clustering—PD-1, pattern alignment,
and IL-2 secretion (Figure 3E). Intriguingly, clustering provided
more distinct stratification of pattern alignment than max
doublings (four comparisons that were significant at α = 0.05,
compared to three), but alignment showed a different order
of response with Group 2 being higher than the others.
A similarly altered order was observed for PD-1 expression.
Finally, IL-2 secretion showed an ordering that was similar
to max doublings, suggesting a connection between doublings
and cytokine secretion, but fewer comparisons were significant
at α = 0.05.

It is noted that the clustering and data imputation algorithms
used here incorporate randomization. Consequently, the stability

FIGURE 3 | Clustering analysis of cells from CLL patients revealed three Groups that describe proliferative potential. (A) Scree plot indicating the percentage of
explained variance associated with each Dimension of a seven-factor FAMD analysis. Subsequent analysis focused on Dim1 + Dim2, which explains over 50% of
variance. (B) Contribution of each factor to Dim1 + Dim2. The red line indicates 14.3%, a threshold representing equal contribution by each factor. (C) Analysis by
k-medoids clustering using factors with contributions above the threshold indicated in (B) produced three Groups, which are coded in this FAMD plot showing Dim1
and Dim2. The labeled donors are examined in more detail in Figure 4. (D) Maximum doublings varied as a function of Group assignment. (E) PD-1, Alignment, and
IL-2 secretion as a function of Group assignment. In all panels, data are mean ± SD ∗P < 0.05, ∗∗P < 0.005, ∗∗∗P < 0.0005, ∗∗∗∗P < 0.0001, using ANOVA and
Tukey tests. All comparisons that were significant at α = 0.05 are indicated in this figure. Open symbols represent conditions for which missing data was imputed.
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of these analyses was tested through two types of resampling.
The first is bootstrapping, in which 500 data sets were generated
by random selection with replacement and then analyzed using
the methods applied to the original data set. The frequency at
which each donor was assigned to a given Group is listed in
Supplementary Table 2, showing that the groups reported in our
full data set (Supplementary Table 1) are stable; only one donor
(D59) was assigned to a group different from the bootstrapped
data. Data were then analyzed by subsampling, in which 500 data
sets representing 90% of the original were generated by random
sampling without replacement. As shown in Supplementary
Table 1, these assignments followed the original analysis,
indicating that those conclusions are not sensitive to the number
of individual donors. Finally, bootstrapping was conducted on
percentage of variance explained by Dim1 + Dim2 in the
FAMD analysis. Analysis of 500 bootstrap sets determined
a 95% confidence interval of 53.3–71.0%, placing it above
the 50% criteria.

Cell Motility Varies Between Groups and
PD-1 Expression
A notable result presented above is that pattern alignment
is a major contributor to Dim1 + Dim2 (Figure 3B), and
is also stratified by the cluster assignments (Figure 3E). To

understand the cellular processes underlying pattern alignment,
we examined the motion of cells following contact with a
micropatterned surface (Supplementary Movie 1), collecting
three complementary measures of cell motion from these
trajectories. The first was motility speed, which reflects
exploration of the ICAM-1-presenting surfaces. No significant
variation in speed was observed across CLL and healthy donors
(Figure 4A). The next two measures focused on cells as they
encountered and came to a stop (defined as a halt in long-
range movement for at least 3 min) on activating features of
α-CD3 + α-CD28; these cells represent the ones that aligned
with the pattern. The number of features a cell encountered
before stopping provides insight into the sensitivity of cells
to activation. Cells from Group 1 moved over more features
than cells from Group 2, Group 3, and also healthy donors
(Figure 4B) suggesting lower sensitivity to activation. As a
complementary readout, the time from the beginning of the
trajectory to stopping on an α-CD3 + α-CD28 feature was
also measured. Cells in Group 3 showed the longest trajectory
duration (Figure 4C). These results collectively suggest that
proliferative potential is associated with different patterns of
cell motility and sensitivity to activation. Specifically, longer
periods of motion before coming to a stop are associated with
lower maximum doublings, as illustrated for D76. However, this
relationship is complex, since Group 1 showed lower sensitivity

FIGURE 4 | Cell motility varies between Groups. (A–C) Live-cell microscopy over the first 60 min of cell-substrate interaction reveal different behaviors in motility. Cell
centroid position was tracked and analyzed for average speed (A), the number of patterns that a cell crossed before coming to a halt (B), and time until such a halt
(C). Donors included in this analysis are labeled in the FAMD plots of Figure 3. (D–F) Prelabeling of cells with an α-PD-1 antibody allowed separate analysis of
PD-1+ and PD-1− cells in the same experiment. In all panels, each symbol indicates an individual trajectory. The red, blue, and green numbers below the x axes
indicate the Group assignments established in Figure 3. Data are mean ± SD of all cells tracked in 1–2 independent experiments. *P < 0.05, **P < 0.005,
***P < 0.0005 compared in (A–C) to healthy donors and in (D–F) between PD-1 positive and negative cells for that donor. Additional comparisons are detailed in the
main text.
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to activation with regards to the number of features crossed
before stopping. Finally, cell motility was compared as a function
of PD-1 expression by labeling cells for PD-1 prior to use
in migration assays. Separating cells in this manner revealed
that PD-1− cells from D66 (Group 1) moved faster than
their PD-1 + counterparts (Figure 4E), and also cells from
healthy donors, regardless of PD-1 expression (P < 0.005). The
number of features experienced before stopping for cells from
D66 was greater than for healthy donors, regardless of PD-
1 expression (P < 0.05), in keeping with Figure 4B. These
differences are further reflected in a longer time to stop for
PD-1+ cells from D66 compared to their PD-1− counterparts
(Figure 4F). A similar increase in migration speed for PD-1−
cells vs. PD-1+ counterparts was observed for D57 (Group 2),
but these differences were not significant compared to healthy
donors. No effect of PD-1 expression on migration was observed
for D76 (Group 3).

DISCUSSION

Cancer, like many afflictions, is multifaceted and diverse
requiring specification of treatment course around the disease
state and individual. This extends into surprising facets of the
tools used for therapy. For example, we recently demonstrated
that replacing the mechanically stiff plastic beads that are
routinely used to activate T cells with a softer material can
enhance subsequent expansion, providing more cells from an
initial starting population and rescuing production of cells from
individuals with CLL (Dang et al., 2018). Intriguingly, the
stiffness of the material that produced optimal growth of cells
varied between CLL donors. Through this study, we seek a
framework for describing and understanding the differences in
proliferative potential observed between CLL patients.

Initial attempts to use single factors such as Rai stage (as
T cell expansion capabilities decrease with disease progression;
Bonyhadi et al., 2005) and PD-1 expression (which is elevated
in exhausted T cells; McLane et al., 2019) to capture variability
in cell proliferation had modest success (Figures 1B,C). As
such, we expanded the set of parameters to include measures
of cell function, specifically cytokine secretion and the ability
to align with micropatterned features on an activated surface.
Individually, these measures provided limited new insight.
We subsequently turned to multi-factor machine learning
approaches, which have had success in classification of various
tumor models (Gorris et al., 1950; Zucchetto et al., 2011;
Chen and Mellman, 2017; Gonnord et al., 2019). Unsupervised
clustering based on PD-1, alignment, and IL-2 provided a
compelling approach for categorizing cells from CLL patients
into three groups, which differed with respect to proliferative
potential, an independent factor that was not included in
the analysis but is important to cell production. Designing
future studies around this clustering approach may provide
a streamlined method for understanding cell exhaustion and
developing tools for improving cell expansion.

Pattern alignment emerged as a key factor describing T
cell response. In FAMD analysis, alignment contributed to

Dim1 + Dim2 to an extent almost equal to PD-1 expression
(Figure 3B). Moreover, of the six potential pairwise comparisons
possible between Groups and Healthy donors, four of these were
statistically significant for pattern alignment. By comparison,
PD-1 and IL-2 secretion showed fewer significant comparisons,
suggesting that alignment provides the greatest stratification
between groups. However, pattern alignment is a complex
process, involving adhesion to a micropatterned surface, motion
across that surface, interaction with multiple activating features,
and finally (in the window of our assay) cessation of motility.
Most prominently, cells from Group 1 passed over more
features before stopping than the other groups and healthy
donors (Figure 4B). Compared to uniformly coated surfaces,
these micropatterned features more accurately capture the
physiological process of T cells encountering and even competing
for a limited number of conjugate cells (Mayya et al., 1950,
2018). As described in the Results section, a simple interpretation
of this is that passing over multiple patterns reflects the
sensitivity of cells to activation, or the need to integrate multiple
encounters before cessation of motion, which is associated
with TCR-induced actin polymerization, through proteins such
as Wiskott-Aldrich syndrome protein (WASP), overcoming
polarization of cytoskeletal dynamics and tension (Kumari et al.,
2020). However, another interpretation is that moving over
multiple features can reflect persistence of cell motion, with
a stop being more likely to happen at the same phase of
motion as a change of direction. Maiuri et al. (2012) elegantly
demonstrated that persistence and cell speed are correlated,
developing a model in which actin flow maintains polarization
(Maiuri et al., 2015). Correspondingly, the increase in features
passed over by cells in Group 1 is associated with faster
motion, but only for PD-1− cells (D66, Figure 4D). PD-1
expression, even in the absence of ligand on the underlying
surface, reduced cell speed while not affecting the number
of features passed over, suggesting a further complexity in
how processes are balanced in cell migration. Intriguingly,
Group 1 showed lower pattern alignment than healthy donors
(potentially reflecting increased motion persistence) but strong
proliferative potential. Perhaps counterintuitively, it is possible
that modulating cell alignment by increasing migration speed
could lead to improved cell activation and production for
immunotherapy. A clearer understanding of how cytoskeletal
polarization and dynamics interact is needed to more fully
realize this potential.
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