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Ambulatory seizure forecasting 
with a wrist‑worn device using 
long‑short term memory deep 
learning
Mona Nasseri1,2, Tal Pal Attia1, Boney Joseph1, Nicholas M. Gregg1, Ewan S. Nurse3,4, 
Pedro  F. Viana5,6, Gregory Worrell1, Matthias Dümpelmann7, Mark P. Richardson5, 
Dean R. Freestone3 & Benjamin H. Brinkmann1,8*

The ability to forecast seizures minutes to hours in advance of an event has been verified using 
invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices 
over long durations in an ambulatory setting. In this study we developed a seizure forecasting 
system with a long short-term memory (LSTM) recurrent neural network (RNN) algorithm, using a 
noninvasive wrist-worn research-grade physiological sensor device, and tested the system in patients 
with epilepsy in the field, with concurrent invasive EEG confirmation of seizures via an implanted 
recording device. The system achieved forecasting performance significantly better than a random 
predictor for 5 of 6 patients studied, with mean AUC-ROC of 0.80 (range 0.72–0.92). These results 
provide the first clear evidence that direct seizure forecasts are possible using wearable devices in the 
ambulatory setting for many patients with epilepsy.

Despite optimized medication therapy, resective surgery, and neuromodulation therapy, many people with epi-
lepsy continue to experience seizures. Half or more of patients who undergo resective surgery for epilepsy have 
eventual recurrence of seizures1, 2, and devices for neuromodulation rarely achieve long-term seizure freedom3, 4. 
People living with epilepsy consistently report the unpredictability of seizures to be the most limiting aspect 
of their condition5. Reliable seizure forecasts could potentially allow people living with recurrent seizures to 
modify their activities, take a fast-acting medication, or increase neuromodulation therapy to prevent or manage 
impending seizures. Accurate seizure forecasts have been demonstrated using invasively sampled ultralong-term 
EEG in ambulatory canine6–8 and human subjects9–14, including a prospective study with a dedicated device11. 
However, invasive devices may not be acceptable for some patients with epilepsy, and no clinically available 
invasive device currently has the capability to sample and telemeter data needed for seizure forecasting. Hence 
there is presently great interest in forecasting seizures using wearable or minimally invasive devices. Deep learn-
ing approaches have shown promising performance for a variety of difficult applications15, including seizure 
forecasting7. In particular these “end-to-end learning” methods are attractive for seizure forecasting given the 
challenges of identifying salient features in ultra-long term time-series data, and the heterogeneity in time series 
data characteristics between different patients. The power and capability of deep learning algorithms trained on 
very large datasets hold promise to enable applications not previously believed possible, and may open the door 
to seizure forecasting with noninvasive sampling devices.

Many challenges exist in designing a reliable system for forecasting seizures from noninvasively recorded 
data. Training, testing, and validating a forecasting algorithm requires ultra-long duration recordings with an 
adequate number of seizures. Additionally, concurrent video and/or EEG validation of seizures in an ambulatory 
setting over months to years is logistically difficult, and is not possible using conventional in-hospital monitoring 
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methods. Self-reported seizure diaries are the most accessible validation, but the poor reliability of such diaries is 
widely recognized11, 16. Performing device studies on in-hospital patients with concurrent video-EEG validation 
is logistically feasible, but such studies are expensive, and limited in duration, and restrict normal daily activities 
which could produce false alarms, such as exercise, brushing teeth, or other activities. Because of these challenges 
an ILAE-IFCN working group recently published guidelines17 for seizure detection studies with non-invasive 
wearable devices, but few studies achieve phase 3–4 evidence in an ambulatory setting18. In studies of seizure 
forecasting it is imperative that ambulatory data including the full range of normal activities be included in the 
training, testing, and validation sets.

Seizure prediction with wearable devices was recently investigated in a cohort of in-hospital patients19 using 
a cross-patient deep learning algorithm on data recorded from Empatica E4 devices. The dataset was comprised 
of multiday recordings from 69 epilepsy patients (28 female, duration 2311.4 h, 452 seizures). In a leave-one-
patient-out cross-validation approach, they achieved better than chance prediction in 43% of patients, with 
no difference in performance between generalized and focal seizure types. It has also been shown that seizure 
occurrence can be modeled as circadian or multiday patterns of seizure risk over long periods20, 21, and these 
patterns may be used to forecast seizures22. Using a mobile electronic seizure diary application21 seizure forecasts 
calculated based on circadian and multiday seizure cycles using data from 50 application users produced accurate 
forecasts for approximately half the cohort. Long-term cycles of seizure risk offer complementary information 
to direct forecasting of seizures, and signals from wearable fitness trackers have been shown to have value in 
identifying circadian and multidian cycles of seizure risk23.

This study aimed to develop a wearable seizure forecasting system for ambulatory use, and to evaluate the 
forecasting performance relative to seizures identified with concurrent chronic intracranial EEG (iEEG).

Methods
This study was reviewed and approved by the Mayo Clinic Institutional Review Board (IRB 18-008357), and all 
study methods were performed in accordance with all applicable regulations and guidelines and the declaration 
of Helsinki. Informed consent was obtained from all study participants and/or a legal guardian before enroll-
ment in the study. Patients were recruited who had drug-resistant epilepsy and were treated with a responsive 
neurostimulation device (NeuroPace RNS(R) system; NeuroPace Inc., Mountain View, CA) implanted as part of 
their clinical care. This RNS system provides chronic iEEG monitoring, and clinician-defined detectors trigger 
storage of iEEG timeseries epochs for suspected seizure activity, and trigger therapeutic stimulation. Patients 
upload RNS data as part of routine clinical care, and these iEEG clips were reviewed for seizure activity by a 
board-certified epileptologist. The implanted device is capable of storing a limited amount of raw iEEG data—
for our subjects and setting parameters the RNS device stored up to eight iEEG clips between uploads, and any 
additional recorded clips would write over previous data. Hence we recruited only patients with eight or fewer 
stored clips at each upload, and we confirmed the timestamps of the clips covered the entire upload interval. 
Furthermore we required recruited subjects to have stored clips without seizure activity (i.e. false positives) on 
the device to ensure we were not missing seizure events. Of note, the trigger on the RNS device for stimulation 
and for iEEG storage are different, and the number of stimulations per day is typically far greater than epochs 
of raw iEEG storage24. Patients who had their primary epilepsy care at Mayo Clinic Rochester MN, Scottsdale 
AZ, or Jacksonville FL were identified and screened for participation based on their ability to operate a wear-
able device and the quality and coverage of their EEG data recordings. Each patient’s primary epileptologist was 
consulted to identify significant psychiatric, social, or other clinical factors that counter indicated involvement 
in the study before enrollment.

Patients were given two wrist-worn recording devices (Empatica E4, Empatica Inc., Boston MA) and a tablet 
computer to record and upload data daily to the Empatica cloud25. Patients were instructed to wear one wrist-
band while the second band charged and synchronized data via the tablet computer, and to exchange devices 
at a specific time each day. Patients otherwise went about their usual daily activities. The Empatica E4 device 
records physiological data including 3-axis accelerometry (ACC), blood volume pulse (BVP) measured by photo-
plethysmography (PPG), electrodermal activity (EDA), and temperature (TEMP). A minimum of approximately 
6 months of recorded wearable and concurrent iEEG data was required for inclusion in the study25.

A long short-term memory (LSTM) Recurrent Neural Network (RNN) algorithm was designed with 4 LSTM 
layers, 128 hidden nodes, one dropout layer after each LSTM layer with a dropout rate of 0.2, a fully connected 
layer, and an output layer to generate the classification output using a sigmoid activation function (Fig. 1b). The 
algorithm was trained on 60-s data segments selected from each recording. To ensure the algorithm was perform-
ing seizure forecasting rather than early seizure detection, and to account for potential misalignment between 
the clocks in the wearable and implanted devices and the potential inexact timing of the seizure onset recorded 
by the device26, 27, one-hour preictal data epochs were defined with a set-back of 15 min before the seizure onset 
recorded by the implanted EEG device. Lead seizures were defined as seizures separated from preceding seizures 
by at least 4 h, and clustered (i.e., non-lead) seizures were excluded from analysis to avoid artificially inflating 
results. A typical architecture of the whole process including collecting wearable data, annotations, designing 
the deep learning classifiers, providing alarm, classifier architecture and also a sample of recorded wearable data 
are shown in Fig. 1.

Signal quality evaluations for ACC, BVP and EDA signals.  To have a measure of the quality of data, 
signal quality metrics were calculated according to techniques reported previously27. For EDA, the rate of ampli-
tude change in concurrent one-second windows was calculated. Sharp changes in signal amplitude of more than 
a 20% increase or 10% decrease per second, were considered artifact due to subject motion or poor electrical 
contact with the skin. The signal quality of BVP was assessed by calculating the spectral entropy for 1-min data 
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Figure 1.   (a) Data flow diagram of ambulatory data recorded by wearable sensors, transferred via cloud storage, 
and analyzed using deep learning. Ambulatory data recorded using Empatica E4 wristbands was uploaded 
regularly to cloud storage by patients and was downloaded by study staff. Patients uploaded RNS data as part of 
routine clinical care, and the iEEG clips were reviewed for seizure activity. (b) Architecture of machine learning 
classifier with 4 LSTM layers, 128 hidden nodes, one dropout layer after each LSTM layer with a dropout rate of 
0.2, a fully connected layer, and an output layer to generate the classification output using a sigmoid activation 
function. (c) Raw wearable data plotted showing accelerometry, EDA, temperature, and blood volume pulse 
with derived heart rate for a preictal segment from 75 to 15 min before the approximate seizure time (green).
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segments averaged over non-overlapping 4-s windows. Epochs with entropy below 0.9 were considered good 
quality. The signal quality metric for root-mean-square of ACC data was measured as the ratio of narrowband 
physiological (between 0.8 Hz and 5 Hz) and broadband (0.8 Hz to Nyquist frequency) spectral power. The 
power of the periodogram was calculated for non-overlapping 4 s segments, and average values over consecutive 
1-min segments were calculated.

Training and testing data.  Accelerometry (ACC), blood volume pulse (BVP), electrodermal activity 
(EDA), temperature (TEMP) and heart rate (HR) signals, recorded with Empatica E4 device with sampling fre-
quencies of 32, 64, 4, 4, 1 Hz respectively, were up-sampled to 128 Hz to facilitate analysis. Signal quality metrics 
were computed27 for ACC, BVP and EDA and were provided to the LSTM algorithm to allow the algorithm to 
account for data quality in its classifications. The time of day (encoded as the hour portion of the 24-h time) 
and Fourier transforms of BVP, EDA, TEMP, HR, and root mean squared (RMS) accelerometry, calculated and 
used as inputs to the LSTM. The physiological time-series signals (ACCX, ACCY, ACCZ, ACCMag, BVP, EDA, 
TEMP, HR), their Fourier transforms (FFT(ACCMag), FFT(BVP), FFT(EDA), FFT(TEMP), FFT(HR)), the SQI 
values for ACCMag, BVP, and EDA and time of day were formed 17 channels (Fig. 1b). To compensate for the 
unbalanced interictal/preictal data ratio (range 1 to 6) in training, noise-added copies of the preictal data seg-
ments were generated and used to equalize the training data classes. Additive random noise was generated from 
a uniform distribution over [0, 1), multiplied by the median of the segment.

All training data were taken from the early part of each patient’s recording, while testing results were com-
puted on the later portions of the patient’s data. The cutoff point between training and testing data was chosen in 
each patient’s recording at approximately 1/3 of the total record duration, and was adjusted to ensure including 
preictal segments from at least four seizures for training to provide 240 60-s preictal segments (Some patients 
continued acquiring data during the analysis phase of the study, and newly acquired data was incorporated into 
the final testing analysis for these patients). Consecutive non-overlapping 60-s data epochs were extracted and 
preprocessed before being used in the LSTM algorithm. The training dataset was normalized by subtracting its 
mean and dividing by the standard deviation (z-scoring). The training data mean and standard deviation were 
similarly used to normalize the test dataset. This setup approximates a seizure forecasting system that could be 
applied prospectively, as future information was strictly excluded from the algorithm testing phase. The area 
under the Receiver Operating Characteristic (AUC) was used to evaluate the classifier performance on test data 
segmented into 1-h data epochs. Mean classifier probability values were calculated for groups of five consecutive 
1-min segment, and the maximum probability across each 60-min interval was calculated.

In order to assess the relative contributions of each signal from the wearable device (ACC, BVP, EDA, Temper-
ature, HR and Time of the day) to the overall seizure forecast, the classifier was retrained and retested with each 
input signal and related channels removed in turns, and the resulting AUC subtracted from the full algorithm’s 
AUC. For example, to measure the importance of the accelerometer signal, ACCX, ACCY, ACCZ, ACCMag, the 
Fourier transform of ACC and it’s SQI were omitted and the LSTM was retrained and performance measured. 
Due to the random initial assignment of weights in the classifier, the algorithm was trained and tested five times 
for each signal, and the average AUC difference was calculated.

Statistical evaluation.  To measure whether the prediction algorithm performs significantly better than 
chance, the statistical test described in28 was used. The authors assumed the probability of a preictal alert fol-
lows a Poisson probability distribution, λwΔt in a short interval of duration Δt, where λw is the Poisson rate 
parameter. Assuming the successful prediction of n out of N seizures, the two-sided p-value is the probability 
of observing a difference between the classifier and a Poisson random predictor. As an additional validation of 
our testing approach and statistical assessment of our results, we randomized the seizure times for each subject 
and recalculated the AUC for the LSTM output. This was repeated 100 times for each subject, and the mean 
and standard deviation of the AUCs were recorded. Random seizure times were generated29 such that the total 
number of seizures, and the distribution of intervals between consecutive seizures were constant. We calculated 
the sensitivity of the random predictor with an equal time in warning, and reported its sensitivity difference with 
the classifier result30.

Results
Six patients were successfully recorded for approximately six or more months (median 220 days) with good qual-
ity EEG and wearable data. One patient’s wearable device developed a defective BVP sensor during the study and 
was replaced after approximately 6 weeks. The faulty BVP data epochs (interleaved days) were excluded from 
training, testing, and further calculations. The demographics, epilepsy characteristics, sensor placement, and 
available data for the six patients studied are described in Table 1.

Data quality.  The proportion of EDA and BVP data with good quality according to our calculated SQI 
metrics are reported in Table 2.

Forecasting.  Five of the six patients analyzed had seizure forecasts significantly more accurate than a ran-
dom predictor, according to the criteria described by Snyder et al.28. A mean (st. dev.) AUC of 0.75 (0.15) was 
achieved across the cohort using the LSTM classifier, compared to 0.48 (0.01) in aggregate using randomized sei-
zure times. Seizure alerts occurred on average 33 min before the EEG-recorded seizure onset across the cohort. 
Full results are reported in Table 2. The ROC curve is shown in Fig. 2.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21935  | https://doi.org/10.1038/s41598-021-01449-2

www.nature.com/scientificreports/

Feature importance.  The relative contribution of individual signals is shown in Fig. 3. Time of the day was 
the most consistently important across all patients, but most patients’ results also showed high reliance on ACC, 
EDA, and TEMP.

Discussion
This study presents Phase 2 retrospective evidence according to the IFCN guidelines17 of successful forecast-
ing of seizures using a wearable device in a cohort of ambulatory patients. Ultra-long-term (multiple months) 
ambulatory studies for seizure detection and forecasting are critical to ensure training and testing occur over a 
large dataset that captures the full range of normal activities. Such ambulatory studies are challenging given the 
need for concurrent EEG validation over long periods of time in a home environment, the associated technical 
difficulties of timestamp synchronization and remote support25, and the burden on patients31, 32. These challenges 

Table 1.   Cohort demographics, epilepsy characteristics, and data characteristics. The median (range) age was 
39.5 (21–53) years, and the cohort consisted of three males and three females. Lead seizures are reported and 
clustered (< 4 h separation) seizures were not included. **662 h of recording excluded due to bad BVP and HR 
signals.

Age Gender
Age of 
onset

Wristband 
location

Epilepsy 
type

Epilepsy 
localization

Predominant 
seizure 
semiology

Anti-
seizures 
meds (mg/
day)

Median 
stims per 
day

Participation 
(days)

Recorded 
data (days)

Training 
data days 
(seizures)

Test data 
days 
(seizures)

21 F 15 Left wrist

Focal onset 
impaired 
awareness 
seizures, 
and focal 
to bilateral 
tonic–clonic 
seizures

Left tem-
poral

Initial sense of 
fear, followed 
by receptive 
aphasia, subjec-
tive sensation 
of feeling warm 
and diaphoretic, 
and gagging 
and retching. 
May progress 
to generalized 
convulsions

Leveti-
racetam XR, 
4500

1640 242 207 55 (4) 152 (3)

42 F 9 Left wrist
Focal onset 
impaired 
awareness 
seizures

Left fronto-
central

Eyes moved 
to the left side 
with brief 
twitching, 
followed by 
flexion of upper 
extremities

Felbamate 
2700, 
Lamotrigine 
600, Lev-
etiracetam 
4000

340 200 188.3 85 (7) 103 (9)

38 F 20 Right wrist

Focal onset 
impaired 
awareness 
seizures, 
and focal 
to bilateral 
tonic–clonic 
seizures

Left pari-
etocentral 
and right 
frontocen-
tral (L > R)

Vision difficul-
ties, swallowing 
difficul-
ties, and speak-
ing difficulties 
prior to seizure 
onset fol-
lowed by right 
extremity jerk-
ing and behav-
ioral arrest with 
loss of 
awareness. 
May progress 
to generalized 
convulsions

Gabapentin 
1200, Lev-
etiracetam 
2500, Vim-
pat 600

898 236 193.3 96 (17) 97 (11)

41 M 4 Left wrist

Focal onset 
impaired 
awareness 
seizures, 
and focal 
to bilateral 
tonic–clonic 
seizures

Left tem-
poral

Unresponsive 
with lip smack-
ing, impaired 
awareness, hand 
movements and 
may progress 
to generalized 
convulsions

Qudexy XR 
100, Lev-
etiracetam 
6000

484 370 327.5 140 (4) 187.4 (6)

53 M 18 Right wrist

Focal onset 
aware sei-
zures, and 
tonic–clonic 
seizures

Independ-
ent bitem-
poral

Staring with 
speech arrest 
and no move-
ments, possible 
posturing of 
extremity, and 
automatisms. 
Rare convulsive 
seizures

Lamotrigine 
200 1566 265 252.2 66 (31) 185.3 (171)

27 M 12 Left wrist
Focal onset 
impaired 
awareness 
seizures

Left tem-
poral

Staring and 
unresponsive-
ness, sometimes 
with laughter-
like vocalization

Lacosamide 
200 1542 166 152.5** 76 (7) 76.2 (8)
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drove our choice to use a conservative pre-seizure set-back of 15 min, in contrast to prior studies with a single 
dedicated intracranial EEG device which have used a 5-min set-back to eliminate any ambiguity with annotation 
of the actual onset of the seizure9–11. During an earlier in-hospital phase of data acquisition with the Empatica 
wearable device, we found timestamp errors of up to 2 min per 24-h period25, 27, and given the limited spatial 
coverage and data record length of the implanted EEG device, additional allowance was warranted. The 15-min 
setback represents a worst-case scenario and provides a conservative estimate of our system’s performance.

A further limitation of ambulatory data collection in this study was the infeasibility of recording seizure semi-
ology to correlate with EEG, either through video or other measures due to privacy concerns and the inability to 
fully cover the patient’s environment. It is possible that accounting for seizure semiology in training data could 
improve accuracy, and in particular whether a recorded seizure had clinical manifestations. Data quality is also 
a challenge in ambulatory, in-home studies, and further improvements in sensor design are needed to minimize 
artifacts due to motion and poor device fit. Device comfort is also an important factor, as a comfortable device 
is more likely to be worn snugly on the wrist, thereby minimizing movement artifacts. Due to the ultra-long 
term recording durations in this study, device laterality was chosen to maximize comfort, and it is possible that 
placing devices on the wrist contralateral to seizure onset might improve results. Battery life and charging are 

Table 2.   Intra-subject performance of forecasting algorithm. P-values were computed using the method 
described by Snyder et al.28. The signal quality metrics were calculated according to techniques reported 
previously27 and the percentage of the data with good quality was reported for EDA and BVP signals. Random 
AUC values were calculated by randomizing the seizure times for each subject and repeating the scoring 100 
times for each subject. The sensitivity difference between results and random output was calculated at the same 
Time in Warning.

Age Gender
Good quality 
BVP (%)

Good quality 
EDA (%) AUC-ROC Sensitivity

Time in warning 
(H/day) P-value

Mean pre-seizure 
alert (minutes)

Random AUC 
mean (st. dev.)

Improvement 
over chance

21 F 77 54 0.88 0.66 3.4 0.049 30 0.54 (0.25) 0.45 (0.32)

42 F 91 77 0.75 0.66 7.04 0.010 42 0.50 (0.11) 0.37 (0.16)

38 F 78 63 0.75 0.72 7.2 0.002 29 0.50(0.08) 0.40 (0.13)

41 M 79 69 0.92 0.66 0.9 0.0002 28 0.48 (0.22) 0.63 (0.08)

53 M 76 85 0.50 – – – – 0.47 (0.023)

27 M 82 88 0.72 0.62 6.4 0.024 36 0.51 (0.12) 0.33 (0.18)

Figure 2.   The receiver operating characteristic (ROC) curve for ambulatory patients (Table 2). Five of six 
patients analyzed achieved seizure forecasts significantly more accurate than a chance predictor, with mean 
AUC-ROC of 0.80 (range 0.72–0.92).
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also considerations for long-term acceptability and adherence, as a prospective seizure forecasting system is not 
likely to be compatible with our approach of exchanging devices daily.

The RNS device has multiple on-board detectors, and stimulation is typically delivered with hypersensitive 
detector settings resulting in hundreds to thousands of stimulations per day24, consistent with our data in Table 1. 
These detections are primarily interictal discharges, and separate detectors for long episodes or signal saturation 
are used to store EEG clips and identify seizures. Without full 24/7 EEG33 we can’t be entirely sure no seizures 
were missed, but storage of false positive clips on the device, and agreement with the patient’s reported seizure 
burden suggests a high degree of accuracy.

Previous studies of forecasting with invasive EEG have shown poorer performance with an increased num-
ber of seizures11, and this pattern was also apparent in our data. The one patient for whom forecasting did not 
perform significantly better than a random predictor had multiple seizures each day, while the other subjects 
had seizures less frequently. It is possible that the choice of a four-hour interval to define lead seizures may not 
be adequate to allow the patient to fully return to a baseline state after a previous seizure, and this may confuse 
the classifier’s characterization of the baseline interictal state. The time of day input feature showed the highest 
contribution to the results of most patients studied, suggesting that patients with a strong circadian pattern may 
have better results than those without. Other measured signals contributed substantially as well to the overall 
accuracy, but the relative contribution varied by patient.

The accuracy of forecasts required to be clinically useful varies based on the intended use of the forecast. For 
neuromodulation, where little or no penalty for temporarily increased stimulation due to false alarms exists, 
multiple alarms daily may be acceptable. For administration of fast-acting medications, false alarms may be 
acceptable if the overall medication dose is better targeted toward periods of high seizure risk. False alerts are 
less acceptable in caregiver alert use cases, where caregiver fatigue and annoyance may lead to discontinued use 
of the device34. The level of performance reported in the present study may be acceptable for some applications, 
but continued improvement in accuracy, and confirmation in prospective, real-time studies are needed to advance 
this application. We did not attempt progressive retraining of our algorithm in this study, as has been used in 
some iEEG forecasting applications7, and this approach could improve accuracy. Reliable seizure detections with 
the device or reliable seizure reports would be necessary to facilitate this in a real-world application, and both 
of these approaches have associated challenges presently.

Conclusions
This preliminary study in a small cohort has demonstrated seizure forecasting using a noninvasive wrist-worn 
multimodal sensor significantly better than a random predictor in ambulatory ultra-long-term recordings of 
patients with epilepsy for the majority of patients studied. Wearable data was recorded in an ambulatory setting 
during normal activity with concurrent EEG validation of seizure events. Five of six patients analyzed achieved 
seizure forecasts significantly more accurate than a chance predictor, and seizure alerts in these five patients 
provided ample warning time to administer fast-acting medication or to increase neuromodulation therapy. This 
is the first study reporting successful seizure forecasting with noninvasive devices in ultra-long-term recordings 
in freely-behaving humans outside the clinical environment.

Figure 3.   Influence of each signal and its related features on classifier performance. The algorithm was trained 
and tested five times with each signal removed, and the average AUC difference from the full result was 
calculated.
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