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Abstract
In insulin-dependent diabetes, the islet β cells do not produce enough insulin and 
the patients must receive exogenous insulin to control blood sugar. However, 
there are still many deficiencies in exogenous insulin supplementation. Therefore, 
the replacement of destroyed functional β cells with insulin-secreting cells derived 
from functional stem cells is a good idea as a new therapeutic idea. This review 
introduces the development schedule of mouse and human embryonic islets. The 
differences between mouse and human pancreas embryo development were also 
listed. Accordingly to the different sources of stem cells, the important research 
achievements on the differentiation of insulin-secreting β cells of stem cells and 
the current research status of stem cell therapy for diabetes were reviewed. Stem 
cell replacement therapy is a promising treatment for diabetes, caused by 
defective insulin secretion, but there are still many problems to be solved, such as 
the biosafety and reliability of treatment, the emergence of tumors during 
treatment, untargeted differentiation and autoimmunity, etc. Therefore, further 
understanding of stem cell therapy for insulin is needed.
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Core Tip: Diabetes mellitus is one of the major health problems. Although traditional treatments such as 
exogenous insulin injection can relieve diabetes to a certain extent, they have failed to achieve a radical 
cure. Stem cell replacement therapy is a promising treatment for diabetes. So in this review, we introduce 
the development schedule of mouse and human embryonic islets and summarize the important research 
progressions in stem cell therapy for diabetes.
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INTRODUCTION
Diabetes mellitus is one of the major health problems now. This disease currently affects more than 425 
million individuals and the prevalence of it is a year by year (http://www.idf.org/diabetesatlas). About 
537 million adults (20-79 years) worldwide are living with diabetes. This number is predicted to rise to 
643 million by 2030 and 783 million by 2045. Among all patients with diabetes, about 10% individuals 
suffer from type 1 diabetes mellitus (T1DM), a kind of diabetes that is caused by the autoimmune 
destruction of insulin-secreting β cells in the pancreas, and about 90% of those are affected by type 2 
diabetes mellitus (T2DM) due to the insulin resistance in key metabolic tissues and the dysfunction of 
pancreatic insulin-secreting β cells[1,2]. Because both types of patients require exogenous insulin 
supplementation to regulate blood sugar, they are collectively call insulin-dependent diabetes[3].

Although treatment can be effective, it often induces hypoglycemia and complex complications[4,5]. 
Therefore, β cells replacement therapy had transplant in 1966[6] and the development of schemes for 
islet isolation[7], and the first clinical islet transplantation was carried out in 1977[8]. However, both 
pancreas and islet transplantation are severely limited affected by donor tissue sources and immun-
osuppressive demand[9,10].

Compared with the limitations of human donor-derived β cells, the differentiation of insulin β cells 
from pluripotent stem cells (PSCs) may be a more suitable method. Embryonic stem cells were first 
isolated by Evans and Kaufman in 1981[11], and human embryonic stem cells were first cultured in 1998 
by Thomson et al[12]. In 2007, Voltarelli et al[13] conducted a phase I/II trial of T1DM patients with 
hematopoietic stem cells (one kind of adult stem cells) transplantation, which showed that autologous 
stem cells transplantation could produce insulin. In this review, we will summarize the specific process 
of differentiation of definitive endoderm (DE) into insulin-secreting β cells in the existing literature, and 
discuss the advances of promising stem cell therapy for insulin-dependent diabetes in recent years, and 
finally, explore its future development direction.

PANCREAS DEVELOPMENT: FROM MULTIPOTENT PANCREAS PROGENITORS TO 
ENDOCRINE CELLS
The pancreas is an important organ with both endocrine and digestive functions. Because human 
materials are difficult to obtain, most researchers currently use mouse models to explore pancreatic 
embryonic development. In this review, mouse embryonic age is converted into human embryonic age, 
and the possible process of human pancreatic embryonic development is described from front to back 
on the basis of mouse model according to the timeline.

The timeline of human embryonic development is based on age estimates until 60 d post conception 
when identifiable human characteristics become apparent and then the name changes from embryo to 
fetus[14].

Under the activation of epidermal growth factor, fibroblast growth factor 1, 7 and 10 (FGF1, FGF7and 
FGF10), multipotent pancreas progenitors (MPPs) proliferate in a large amount[15]. The levels of FGF7 
and FGF10 parallel MPPs expansion[16], and they activate the proliferation of human pancreatic 
epithelial cells in vitro[17]. During 6-7 wpc, pancreatic trunk and tip domains are formed from the 
foregut[18], and the former will continue to differentiate into ductal cells and endocrine cells, while the 
latter will differentiate into acinar cells. Progenitors in the tip domain have the ability to develop into all 
pancreatic epithelial cells initially, including acinar, ductal, and endocrine cells. The cells remaining at 
the distal end of the epithelial structure then undergo acinar differentiation, while those near the apical 
end become bipotent progenitors (endocrine/duct), also known as sex determining region Y-box 9 
(SOX9+) bipotent progenitors. Acinar apical cells are isolated from the trunk by the antagonistic 
relationship between Nirenberg and Kim homeobox factor 6.1 (NKX6.1) and pancreas transcription 

https://www.wjgnet.com/1948-0210/full/v14/i7/503.htm
https://dx.doi.org/10.4252/wjsc.v14.i7.503
http://www.idf.org/diabetesatlas


Yang L et al. Stem cell therapy for diabetes

WJSC https://www.wjgnet.com 505 July 26, 2022 Volume 14 Issue 7

factor 1A (PTF1A). PTF1A is gradually localized only in tip cells, while NKX6.1, SOX9 and hepatocyte 
nuclear factor 1 homeobox B (HNF1B) are located in the trunk domain, whilst SOX9, NKX6.1 are limited 
to ductal lineages ultimately. Under the mediation of FGF7, FGF 10, lamimin-1, and WNT-activating 
ligands, the ducts and acini form the exocrine part of the pancreas[19]. Acini secrete digestive enzymes 
such as trypsin, chymotrypsin, lipase and amylase, and their differentiation is regulated by a series of 
transcription factors, including PTF1A and MIST1[20], While the molecular mechanisms by which ducts 
are regulated is not completely clear, it is thought that HNF1B and HNF6 are active in ductal cells[19]. 
Ductal cells are polar and ciliated, forming tubular networks and secreting bicarbonates and mucins[21].

During 7-8 wpc, insulin+ cells are first detected in human pancreas[18]. At around 8 wpc, the left 
ventral bud degenerate and the right ventral bud fuse with the dorsal bud due to the gut rotation 
movement[22]. The expression of transcription factor neurogenin 3 (NGN3) increases with the 
appearance of human fetal β cells around 8 wpc, but the expression of NGN3 in human fetus is transient 
and reaches its peak around 10-14 wpc, and cannot be detected after 35 wpc[23]. Around e9.5, a small 
group of cells in the thickened DE epithelium begin to express the basic helix-loop-helix transcription 
factor NGN3[24]. Studies have shown that these NGN3+ cells are islet progenitors because SOX9+ 

bipotent progenitors depend on the regulation of NGN3 to differentiate into endocrine or ductal cells, 
and cells expressing NGN3 produce all islet lineage cells[18]. The evidence to this effect are as follows: 
islet cells are not observed in NGN3 knockout mice[24]. Mice with NGN3 gene defects failed to develop 
all endocrine cells and died of diabetes 1-3 d after birth[24]. Genealogical tracing experiments showed 
that NGN3+ cells could produce all pancreatic endocrine cells[25].

In adult pancreas, purified NGN3+ cells activated by partial ductal ligation could differentiate into all 
islet cell types after being injected into embryonic pancreas in vitro[26]. In human, biallelic mutations of 
NGN3 caused permanent neonatal diabetes mellitus[27]. The efficiency of endocrine cells induced by 
NGN3 was low. Only 3%-4.5% of SOX9+ progenitors express NGN3 at the peak, which means that in 
order to produce a sufficient number of islet cells in the human body, it takes a long time for endocrine 
cells to be induced, and it is still unknown why only some SOX9+ cells activate the expression of NGN3
[23].

After the expression of NGN3, pro-endocrine cells trigger the expression of downstream endocrine 
transcription factor genes. These include pancreatic and duodenal homeobox 1 (PDX1), NKX6.1, paired 
box protein 4 and 6 (PAX4 and PAX6), neurogenic differentiation 1, aristaless related homeobox, 
regulatory factor X6, NKX2.2 etc., expressed around 8 wpc[28]. These progenitors migrate into 
mesenchyme and form islets composed of α, β, δ, pancreatic polypeptide (PP) and ε cells. Glucagon, 
insulin, somatostatin (SST), PPY and ghrelin are produced respectively. Insulin acts on peripheral 
tissues such as liver, muscle, and adipose tissue to increase glucose utilization and lower blood glucose, 
while glucagon increases blood glucose concentration by acting on liver, brain, adipose tissue, and heart
[29]. These two hormones are the key to maintaining blood glucose homeostasis. There is a close 
paracrine regulatory loop between α and β cells. For example, β cells secrete urocortin 3 to stimulate the 
release of SST, and SST inhibits the secretion of glucagon from α cells[30]; α cells also produce ghrelin to 
inhibit insulin secretion and stimulate their own glucagon secretion[31]. Around 8.5 wpc, the expression 
of glucagon or SST can be probed; at 9 wpc, cells with polypeptide+ or ghrelin+ appear[18,32]. Not all 
cells with the positive expression of NGN3 are identical in their developmental potential, and we do not 
fully understand how NGN3+ cells decide to differentiate into specific endocrine subtypes yet.

Although most researchers currently use mouse models to explore pancreatic embryonic 
development due to the lack of human materials, we cannot ignore the differences between mouse and 
human pancreatic embryogenesis. The following outlines the differences between human and mouse 
pancreatic embryogenesis that are currently known (Table 1).

IMPORTANT ACHIEVEMENTS IN DIFFERENTIATION OF PLURIPOTENT STEM CELLS 
INTO INSULIN-SECRETING Β CELLS
After fertilization, mammalian embryos undergo a series of cellular divisions to form morulae and are 
transformed into blastocyst by further cell division. The cells at the outer layer of the blastocyst differ-
entiate into the trophoblast, forming the majority of the placenta that sustains nutrient supply to the 
embryo, and the inner cell mass (ICM) cells located inside the blastocyst maintain pluripotency and 
produce all cell types of the extraembryonic tissues and the embryos. In 1981, Evans and Kaufman[11] 
demonstrated that mouse ICM cells could be isolated and cultured in vitro without losing their 
pluripotency. Because they could mimic the differentiation ability of ICM cells, the cultured cells were 
called embryonic stem cells. Embryonic stem cells are a class of cells isolated from early embryos that 
could proliferate and self-renew indefinitely. Whether in vivo or in vitro, embryonic stem cells can be 
induced to differentiate into almost all types of cells in the inner, middle and outer germ layers. If 
embryonic stem cells are transplanted into patients, it is possible to replace a variety of damaged cells, 
and restore the corresponding function.
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Table 1 The differences between human and mouse pancreatic embryogenesis

Differences Mice Human Ref.

Early separation of foregut from notochord: e8.75 Delayed separation of foregut from notochord: 4-5 wpc [58,59]

Early formation of tip and trunk of pancreass: e14-e15 The tip and trunk pancreas form late: 6-8 wpc [18,60,
61]

Morphological change

Late islet formation: Endocrine cells do not aggregate until 
birth to form islets

Islet formation is early: formation begins at 12 wpc [62,63]

PDX1: Early expression, the current intestinal and 
notochord is still in contact with the expression

PDX1: Late expression, delayed until the foregut and 
notochord separated from each other

[58,59]

NKX2.2: When it was confined to NGN3+ progenitor cells, 
it was widely expressed in mouse MPPs up to e13

NKX2.2: This expression does not appear until the cells 
have differentiated into endocrine lineage in human

[18,64]

Expression of 
transcription factors

SOX17: It was not present in mouse pancreatic epithelial 
cells

SOX17: Markers specific to the endoderm of the human 
islet

[65]

α cells: e8.5 α cells: 8-9 wpc

β cells: e10.5-e.12.5 β cells: 6 wpc

δ cells: e14.5 δ cells: 10 wpc

[25,62,
66]

Endocrine cell 
formation

PP cells: e10.5-e.12.5 PP cells: 17 wpc

Embryonic stem cells were the first type of stem cell used to induce β cell in vitro. In 2001, Lumelsky et 
al[33] induced mouse embryonic stem cells to differentiate into insulin+ cells by “five-stage differen-
tiation protocol” for the first time. In 2005, D'Amour et al[34] also designed a "five-stage differentiation 
protocol" to induce embryonic stem cells to differentiate into insulin producing cells (IPCs). This 
method mainly simulated the process of pancreatic development in vivo. In 2008, Kroon et al[35] 
designed a "four-stage differentiation protocol" based on the "five-stage differentiation protocol" of 
D'Amour’s team. The result showed that after pancreatic endoderm derived from human ESCs was 
transplanted into mice in vitro, the team obtained IPCs that were matured, functional and responsive to 
the changes of glucose level in the environment, and its function was similar to that of human mature 
islets. In 2014, Pagliuca et al[36] induced human ESCs to differentiate into insulin-secreting β cells for the 
first time.

Induced pluripotent stem cells are autologous pluripotent stem cells with multipotent differentiation 
potential generated by reprogramming somatic cells. In 2006, Takahashi et al[37] reprogrammed mouse 
somatic cells into pluripotent stem cells by adding four transcription factors (Oct3/4, Sox2, c-Myc, and 
Klf4) for the first time. They showed that pluripotent stem cells can be directly induced by the addition 
of only a few defined factors. Until now, the classical induction pattern of four transcription factors has 
been broken, and the number of added transcription factors has been reduced from four to two or even 
one[38]. Since ectopic expression of c-Myc can cause tumorigenicity of progeny, generation of 
pluripotent stem cells with minimal factors may reduce the risk of treatment. The study found that 
neural stem cells expressed endogenous levels of Sox2 and c-Myc higher than embryonic stem cells in 
adult mice, and that exogenous Oct4 together with either Klf4 or c-Myc is sufficient to induce plu-
ripotent stem cells. In 2016, Zhu et al[39] reprogrammed skin cells to transform into endodermal 
progenitors using drugs and genetic molecules for the first time. After adding four other molecules, the 
endodermal progenitors were transformed into pancreatic precursors and they developed into fully 
functional pancreatic β cells. These cells protect mice from diabetes and are capable of producing 
different doses of insulin in response to the changes in blood glucose levels.

Adult stem cells are a kind of undifferentiated cells that exist in differentiated tissues. They have the 
characteristics of self-renewal and multi-differentiation potential, and they exist in a variety of tissues 
and organs. Bone marrow mesenchymal stem cells[40], adipose mesenchymal stem cells[41,42] and 
pancreatic mesenchymal stem cells[43,44] are widely studied. In 2013, Lima et al[44] induced pancreatic 
mesenchymal stem cells to differentiate into induced pluripotent stem cells (iPSCs) by adenovirus 
transfection of PDX1, NGN3, macrophage-activating factor A and PAX4.

THE PROGRESSIONS IN STEM CELL THERAPY FOR INSULIN-INDEPENDENT DIABETES
At present, among many methods for treating diabetes, islet replacement therapy can be regarded as an 
effective treatment method to relieve diabetes, especially for insulin dependent type 1 diabetes. 
However, there are two problems in islet donors[45,46]: (1) islet donors are in short supply, and 
recipients may face huge costs for surgery and postoperative follow-up treatment; and (2) the most 
critical is the existence of organ immune rejection. The emergence of stem cell therapy provides a new 
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way to solve these problems.
As mentioned above, stem cells are produced in various ways and from various sources. Different 

types of stem cells have different applications and clinical limitations (Table 2). Embryonic stem cells 
(ESCs, derived from the ICM of pre-implanted embryo) have limitations such as high tumorigenic risk, 
obvious host immune rejection and ethical controversy[36,38,39]. Therefore, the clinical application of 
ESCs is not clear. The biological characteristics of IPSCs (derived from embryonic gonadal ridge or 
postnatal testes) are highly similar to ESCs, and their biggest advantage lie in: by obtaining specific 
IPSCs from diabetic patients themselves, immune rejection and ethical controversies in ESCs 
transplantation can be effectively avoided[41]. IPSCs-derived β cells have been considered as a potential 
alternative source of β cells for T1DM[47] (Figure 1). However, IPSCs technology still faces the following 
problems[48-50]: (1) high genetic variability between individual cell lines can result in immature 
function of derived β cells. This mutation has been found to be repairable using genome editing tools 
such as CRISPR-Cas9, etc[51]. To target diabetes caused by single-gene disease in 2020 the study 
demonstrated that CRISPR-Cas9 correction of diabetes-induced gene variants enhances differentiation 
of autologous SC-cells, corrects glucose in diabetic mice, and alleviates endoplasmic reticulum and 
mitochondrial stress in β cells, thereby protecting pancreatic β cells[52]; (2) IPSCs have very low differ-
entiation efficiency in vitro and may become cancerous. In 2022, Chinese scholar Deng Hongkui's 
research group[53] adjusted the in vitro differentiation scheme and realized efficient induction of differ-
entiation, thus making it possible to prepare functional mature islet cells on a large scale in vitro. The 
research team transplanted islet cells differentiated from IPSCs into diabetic money model, which 
effectively reversed diabetes in mice, and no tumor-causing phenomenon was observed in all tran-
splanted mice during the observation period of up to 48 wk. And this year, Chinese researchers have 
found[54] that the bromine-containing domain and the additional terminal domain family protein 
inhibitor I-BET151 can effectively promote the amplification of PPs. These expandable islet progenitors 
(ePPs) maintain the islet progenitor status for a long time and have the ability to efficiently differentiate 
into functional mature islet β cells (ePP-β). In particular, ePP-β cells can be transplanted in vivo to 
rapidly improve diabetes in mice, and thus have great potential in cell transplantation therapy; and (3) 
There is transplantation immune rejection. Studies have shown that using CRISPR gene editing to knock 
out the β2-microglobulin gene could eliminate all HLA class I molecules, or deleting double alleles of 
HLA-A and HLAB, leaving only one allele of HLA-C. This allows the IPSCs-induced β cells to avoid T 
and NK cell attack after transplantation[55]. Mesenchymal stem cells (MSCs) are adult stem cells 
(derived from postnatal tissues) with self-replicating ability and multidirectional differentiation 
potential. Among them, human bone marrow MSCs, umbilical cord blood mesenchymal stem cells and 
adipose tissue MSCs are widely used. In recent years, MSC based clinical trials in patients with T1DM 
and T2DM diabetes were conducted, and in 2014, the first islet organ transplantation from MSC was 
performed in T1D patients to evaluate the efficacy and safety of stem cells in the treatment of type 1 
diabetes[47]. In 2018, it was found that MSCS (ASC) in adipose tissue can effectively reduce blood 
glucose, improve insulin sensitivity, improve islet β cell function and reduce fat deposition in liver of 
type 2 diabetic mice[56].

ViaCyte's research and development focuses on the targeted differentiation of pluripotent stem cells 
into PPs, which are encapsulated and trialed to treat type 1 diabetes. These pancreatic progenitor cells 
encased in biomaterial "envelopes" (cysts) require further differentiation in vivo to develop into islet cells 
for optimal implant size for therapeutic effect and long-term viability of transplanted cells[54]. In July 
2021, the company released the latest clinical data of its VC-02 islet cell replacement therapy for type 1 
diabetes: implanted islet progenitor cells produced endogenous insulin in patients with clinical 
manifestation of increased glucose reactive C-peptide levels, with time delay, and decreased HbA1C. 
This led to the further development of stem cell therapy for diabetes. ViaCyte, in partnership with 
CRISPR Therapeutics, is currently developing immune avoidant stem cell lines that combine the two 
strategies. Methods designed to induce immune protection may produce cells that cannot be recognized 
and thus cleared by the immune system[57], which will further improve the safety of stem cell-derived 
islets transplanted into diabetic patients and effectively improve their postoperative quality of life. 
Unlike ViaCyte, Vertex is designed to grow fully differentiated islet cells in the laboratory and 
transplant them directly into patients without encapsulation. In February 2021, the FDA approved the 
application for clinical trial of a new drug (VX-880) for the treatment of type 1 diabetes with stem cells. 
In October, Vertex's clinical trial showed that the first patient treated with its stem-derived islet cells not 
only resumed insulin production 90 d after treatment, but also reduced daily insulin use by 91 percent.

CONCLUSION
In the past 20 years, researchers have made great progresses on how to induce stem cells to differentiate 
into pancreatic cells, and then insulin-secreting β cells. We also have a further understanding of the 
treatment of diabetes by islet transplantation. However, although some studies have been able to induce 
stem cells to differentiate into insulin-secreting β cells, these cells are cells with immature phenotypes, 
which are different from normal human β cells. Moreover, these studies have low differentiation 
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Table 2 Advantages and disadvantages of different types of stem cell therapy for diabetes

Cell types Advantages Disadvantages Ref.

ESCs is weak in directional differentiation and difficult to induce 

There are ethical issues: ESCs are usually allogeneic

Embryonic stem 
cell

High degree of differentiation

Teratoma, immune rejection and gene mutation may occur after 
transplantation

[35,
36]

IPSC technology does not use embryonic or egg cells, 
so ethical problems are less likely

At present, the differentiation scheme of induced pluripotent stem cells 
is not mature, and the induction efficiency is low, the stability is poor, 
and the cost is high 

Induced 
pluripotent stem 
cell

Proprietary stem cells can be made from a patient's 
own cells, so there is less immune rejection

The use of virus vectors poses security problems

[39]

The direction of differentiation is limited, not omnipotent

After transplantation, the ability of induced differentiated cells to 
secrete insulin was usually lower than that of normal islet β cells, and 
the cell survival rate was also lower 

Adult stem cell It is easy to achieve targeted differentiation, and 
some studies have shown that adult stem cells can be 
used to treat diabetes

The efficiency of inducing differentiation at different stages is still low 
based on reprogramming and small molecule screening

[43,
44]

IPSC: Induced pluripotent stem cell.

Figure 1 Application of induced pluripotent stem cells in the treatment of diabetes mellitus. The In insulin-dependent diabetes patients, induced 
pluripotent stem cells (IPSCs)-derived β cells can be induced by autologous IPSCs and then directly or indirectly transplanted back into the body after encapsulation 
to achieve the effect of diabetes treatment. For patients with monogenic diabetes, such as Wolfram syndrome patients, IPSCs-derived β cells with correct coding can 
also be obtained after CRISPR-Cas9 gene modification technology and then transplanted. IPSCs: Induced pluripotent stem cells.

efficiencies, thus stem cells cannot fully develop into insulin-secreting β cells.
Therefore, the selection of stem cells, the identification of maturation inducing factors in vivo, and the 

improvement methods of culture efficiency are all problems that need to be solved. In addition, there 
are other difficulties to overcome as follows: (1) the evaluation method of stem cells derived endocrine 
cells function; (2) the selection of surface antigens of progenitors in specific differentiation stage and the 
formulation of cell purification methods; and (3) the appearances of tumor, untargeted differentiation 
and autoimmunity during the treatment with stem cells, as well as the biosafety and reliability of the 
treatment.

On the whole, the application of genomics, epigenomics, proteomics and other methods to charac-
terize the differentiation products and the cooperation with biotechnology and pharmaceutical 
departments are conducive to promoting the development of progenitors in specific stages to mature 
insulin-secreting β cells. In the near future, stem cell replacement therapy may be clinically applicable to 
diabetes.
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