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Targeted expression profiling by 
RNA-Seq improves detection of 
cellular dynamics during pregnancy 
and identifies a role for T cells in 
term parturition
Adi L. Tarca1,2,3, Roberto Romero1,4,5,6, Zhonghui Xu7, Nardhy Gomez-Lopez1,2,8, 
Offer Erez1,2,9, Chaur-Dong Hsu2, Sonia S. Hassan1,2,10 & Vincent J. Carey7

Development of maternal blood transcriptomic markers to monitor placental function and risk of 
obstetrical complications throughout pregnancy requires accurate quantification of gene expression. 
Herein, we benchmark three state-of-the-art expression profiling techniques to assess in maternal 
circulation the expression of cell type-specific gene sets previously discovered by single-cell genomics 
studies of the placenta. We compared Affymetrix Human Transcriptome Arrays, Illumina RNA-
Seq, and sequencing-based targeted expression profiling (DriverMapTM) to assess transcriptomic 
changes with gestational age and labor status at term, and tested 86 candidate genes by qRT-PCR. 
DriverMap identified twice as many significant genes (q < 0.1) than RNA-Seq and five times more than 
microarrays. The gap in the number of significant genes remained when testing only protein-coding 
genes detected by all platforms. qRT-PCR validation statistics (PPV and AUC) were high and similar 
among platforms, yet dynamic ranges were higher for sequencing based platforms than microarrays. 
DriverMap provided the strongest evidence for the association of B-cell and T-cell gene signatures with 
gestational age, while the T-cell expression was increased with spontaneous labor at term according 
to all three platforms. We concluded that sequencing-based techniques are more suitable to quantify 
whole-blood gene expression compared to microarrays, as they have an expanded dynamic range 
and identify more true positives. Targeted expression profiling achieved higher coverage of protein-
coding genes with fewer total sequenced reads, and it is especially suited to track cell type-specific 
signatures discovered in the placenta. The T-cell gene expression signature was increased in women 
who underwent spontaneous labor at term, mimicking immunological processes at the maternal-fetal 
interface and placenta.
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Human blood is a rich source of molecular information that can be used to develop non-invasive liquid biopsies 
for specific tumors1 and organs (e.g., the placenta)2 in order to predict disease, its progression, and response 
to treatments. Genome-wide transcriptomic profiling is particularly well-suited for the discovery of molecular 
markers3 given the availability of techniques such as microarrays4 and RNA sequencing (RNA-Seq)5,6, which 
allow simultaneous measurement of tens of thousands of protein-coding and non-coding genes in a given sample.

Cellular and cell-free RNAs in blood that originate from (or are specific to) the primary tumor or organ of 
interest are especially sought as candidate biomarkers2,7,8 and, more recently, owing to advances in single-cell 
genomics9, researchers developed cell type-specific signatures of tissues, e.g., the placenta. This approach holds 
the promise to unravel the complexity of the maternal-fetal molecular dialogue2 and to aid in developing liquid 
biopsies for prediction of the ‘great obstetrical syndromes’10. Since organ and/or cell type-specific transcripts are 
expected to have low expression in whole blood, it is essential that quantification of RNA abundance is accurate 
enough so that modest, and eventually coordinated, gene expression changes can be leveraged as biomarkers that 
have clinical utility.

The complexity of quantifying low-abundance RNAs using conventional microarrays and RNA-Seq is com-
pounded by the presence of high and variable levels of globin mRNA and ribosomal RNA (rRNA). Although 
rRNA depletion and globin reduction have been shown to mitigate some of these issues, they require a large 
amount of total RNA and may induce biases in the quantification of gene expression11. To address these limi-
tations, targeted expression profiling methods were developed based on multiplex RT-PCR amplification fol-
lowed by quantitative analysis of mRNA abundance by next-generation sequencing. Although microarrays12–15 
and RNA-Seq6,16,17 were previously benchmarked for differential expression and prediction model development, 
preprocessing methods for RNA-Seq have continued to evolve17,18, and direct comparisons to targeted expression 
profiling by RNA-Seq for genome-wide transcription are not available.

Therefore, the goal of this work was to compare Affymetrix Human Transcriptome Arrays (HTA 2.0) that 
probe the transcriptome at the exon level, paired-end Illumina RNA-Seq with globin reduction, and a novel 
genome-wide targeted expression profiling technique DriverMap (https://www.cellecta.com). The compar-
ison was made in terms of ability to identify true maternal whole blood expression changes with gestational 
age and with the onset of labor at term. Furthermore, we have for the first time evaluated the ability of these 
high-throughput methods to quantify in maternal whole blood the expression of cell type-specific signatures 
derived from single-cell genomics of the placenta, and we also have determined whether these signatures are 
indicative of the onset of term parturition.

Results
RNA was extracted from 32 maternal whole blood samples from women with a normal pregnancy with (n = 8) 
and without (n = 8) spontaneous labor at term. The two groups will be further referred to as term in labor (TIL) 
and term not in labor (TNL). One-half of the women in each group had three longitudinal samples taken at 12 to 
40 weeks of gestation, while the other one-half of the women had one sample taken at term before delivery (see 
Table S1). The RNA integrity number (RIN) was very similar among samples (range 6.2 to 7.4) and did not change 
with sample storage duration (p = 0.6). Data generated from three high-throughput gene expression platforms 
were made available to the community as a Gene Expression Omnibus super series (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE113966) and may be valuable in future studies assessing RNA-Seq quantification 
workflows.

Detection of transcripts in maternal whole blood.  Affymetrix Human Transcriptome Arrays (HTA 
2.0) probed 30,682 annotated transcript clusters, of which 24,371 coding and 5,389 non-coding transcript clusters 
were deemed expressed in maternal whole blood. Paired-end Illumina RNA-Seq generated 20.7 to 57.1 million 
aligned sequence fragments per sample (mean, 39.4 million), enabling detection of 32,880 genes, of which 15,584 
were protein-coding genes. When limited only to the 18,559 protein-coding genes targeted by DriverMap, the 
number of aligned reads per sample obtained for RNA-Seq was 2.6 to 6.6 million (mean, 4.6 million). Targeted 
profiling of 18,559 protein-coding genes by DriverMap resulted in 11.1 to 12.9 million aligned sequence frag-
ments per sample (mean, 12.0 million), allowing detection of 13,182 genes. Expression profiling for 1/32 samples 
by DriverMap was not successful due to contamination, and it was not included in downstream analyses.

Differential expression associated with gestation and term labor.  The UpSet plots19 in Fig. 1 
summarize the overlap of gene expression changes associated with gestational age (term vs preterm gestation) 
(Fig. 1A) and with labor at term (Fig. 1B) for the three high-throughput transcriptomic platforms. At the same 
significance cut-off (false discovery rate20, q < 0.1), 401, 1025, and 2167 genes were found to change with gestation 
by microarrays, RNA-Seq, and DriverMap, respectively. Of note, 156 differentially expressed genes were identified 
by all three platforms to change in the same direction, representing 40% of the size of the smallest of the three lists 
(Fig. 1A). Fewer genes were found to change with labor at term, with only RNA-Seq and DriverMap identifying 
81 and 150 genes, respectively, of which only five were in common (GZMB, KLRC1, CD69, and KLRF1 were 
increased while SPTB was decreased with labor) (Fig. 1B).

qRT-PCR validation of gene expression changes.  qRT-PCR TaqMan assays (Applied Biosystems, 
Foster City, CA) were used to profile 86 candidate genes in the same 32 samples, with genes being selected based 
on evidence for differential expression with either gestational age or labor according to one or more platforms 
(see Methods). Of note, the average expression over the six house-keeping genes was stable with sample stor-
age duration (linear correlation p = 0.87, Fig. S1). When using qRT-PCR results to define true positive changes 
(two-tailed moderated t-test, p < 0.05) (see Tables S2 and S3), the validation rate of changes with gestation was 
98% (40/41) for microarrays, 94% (33/35) for RNA-Seq, and 88% (44/50) for DriverMap. Of note, although the 
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list of genes included in the calculation of validation rates (i.e. positive predicted values) for each platform rep-
resent a different subset of all 86 genes profiled by qRT-PCR, the ranks of validation genes among the list of dif-
ferentially expressed genes (positive genes) were not significantly different among platforms (ANOVA p = 0.15) 
(Fig. S2). The validation rate for changes with onset of labor at term was 45% (5/11) for RNA-Seq and 96% (23/24) 
for DriverMap, and it could not be determined for microarrays given that no gene was significant at q < 0.1. The 
lower validation rate for RNA-Seq for changes with labor compared to changes with gestation was expected, since 
for the former condition the genes were selected from the bottom half while in the latter from the upper half of 
the list of genes ranked by p-values (Figs S2 and S3).

In addition to qRT-PCR validation rates, which can be seen as estimates of positive predicted values (PPV) for 
each platform (rate of true differentially expressed genes among all genes positives at q-value < 0.1), we have also 
compared the area under the receiver operating characteristic curve (AUC) among the three platforms based on 
66 protein-coding genes. These 66 genes were all of the 86 genes selected for qRT-PCR validation (see Methods 
section) that were detected present on all three platforms (Fig. 2). To construct the ROC curves for a given 
platform, the 66 genes were ranked by differential expression p-values obtained with the particular platform. 
The AUC values for expression changes with gestational age were 0.78, 0.85 and 0.87 for RNA-Seq, HTA, and 
DriverMAp, respectively. Similarly, for changes with labor at term, the AUC statistics were 0.87, 0.94 and 0.96 for 

Figure 1.  UpSet plots of genes differentially expressed using three transcriptomic platforms. Changes with 
gestational age (term vs preterm) (left) and with labor status (term in labor vs term not in labor) (right). 
The significance of gene expression changes was inferred based on an adjusted p-value (q-value) <0.1. The 
horizontal bars show the number of differentially expressed genes identified by each method, while the vertical 
bars display the size of sets of genes identified by only one method and the intersection sets.

Figure 2.  Receiver operating characteristic (ROC) curves for detection of differentially expressed genes. Of 
the 86 genes profiled by qRT-PCR, 66 were deemed detected by all three platforms and were deemed truly 
differentially expressed with gestational age (A) and with labor at term (B) if significant by qRT-PCR analysis. 
HTA: Human Transcriptome Arrays; AUC: area under the curve.
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RNA-Seq, HTA, and DriverMap, respectively. Of note, although no gene was differentially expressed with labor 
based on the HTA platform after multiple testing correction, the ability of this platform to rank truly differentially 
expressed genes at the top of the list is only slightly lower than the one of DriverMap and surpasses then one of 
RNA-Seq (Fig. 2B).

Correlation of expression changes between high-throughput methods and qRT-PCR.  We have 
conducted a correlation analysis to determine the agreement in the estimated gene expression fold changes (log2 
thereof) obtained with high-throughput expression profiling techniques and qRT-PCR. The correlation was based 
on estimates of log2 fold changes obtained for 66 genes detected present, but not necessarily found significant, 
with all three platforms. The linear regression slope (95% confidence intervals) between high-throughput meth-
ods and qRT-PCR log2 fold-changes was 0.45(0.35–0.55) and 0.46(0.38–0.53) for microarrays, 0.73(0.59–0.86) 
and 0.93(0.83–1.03) for RNA-Seq, and 0.82(0.71–0.92) and 1.13(1.01–1.25) for DriverMap for changes with ges-
tation (Fig. 3 top) and with labor (Fig. 3 bottom), respectively. Slope estimates were significantly higher for the 
two sequencing-based methods than for microarrays, yet confidence intervals overlapped between RNA-Seq and 
Drivermap. In this analysis, slopes <1.0 correspond to a compression, while slopes >1.0 correspond to an expan-
sion of the dynamic range of expression changes compared to qRT-PCR. For instance, the 0.46 slope estimate 
obtained for microarrays can be interpreted that, in average, a gene showing a 2-fold change in expression by 
qRT-PCR between TIL and TNL groups, displays a 1.37 fold change with microarrays; however, the correspond-
ing fold changes were 1.93 with RNA-Seq and 2.2 fold with DriverMap (Fig. 3 bottom).

Comparison to other differential expression studies.  The lists of genes associated with gestational 
age by each high-throughput platform were overlapped with those reported in previous studies21,22. Heng et al.21 
reported paired maternal whole blood gene expression changes from 17–23 weeks to 27–33 weeks of gestation 
in 114 women with term delivery. The authors used Affymetrix Human Gene 2.1 ST microarrays and found 
41 genes up-regulated and four down-regulated at q < 0.05 and fold-change >1.25. To increase the power for 
testing for an overlap between the list of Heng et al. and this study, we have included all 2,321 genes signifi-
cant at q < 0.05. Another longitudinal study by Al-Garawi et al.22, using Illumina HumanHT-12 v4 microarrays, 
reported dramatic changes in the transcriptome from 10–18 weeks to 30–38 weeks of gestation in 30 women 
included in a trial of vitamin D supplementation. The authors found expression changes associated with gestation 
in 3,830 unique genes at q < 0.05. To enable a direct comparison between the different transcriptomic platforms, 
enrichment analyses were limited to genes profiled on all three platforms. We found a significant enrichment 
in previously reported differential expression associated with gestational age among genes identified by each 
of the three platforms used herein (odds ratios, OR of 1.4–2.1; hypergeometric test p < 0.01 for all) (Table 1). 

Figure 3.  Correlation of expression changes between high-throughput platforms and qRT-PCR. Of the 86 
genes profiled by qRT-PCR, 66 were deemed detected by all three platforms and are displayed as individual dots 
in this figure. TIL: term in labor; TNL: term not in labor; HTA: Human Transcriptome Arrays; FC: fold change.
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Enrichment statistics (ORs) were higher for microarrays, yet DriverMap identified a larger number of genes pre-
viously reported to change with gestation.

Quantification of cell type-specific signatures discovered by single-cell genomics.  We com-
pared the ability of the three high-throughput platforms to quantify in maternal whole blood the abundance 
of cell type-specific gene sets discovered by single-cell transcriptomics of the placenta2. In this analysis, 11 cell 
type-specific gene signatures for which three or more genes were detected by all three platforms were included. 
According to Tsang et al.2, the B-cell-specific signature decreases monotonically as a function of gestation, while 
the T-cell-specific signature decreases from the first to second trimester and then increases during the third 
trimester. Figure 4 shows that, indeed, a significant quadratic u-shaped trend was found by linear mixed-effects 
models for T-cell expression quantified by RNA-Seq and DriverMap, and a significant linear decreasing trend for 
B cell expression quantified by DriverMap (all p < 0.05). Although DriverMap data led to stronger associations 
with gestational age for these signatures (smaller p-values) the confidence intervals of the log2 fold changes over-
lapped among methods.

When the cell type-specific gene signatures were tested for the first time for association with the onset of labor 
at term, we found that the average expression of genes in the T-cell signature, comprised of 17 genes, was higher 
in women who were in labor compared to those who were not in labor at the time of the blood draw (Fig. 5). 
The fold-change estimates were higher for RNA-Seq and DriverMap compared to microarrays, yet 95% confi-
dence intervals overlapped [log2 fold change 0.34(0.08, 0.60) for microarrays, 0.5(0.18, 0.81) for RNA-Seq and 
0.48(0.16, 0.81) for DriverMap]. The increase of T-cell-specific gene expression with labor at term was also con-
firmed by qRT-PCR profiling of 4/17 genes (GZMH, GNLY, FGFBP2, and GZMA) (p = 0.0048, 2.5 fold-change).

When expression of the T-cell signature was summarized based on four genes (GZMH, GNLY, FGFBP2, and 
GZMA) for which qRT-PCR data were also available, the correlation with qRT-PCR expression and dynamic 
range of the T-cell signature average expression across samples were slightly higher for DriverMap than RNA-Seq, 
and both sequencing-based methods performed better than microarrays (Fig. 6).

Discussion
Detection of mRNAs in maternal whole blood.  The number of protein-coding genes detected as pres-
ent in maternal whole blood samples was 24,371, 15,584, and 13,182 for Human Transcriptome Arrays, RNA-
Seq, and targeted expression profiling by DriverMap, respectively. Differences in the number of genes detected 
by microarrays and sequencing techniques in the same samples are to be expected due to platform design dif-
ferences, experimental differences, level of background noise, and criteria used to determine expression above 
background16,23,24. While using detection p-values to infer expression above background for microarrays has been 
widely adopted25,26, a minimum number of aligned sequence fragments is typically required for RNA-seq (e.g., 
≥1027, ≥2028), with the stringency of these cut-offs being dependent on the sequencing depth. Our choice of a 
minimum transcript count of 5 to call a gene detected in a given sample, for which an average 40 million aligned 
reads were obtained (5/40 = 0.125 transcripts per million [TPM]) is similar to the 0.1 TPM cut-off used in a recent 
benchmark of RNA-sequencing analysis workflows24. Another important factor contributing to the differences in 
the number of genes detected by sequencing methods is the depth of coverage29. Although over three times more 
total aligned reads per sample were obtained for RNA-Seq than for DriverMap, the number of aligned reads per 
sample for protein-coding gene content was about three times less for RNA-Seq and it varied more across samples 
compared to DriverMap. Of note, both the HTA microarrays and RNA-Seq probed also non-coding RNAs, and 
small RNAs that have compelling biological and disease roles30, including in pregnancy31–34.

Gene expression changes associated with gestation and with labor at term.  Longitudinal tran-
scriptomic changes associated with gestational age (term vs preterm gestation), and cross-sectional changes asso-
ciated with labor at term (term in labor vs term not in labor), were assessed using commonly used analytical 
approaches that borrow information across genes to derive more reliable expression variance estimates35,36. HTA 
microarrays identified 2.6 times fewer differentially expressed genes than RNA-Seq and 5.4 times fewer than 
DriverMap at the same false discovery rate (q < 0.1). When a more conservative false discovery rate cut-off was 
used (q < 0.05), HTA microarrays identified 3.7 times fewer differentially expressed genes than RNA-Seq and 8.6 
times fewer than DriverMap (Fig. S4). Although differences in the type of data (continuous intensity for microar-
ray vs read counts for sequencing methods) and, hence, analysis models may be a factor, the higher background 
noise37,38 resulting in compressed fold-changes with microarray data (Fig. 3) and the more stringent correction 
required to maintain the same false discovery rate explain, in part, these results. Indeed, when only the genes 

Dataset Platform
Common significant 
genes (N)

Odds 
Ratio p-value

Heng et al. DriverMap 335 1.4 2.7E-06

Heng et al. HTA 73 1.7 7.5E-05

Heng et al. RNA-Seq 97 1.4 2.0E-03

Al-Garawi et al. DriverMap 711 1.8 3.5E-31

Al-Garawi et al. HTA 142 2.1 5.8E-11

Al-Garawi et al. RNA-Seq 198 1.8 8.6E-10

Table 1.  Enrichment analysis of previously reported changes with gestational age among the results of this 
study.
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deemed to be expressed on all three platforms were tested, the number of genes differentially expressed (q < 0.1) 
with gestation by HTA increased from 401 to 636, narrowing the gap with RNA-Seq while still being more than 
three times lower than the one for DriverMap (Fig. S5). Our finding that Illumina RNA-Seq identifies more 
differentially expressed genes compared to microarrays is in line with previous reports39, although those studies 
used 3′-end biased microarrays as opposed to arrays that probe all exons of the genes, as it was the case herein.

qRT-PCR validation of gene expression changes.  Although profiling by DriverMap identified more 
differentially expressed genes than microarrays and RNA-Seq, the qRT-PCR validation rate (i.e., the fraction of 
differentially expressed genes confirmed by qRT-PCR among all differentially expressed genes that were tested) 
was about the same for this platform (92% overall for changes with gestation and with labor) compared to the 
other two platforms (98% for microarrays and 94% for RNA-Seq for changes with gestation). Of note, for changes 
with labor, the validation rate of microarrays could not be assessed given that no positive genes were found, 
while the lower validation rate (45%) for RNA-Seq for changes with labor compared to the one for changes with 
gestational age was expected due to differences in the ranks of genes tested by qRT-PCR among those differen-
tially expressed (see Figs S2 and S3). It is important that the ranks of genes tested are similar when comparing 
validation rates among platforms, as one would expect that genes with the smallest p-values (higher ranks) are 
more likely to be truly differentially expressed than those that appear lower on the list; indeed, this was the case 
for validation of RNA-Seq results.

While the comparison of validation rates (or PPV) required the use of a significance cut-off to define a positive 
result (i.e. q < 0.1), the threshold free AUC statistics revealed that the ranking of genes based on nominal p-values 
is similarly meaningful for microarrays and DriverMap platforms and somewhat lower for RNA-Seq, yet 95% 
confidence intervals of AUC statistics overlapped among platforms.

The correlation of fold changes derived from high-throughput platforms and qRT-PCR (reference method) 
were higher for sequencing methods than microarrays and especially for DriverMap (Fig. 3). The estimated R2 
coefficient for correlation of Salmon40 quantified RNA-Seq expression and qRT-PCR expression changes in a 
two group analysis (TIL vs TNL) was identical to the one previously reported (0.85) based on wet-lab valida-
tion of 18,080 protein-coding genes in human brain tissues24 and relying on RNA-Seq data generated in the 
FDA sponsored Sequencing Quality Control (SEQC) study12,16. The more compressed fold-changes derived 
from microarrays than with sequencing based techniques was expected due to the background levels owing to 
cross-hybridization37,38. Of interest, for changes associated with labor at term, the dynamic range of DriverMap 

Figure 4.  Changes in average expression of cell type-specific genes with gestational age. Gene expression for 
17 T-cell-specific genes (top) and 12 B-cell-specific genes were averaged and displayed (y-axis) as a function of 
gestational age at sampling (x-axis). For microarrays, averages are over log2 normalized expression intensity. For 
sequencing based techniques, the average is over log2 DESeq2 normalized count data. Each line corresponds to 
one woman. The blue line represents a linear mixed-effect model fitted by using quadratic splines with one knot.
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exceeded the one of qRT-PCR, with the slope in the log2 fold change correlation plot significantly exceeding parity 
(slope of 1.13, which is significantly >1.0).

Comparisons to other studies of transcriptomic changes with gestation.  The impact of advancing 
gestation on the maternal whole blood transcriptome in normal pregnancies has been previously evaluated, and 
results vary depending on the intervals of gestation considered, sample size, expression profiling platforms, and 
significance cut-offs. Heng et al.21 reported only 45 genes changing with gestation from 17–23 to 27–33 weeks. 
This number increases to 2,321 if the cut-off on the magnitude of change is removed and hence genes are selected 
based only on adjusted p-values. Al-Garawi et al.22 reported that 12% of the transcriptome (3,830 unique genes) is 
modulated during gestation, yet in this later study, the span of gestation was much larger, including first-trimester 
and term gestation samples (10–18 weeks vs 30–38 weeks). This larger fraction of genes changing with gestation is 
rather similar to the one of maternal plasma proteins that we have previously reported to change with gestational 
age, using frequent sampling from early to term gestation41. All three transcriptomics platforms evaluated in this 
study identified significantly more genes than expected by chance among those reported previously. Although 

Figure 5.  Changes of T-cell-specific gene signature with labor status in maternal whole blood. Gene expression 
for 17 T-cell-specific genes was summarized in each sample collected at term from women in labor (TIL) and 
not in labor (TNL). Expression levels of individual genes are also shown using a heatmap.

Figure 6.  Correlation analysis of T-cell-specific gene signatures between high-throughput methods and qRT-
PCR. The x-axis shows qRT-PCR expression averages (−ΔCt) over GZMH, GNLY, FGFBP2, and GZMA genes 
in individual samples, while the y-axis shows the same summaries derived from high-throughput expression 
profiling methods.
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enrichment ORs were higher for the HTA microarrays, DriverMap confirmed more of the previously reported 
gene changes and provided the strongest evidence for an enrichment (smallest p-values) (Table 1).

The importance of identifying transcripts associated with gestational age was recently highlighted in a study 
by Ngo et al.8 who screened cell free RNA transcripts among those that are placental, immune, and fetal-liver 
specific, with the goal of developing a prediction model for the interval from blood draw to term delivery. Of the 
20 immune and placenta-specific genes highlighted as changing with gestation by Ngo et al.8 and also detected 
on all three platforms in maternal whole blood, DriverMap identified five (ANXA3, ARG1, S100A8, S100P, and 
ADAM12) as being significantly modulated during gestation, followed by HTA microarrays and RNA-Seq that 
identified three and one of these genes, respectively.

Cell type-specific gene expression signatures as markers for placental function.  Gene set anal-
ysis is one of the few means available to researchers to interpret omics studies and translate omics findings across 
platforms and species14,42,43. When the number of differentially expressed genes identified in a given condition 
is large, gene set analysis can be used to identify a few categories of genes that share a similar function and that 
are over-represented/enriched within the list of differentially expressed genes44. By contrast, when no significant 
changes can be demonstrated at the gene level, for example, due to a modest effect or small sample size, gene set 
analysis can use modest but coordinated changes in expression to establish a link between the phenotype and 
a predefined group of functionally related genes45. Another approach that implements gene set information to 
increase statistical power is the use of a gene set level summary as a biomarker46. In pregnancy research, Tsang 
et al.2 characterized the expression patterns of subpopulations of placental cells, including some of fetal (e.g., 
extravillous trophoblast and syncytiotrophoblast), maternal (e.g., decidual cells) and mixed origin (e.g., T cells). 
The authors have defined cell type-specific genes as those having higher expression in a given cell type compared 
to all others in the population of cells, similar in concept to defining tissue-specific gene sets47,48. The cell-free 
RNA expression (normalized sequence count) average over genes in the extravillous trophoblast signature was 
shown to be elevated in plasma of women diagnosed with preeclampsia compared to those with normal preg-
nancy. The authors have also shown that, of all cell-type signatures considered, the expression of B-cell and T-cell 
signatures changed most markedly with gestational age. While B-cell signature decreased monotonically from 
the first to the third trimester, T-cell signature decreases from the first to the second trimester and then increased 
during the third trimester. Despite differences between these two studies in terms of the type of samples (plasma 
vs whole blood) and downstream methods for RNA preservation and separation/extraction, our data strongly 
support these expression patterns with gestational age. A possible explanation for these similarities is that the 
plasma cell-free RNA included transcripts released by the white blood cells (cellular transcriptome reported 
herein). We also demonstrated that targeted expression profiling by DriverMap is especially suitable to track cell 
type-specific signatures as it leads to stronger associations and expression summaries that correlate better with 
qRT-PCR results (Figs 4 and 5).

T-cell signature as a marker for onset of labor.  This work demonstrated for the first time a significant 
increase in the T-cell expression signature in maternal whole blood from women who underwent spontaneous 
labor at term compared to those who delivered at term without labor. This observation is in line with evidence 
supporting a role for maternal T cells in the physiologic and pathologic processes of term and preterm labor, 
including: (1) effector and activated T cells are found at the maternal-fetal interface before49–55 and during the 
physiologic process of labor56–58; (2) effector T cells are present in the peripheral blood before59–61 and during 
labor62; (3) the absence of T cells results in increased susceptibility to endotoxin-induced preterm labor, which 
was reversed by the adoptive transfer of CD4+ T cells63; (4) histopathological lesions characterized by the infil-
tration of maternal T cells into the placental tissues (i.e., villitis of unknown etiology64–66, chronic chorioam-
nionitis67, and chronic deciduitis68) are associated with preterm labor and labor at term67,69–73; (5) effector and 
regulatory T-cell subsets at the maternal-fetal interface are associated with the timing of term parturition74 and 
the onset of preterm labor75–77; and (6) in vivo T-cell activation causes the onset of preterm labor78. More recently, 
we reported that fetal T cells can also participate in the mechanisms that lead to spontaneous preterm labor by 
responding toward maternal antigens and releasing pro-inflammatory cytokines79. Collectively, these data indi-
cate that T cells are implicated in the physiological and pathological processes of labor and that sequencing-based 
techniques that quantify cell type-specific signatures in maternal whole blood could provide a read-out of the 
immunological events taking place at the maternal-fetal interface and in the placenta.

Conclusions
Sequencing-based techniques are more suitable to quantify whole blood gene expression compared to microar-
rays, as they have an expanded dynamic range and identify more true positives. Targeted expression profiling by 
DriverMap identified more differentially expressed genes with gestational age and with labor at term than the 
other two platforms, and it is more accurate than untargeted RNA-Seq in measuring protein-coding gene expres-
sion, as it achieves higher coverage for coding genes for a lower total number of sequenced reads per sample. We 
have also demonstrated that targeted expression profiling is especially suited to track cell type-specific signatures 
discovered by single-cell transcriptomics in placental tissues and showed that maternal whole blood could pro-
vide a readout of the immunological events taking place at the maternal-fetal interface and in the placenta.
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Methods
Study design.  The study was part of a prospective longitudinal study that enrolled women with a normal 
pregnancy attending the Center for Advanced Obstetrical Care and Research of the Perinatology Research 
Branch, NICHD/NIH/DHHS, and the Detroit Medical Center/Wayne State University from February 2011 to 
May 2015. For gene expression profiling, we selected normal pregnancies with (n = 8) and without (n = 8) spon-
taneous labor at term. For one-half of the women in each labor group, we profiled three longitudinal samples 
collected at 12 to 40 weeks of gestation (Fig. 4), while for the other one-half of the women in each labor group, we 
profiled one sample taken at term before delivery (Fig. 5), for a total of 32 transcriptomes (Table S1). All patients 
provided written informed consent. The use of biological specimens as well as clinical data for research purposes 
was approved by the Institutional Review Boards of Wayne State University and NICHD. All experiments were 
performed in accordance with relevant guidelines and regulations.

Sample collection and processing.  Whole blood samples were collected directly into PAXgene Blood 
RNA tubes, stored at room temperature for 24 hours, and frozen at −80 °C until analysis. The PAXgene tubes con-
tain a stabilizing additive to maintain cellular RNA integrity for extended periods of time; cellular RNA integrity 
is reported to be preserved up to 5 years80.

RNA Extraction.  RNA was isolated in April 2016 from PAXgene® Blood RNA collection tubes (BD 762165), 
as described in the PAXgene® Blood miRNA Kit Handbook (December, 2015). Purified RNA was quantified by 
UV spectrophotometry using the DropSense96® Microplate Spectrophotometer (Trinean) and quality assessed 
by microfluidics using the RNA ScreenTape on the Agilent 2200 TapeStation.

Microarray profiling.  A quantity of 100 ng of RNA was reverse-transcribed and amplified using the 
Affymetrix WT Plus Expression Kit (needs vendor information), following the manufacturer’s suggested proto-
col. A quantity of 5.5 μg of sense strand cDNA was fragmented and labeled using the Affymetrix WT Terminal 
Labeling Kit. 200 μl of labeled targets were hybridized to Affymetrix Human Transcriptome Arrays 2.0 GeneChip 
in an Affymetrix hybridization oven at 45 °C at 60 rpm for 16 hours. Washing and staining were performed on an 
Affymetrix Fluidics Station 450 and scanned on an Affymetrix GeneChip scanner 3000. Raw intensity data were 
generated from array images using Affymetrix AGCC software.

RNA-Seq profiling.  Starting with 500 ng of total RNA, cDNA library templates were synthesized using the 
Illumina TruSeq® Stranded Total RNA LT (Set A) Kit with Ribo-Zero Globin rRNA reduction, as described in the 
TruSeq® Stranded Total RNA Sample Preparation Guide (Rev. E., October 2013). Libraries were validated using 
the HS D1000 ScreenTape on the Agilent 2200 TapeStation and quantified on the Qubit® 2.0 Fluorometer by the 
Qubit® dsDNA HS Assay (ThermoFisher). The Illumina HiSeq2500 instrument was used to cluster the samples 
onto the flow cell. The pools were put on at 10 pM and run in rapid mode at 2 × 100 paired end. The Illumina 
HiSeq Rapid PE Cluster Kit V2 and HiSeq Rapid SBS Kit v2 200 cycles were used.

Targeted expression profiling by DriverMap.  The DriverMap Human Genome-Wide Gene Expression 
Profiling Assay (hDM18Kv2; Cellecta Inc., Mountain View, CA) was used to measure the expression level of 
18,559 protein coding genes by combining highly multiplexed RT-PCR amplification with Next-Generation 
Sequencing quantitation. Sample processing was performed per manufacturer protocols available at https://www.
cellecta.com/technology-portfolio/targeted-expression-profiling-driver-map-assay/. cDNA products amplified 
in the assay were analyzed on an Illumina NextSeq. 500 sequencer using a NextSeq500/550 High Output v2 Kit 
(75 cycles).

qRT-PCR profiling.  Total RNA (150 ng/sample) was reverse-transcribed into cDNA using Reverse 
Transcription Master Mix (100–6298, Fluidigm, San Francisco, CA). The reaction system included 150 ng of 
sample total RNA and 1 μl of the master mix plus RNase-free water to bring the final volume to 5 μl. The BioMark 
System (Fluidigm) was used to perform high-throughput qPCR. For this system, specific target amplification of 
cDNA was performed. Briefly, a 0.2X pool of specific TaqMan gene expression assays (Applied Biosystems) was 
prepared by mixing the individual 20X assays (total 93, 1 μl of each) and 7 μl of RNase-free water and used as 
the source of primers. Pre-amplification reactions contained 1.25 μl of cDNA, 2.5 μl of TaqMan PreAmp Master 
Mix (4391128, Applied Biosystems), and 1.25 μl of the pooled TaqMan assay mix. The reaction was performed 
using the 7500 Fast Real-Time PCR System (Applied Biosystems) for 14 cycles at 95 °C for 15 seconds and at 60 °C 
for 4 minutes. After the cycling, the pre-amplicons were diluted 1:5 with RNase-free water to a final volume of 
25 μl. A Fluidigm 96.96 Dynamic Array chip was used to perform the qPCR assays. The chip was primed in an 
integrated fluidic circuit controller. After the priming, 2.75 μl of 20X TaqMan gene expression assay (Applied 
Biosystems) were mixed with 2.75 μl of 2X assay loading reagent (100–7611, Fluidigm) individually and loaded 
into the assay inlet on the chip; 2.25 μl of preamplified cDNA were mixed with 2.5 μl of TaqMan Universal PCR 
Master Mix (4304437, Applied Biosystems) and 0.25 μl of 20X GE sample loading reagent (100–7610, Fluidigm) 
and loaded into the sample inlet on the chip. The chip was returned to the integrated fluidic circuit controller for 
loading. After the samples and assays were loaded, the chip was placed into the BioMark System to amplify the 
target genes. The cycle threshold (Ct) value of each reaction on the chip was obtained with the Fluidigm RT-PCR 
analysis software.

Data analysis.  Microarray data preprocessing.  Human Transcriptome Arrays contain >6.0 million distinct 
probes grouped into probesets that target the exonic regions of 245,349 coding and 40,914 non-coding transcripts 
drawn from multiple data sources (RefSeq, Ensembl, UCSC, etc.). Microarray raw gene expression data were back-
ground corrected, quantile normalized, and summarized for each of the 44,699 coding and 22,829 corresponding 
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transcript clusters (genes) using Robust Multi-array Average (RMA)81 implemented in the oligo package82 using 
probe to transcript cluster assignments from the hta20sttranscriptcluster.db package of Bioconductor83. P-values 
for expression above background levels for each probeset targeting individual exons of the genes were obtained 
using the Affymetrix Expression ConsoleTM version 1.4. Identification of genes as protein coding was based on 
HTA-2_0.na36.hg19.transcript annotation provided by the manufacturer. Microarray data were deposited in the 
Gene Expression Omnibus at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113809.

Preprocessing RNA-Seq data.  Paired-end RNA-Seq sequence data in fastq format were processed using Salmon 
aligner (version 0.9.1)40 in quasi-mapping-based mode using the Ensembl GRCh37.75 (hg19) version of the tran-
scriptome that included both coding and non-coding genes. Expression quantification included correction for 
sequence-specific biases and fragment-level GC biases to generate counts per million for each transcript scaled 
up to library size. Sequence count data inferred from Salmon gene abundance were imported into R using the 
tximport package84. Raw and processed data from RNA-Seq experiments are available at https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE113964.

Pre-processing targeted RNA-Seq data.  Representation of gene-specific amplicons in amplified cDNA products 
was analyzed using custom gene enumeration software developed by Cellecta, Inc. With this method, only reads 
that align to the gene-specific amplicon are counted. The alignment uses only the 36 nucleotides started by for-
ward primer position and 36 nucleotides region ended by reverse primer. Any reads from the middle portion of 
the amplicons are not counted. To determine the impact of the expression quantification procedure, the exact 
same procedure based on Salmon aligner40 was also used to generate alternative count summaries for DriverMap. 
Raw and processed data for DriverMap sequencing experiments are available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE114037.

Quantification of cell type-specific expression.  Thirteen cell type-specific gene sets (3 to 27 genes each) identified 
in placental single-cell genomics2 were summarized in each sample by averaging expression data (log2 normalized 
intensity for microarrays, log2 normalized counts for RNA-Seq and DriverMap, and −ΔCt for qRT-PCR).

Differential expression analysis.  Gene expression data from all four platforms (microarray, RNA-Seq, targeted 
expression profiling, and qRT-PCR) were analyzed to quantify the effect of gestational age and the effect of labor 
at term on gene expression.

The effect of gestation was assessed within subject by performing a paired analysis contrasting expression 
data in one sample at term (gestational age ≥37 weeks) against the two samples collected preterm (<37 weeks). 
This analysis was restricted to the eight women who had three longitudinal measurements. To quantify changes 
with gestational age, we used linear models in which the response variable was the expression of each gene, while 
independent variables included the gestational age as a binary variable (term vs preterm gestation) as well as a 
subject-specific fixed effect, hence implementing a paired (within subject) analysis.

The effect of spontaneous labor at term was evaluated by performing an unpaired analysis of expression data 
in samples collected at term between eight women with term labor (TIL) and eight women who delivered at term 
without spontaneous labor (TNL). Linear models used to assess the effect of spontaneous labor at term included 
the expression of each gene as response variable and the group (TIL vs TNL) as an independent variable.

Microarray gene expression data were analyzed using linear models implemented in the limma package85 of 
Bioconductor. qRT-PCR data were analyzed using the same type of models starting with −ΔCt values, which are 
surrogates of log2 expression normalized with respect to housekeeping genes (ACTB, B2M, GAPDH, POLR2A, 
RPL37A, and RPLPO).

Count data obtained for the two sequencing based platforms (RNA-Seq and DriverMap) were analyzed using 
negative binomial models implemented in the DESeq. 2 package35,86 according to the same independent variables 
described for microarray and qRT-PCR data.

For all three high-throughput gene expression platforms, differences were considered significant if the false 
discovery rate-adjusted p-values (q-value) were <0.1, given that the transcripts were deemed expressed. The 
less conservative false discovery rate cut-off (10% as opposed to 5%) was selected to provide increased power to 
assess differences in the number of genes differentially expressed with a given phenotype by the three expression 
profiling methods, and also to quantify the overlap with lists of genes reported in other studies. For microarrays, 
transcript clusters were considered expressed if at least one probeset targeting the same transcript cluster had a 
detection p-value < 0.05 in at least 5 of the 32 samples. For sequencing based methods, a raw sequence count ≥5 
in at least 5 of the 32 samples was required to call a gene expressed.

Selection of candidate genes for validation.  The design of the qRT-PCR validation study was based on a prelim-
inary analysis of the high-throughput data and aimed to include the top 10 genes identified by only one method 
and all genes identified by all three methods in each of the two comparisons (effect of gestational age and effect of 
labor). The preliminary analysis differed from the one reported above in terms of 1) criteria used to define expres-
sion above background for microarrays (using a cut-off for absolute intensity as opposed to detection p-values), 
2) did not involve the exclusion of the contaminated sample for DriverMap analysis, and 3) used different dif-
ferential expression criteria [nominal p < 0.005 and absolute log2 ratio > log2 (1.5)]. The assay identifiers for the 
target and reference genes used in the qRT-PCR experiments are shown in Table S3.

Ethics approval and consent to participate.  All patients provided written informed consent. The use 
of biological specimens as well as clinical data for research purposes were approved by the Institutional Review 
Boards of Wayne State University and NICHD.
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Data Availability
The raw and summarized expression data for microarrays, RNA-Seq and targeted expression profiling by RNA-
Seq are available as a Gene Expression Omnibus super series (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE113966). The R analysis script and data required to reproduce the main figures and tables is availa-
ble from the authors’ website at http://bioinformaticsprb.med.wayne.edu/software/.
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