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Abstract: The identification of target genes at genome-wide association study (GWAS) loci is a major
obstacle for GWAS follow-up. To identify candidate target genes at the 16 known endometrial cancer
GWAS risk loci, we performed HiChIP chromatin looping analysis of endometrial cell lines. To enrich
for enhancer–promoter interactions, a mechanism through which GWAS variation may target genes,
we captured chromatin loops associated with H3K27Ac histone, characteristic of promoters and
enhancers. Analysis of HiChIP loops contacting promoters revealed enrichment for endometrial
cancer GWAS heritability and intersection with endometrial cancer risk variation identified 103
HiChIP target genes at 13 risk loci. Expression of four HiChIP target genes (SNX11, SRP14, HOXB2 and
BCL11A) was associated with risk variation, providing further evidence for their targeting. Network
analysis functionally prioritized a set of proteins that interact with those encoded by HiChIP target
genes, and this set was enriched for pan-cancer and endometrial cancer drivers. Lastly, HiChIP target
genes and prioritized interacting proteins were over-represented in pathways related to endometrial
cancer development. In summary, we have generated the first global chromatin looping data from
normal and tumoral endometrial cells, enabling analysis of all known endometrial cancer risk loci
and identifying biologically relevant candidate target genes.

Keywords: endometrial cancer risk; GWAS; HiChIP; H3K27Ac; chromatin looping; enhancer;
promoter

1. Introduction

To date, 16 loci have been found to robustly associate with endometrial cancer risk by genome-wide
association studies (GWAS) [1–3]. As for other GWAS, the vast majority of credible variants (CVs; i.e.,
the lead variant and other correlated variants) at these loci are non-coding and likely mediate their
effects through gene regulation (as reviewed in [4]). Indeed, we previously found that a majority of
endometrial cancer risk CVs from ten recently discovered GWAS loci were coincident with promoter-
or enhancer-associated epigenetic features in relevant cell lines or tissues [1]. Notably, the overlap
between CVs and these elements was significantly greater for features observed in endometrial cancer
cell lines after stimulation with estrogen [1], one of the most established risk factors for endometrial
cancer [5–7].

The follow-up of GWAS is challenging because the target genes of CVs are generally not obvious;
particularly as CVs located in enhancers can regulate promoter activity over long distances through
chromatin looping [2,8–11] and enhancers do not necessarily loop to the nearest gene [12]. However,
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an array of chromatin conformation capture (3C)-based techniques are now available to explore
long-range chromatin looping [13] and identify candidate target genes at GWAS loci. These include
a local low-throughput 3C approach, which we have previously used to identify chromatin looping
between CV-containing regions and KLF5 at the 13q22.1 endometrial cancer risk locus [2]. Ideally,
a high-throughput approach that can simultaneously identify functional elements and interrogate
looping between these elements and genes located at endometrial cancer risk loci is required. Hi-ChIP,
a technique recently developed from the global Hi-C chromatin looping analysis, appears to fit these
requirements. HiChIP can be used to assess chromatin loops associated with specific protein-bound
regions, generating high-resolution interactions using fewer cells and fewer sequencing reads than
Hi-C [14].

HiChIP has been used to enrich for enhancer–promoter loops by capturing chromatin interactions
associated with H3K27Ac [12], a histone mark characteristic of active promoters and enhancers.
The value of H3K27Ac in identifying likely functional GWAS variation is further evidenced by many
reports of enrichment of GWAS-identified variation in H3K27Ac-associated genomic regions [10,15–17].
Moreover, the ability of H3K27Ac HiChIP to facilitate the identification of candidate target genes at
GWAS loci has been demonstrated in two recent studies [12,18].

Global chromatin looping analysis of endometrial cells has not been previously reported. In the
current study, we have performed H3K27Ac HiChIP in normal and tumoral endometrial cells to capture
enhancers or promoters that overlap with endometrial cancer GWAS risk CVs. We have then used the
H3K27Ac HiChIP data to identify genes likely to be targeted by these regulatory elements through
chromatin interactions and analysed these candidate target genes to aid the biological interpretation of
endometrial cancer GWAS risk variation.

2. Results

2.1. H3K27Ac HiChIP Analysis Identifies Promoter-Associated Chromatin Loops in Endometrial Cell Lines

To assess chromatin looping at endometrial cancer risk loci, we sequenced and analysed H3K27Ac
HiChIP libraries from a normal immortalized endometrial cell line (E6E7hTERT) and three endometrial
cancer cell lines (ARK1, Ishikawa and JHUEM-14) for valid chromatin interactions (Supplementary
Table S1). We identified 66,092 to 449,157 cis HiChIP loops (5 kb–2 Mb in length) per cell line, with a
majority involving interactions of over 20 kb in distance (Table 1). Of the total loops, 35%–40% had
contact with a promoter and these promoter-associated loops had a median span >200 kb (Table 1),
indicating that they may be involved with long-range gene regulation. BED files for promoter-associated
loops can be found in Supplementary Files S1–S4.

Table 1. Characteristics of HiChIP loops in the endometrial cell lines.

Cell Line Total Loops Loops
< 20 kb

Loops
> 20 kb

Promoter-
Asociated Loops

Median Span of Promoter-
Associated Loops (kb)

E6E7hTERT 162,476 25,133
(15.5%)

137,343
(84.5%)

59,658
(36.7%) 206

ARK1 449,157 45,932
(10.2%)

403,225
(89.8%)

155,080
(34.5%) 282

Ishikawa 219,067 29,954
(13.7%)

189,113
(86.3%)

79,309
(36.2%) 259

JHUEM-14 66,092 10,254
(15.5%)

55,838
(84.5%)

26,492
(40.0%) 209

2.2. HiChIP Promoter Loops Are Enriched for Endometrial Cancer Heritability

To determine if promoter-associated HiChIP loops (i.e., those potentially involved with gene
regulation) are enriched for heritability of endometrial cancer at a genome-wide level, we applied
stratified linkage disequilibrium (LD) score regression analysis to the GWAS summary statistics
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from the largest study of endometrial cancer performed to date [1]. All four endometrial cell lines
demonstrated an enrichment of endometrial cancer heritability in the anchors of promoter-associated
loops (Table 2), although the enrichment in Ishikawa loops did not reach statistical significance
(Bonferroni threshold, p < 0.0125).

Table 2. HiChIP promoter-associated loops in endometrial cell lines are enriched for endometrial
cancer heritability.

Cell Line Enrichment (Standard Error) p-Value

E6E7hTERT 6.92 (1.70) 1.30 × 10−04

ARK1 4.08 (0.84) 2.50 × 10−04

JHUEM-14 9.61 (3.11) 5.00 × 10−03

Ishikawa 3.23 (1.18) 0.07

2.3. HiChIP Promoter Looping Reveals 103 Candidate Target Genes at Endometrial Cancer Risk Loci

To identify HiChIP target genes at the 16 known endometrial cancer GWAS loci, we intersected
CVs with HiChIP promoter-associated loops from the four endometrial cell lines. Through this
analysis, we identified 103 HiChIP target genes (81 protein coding and 22 non-coding; Table 3 and
Supplementary Table S2) at 13 endometrial cancer GWAS risk loci. Ten of the non-coding HiChIP
target genes encoded anti-sense transcripts (Supplementary Table S2), with these genes often sharing a
promoter with a coding HiChIP target gene, e.g., CDKN2A and CDKN2B-AS1 (9p21.3; Figure 1) and
WT1 and WT1-AS (11p13; Supplementary Figure S1).
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Figure 1. Promoter-associated chromatin looping identifies HiChIP target genes at the 9p21.3 locus.
Promoter-associated loops were intersected with endometrial cancer risk CVs (coloured red), revealing
loops (purple) that interact with the promoters of MIR31HG (in E6E7hTERT and ARK-1 cells), CDKN2A
(in E6E7hTERT and ARK-1 cells), CDNK2B-AS1 (in E6E7hTERT and ARK-1 cells) and CDKN2B (in
ARK-1 cells). CDK2NA and the non-coding anti-sense gene CDKN2B-AS1 are encoded on opposite
DNA strands and share a promoter.

The number of HiChIP target genes at a locus ranged from 1 (2p16.1 and 12q24.21) to 38 (17q21.32;
Supplementary Figure S2), with a median of 4 (Table 3; also see the representative examples of
chromatin looping at loci in Figure 1 and Supplementary Figure S1). The HiChIP target genes included
three genes (WT1, WT1-AS and GNL2) that had CVs located in a HiChIP looping contact at their
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promoter region, but for which there was no looping from an element containing a distal CV (e.g.,
WT1 and WT1-AS in Supplementary Figure S2). These findings suggest that WT1, WT1-AS and GNL2
may be directly regulated by a promoter CV in endometrial cells. In total, only 18 genes were the
nearest gene to a CV (Table 1). More than one-third (36%) of the HiChIP target genes were identified
using looping data from at least two endometrial cell lines (underlined in Table 3; Supplementary
Table S2), providing additional evidence for their targeting.

Table 3. HiChIP target genes at endometrial cancer risk loci.

Risk Locus HiChIP Target Genes Nearest Gene(s) to CVs 1

1p34.3 GNL2, C1orf122 GNL2, RSPO1
2p16.1 BCL11A BCL11A
8q24.1 MIR1207, PVT1, LINC00824 LINC00824
9p21.3 CDKN2A, CDKN2B, CDKN2B-AS1, MIR31HG CDKN2B-AS1
11p13 WT1, WT1-AS, CD59, PAX6, RCN1 WT1-AS
12p12.1 BHLHE41, PTHLH, SSPN, LRMP SSPN
12q24.11 SH2B3, PHETA1, ACAD10, ARPC3, BRAP, IFT81, LINC02356 SH2B3, ATXN2
12q24.21 TBX3 TBX3

15q15.1

SRP14, SRP14-AS1, BMF, BAHD1, CCDC9B, GPR176,
KNSTRN, PAK6, PLCB2, PLCB2-AS1, THBS1, EIF2AK4,
CHST14, DISP2, FSIP1, INAFM2, PLA2G4B, RASGRP1,
SPINT1, ANKRD63, PHGR1, SPINT1-AS1, C15orf56

SRP14, SRP14-AS1, EIF2AK4

15q21.2 DMXL2, TRPM7, TNFAIP8L3 CYP19A1

17q11.2 RAB11FIP4, MIR193A, TEFM, RNU6ATAC7P RAB11FIP4, NF1, EVI2A,
EVI2B

17q12 HNF1B, DUSP14, MRM1, MRPL45, SRCIN1, TBC1D3, C17orf78 HNF1B

17q21.32

SNX11, MIR1203, SKAP1-AS1, SKAP1, CBX1, HOXB1,
HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8,
HOXB9, HOXB13, HOXB-AS1, HOXB-AS3, HOXB-AS4,
PRR15L, CDK5RAP3, LRRC46, MRPL10, NFE2L1, SCRN2,
CALCOCO2, COPZ2, DLX3, KPNB1, PNPO, SNF8, SP2,
SP2-AS1, SP6, MIR10A, MIR152, MIR196A1, MIR3185,
PHOSPHO1

SNX11, MIR1203,
SKAP1-AS1, SKAP1, CBX1

1 At some loci, CVs are coincident with multiple genes. Underlined candidate target genes are supported by HiChIP
data from multiple cell lines.

2.4. HiChIP Target Genes Are Enriched for Potential Targets of a Mirna Encoded by the HiChIP Target Gene
Mir196a1

ToppFun bioinformatic analysis revealed that the predicted targets of 86 miRNAs were
over-represented among the HiChIP target genes (pBonferroni < 0.05, Supplementary Table S3).
hsa-mir-196a-5p was one of these miRNAs and is encoded by MIR196A1, itself one of the seven
miRNA genes among the HiChIP-identified targets (Table 3). hsa-mir-196a-5p is predicted to bind
to transcripts from six HiChIP target genes: four of which (HOXB1, HOXB6, HOXB7 and HOXB8)
are located at the same locus as MIR196A1 (17q21.32), with the remaining two (BRAP and RASGRP1)
encoded at endometrial cancer risk loci on other chromosomes (12q24.11 and 15q15.1, respectively).

2.5. HiChIP Target Genes Are Differentially Expressed in Endometrial Tumors

HiChIP target genes were evaluated for significant differential gene expression in endometrial
tumor and paired normal samples (The Cancer Genome Atlas Project (TCGA) [19]). Thirty-six HiChIP
target genes were found to be differentially expressed in tumors, with 17 genes down-regulated and 19
up-regulated (Supplementary Table S2). TNFAIP8L3, encoding a lipid transfer protein [20], was the most
strongly down-regulated gene in tumors (log2 fold-change = −5.1, q = 1.24 × 10−133; Supplementary
Figure S3A) and SPINT1, encoding a serine peptidase inhibitor [21], the most strongly up-regulated
gene (log2 fold-change = 5.8, q = 1.52 × 10−93; Supplementary Figure S3B). Statistical assessment of
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HiChIP target genes by Fisher’s exact test revealed a more than two-fold over-representation of genes
that were differentialy expressed in endometrial tumors (OR = 2.39, 95% CI 1.59–3.59, p = 6.08 × 10−05).

2.6. HiChIP Target Gene Expression Associates with CVs

To aid prioritisation of HiChIP target genes, we interrogated expression quantitative trait locus
(eQTL) data from the largest study of whole-blood gene expression [22] and TCGA endometrial
tumors [23]. Using these data, we evaluated the overlap between endometrial cancer risk CVs and the
top eQTL variants for each HiChIP target gene. From the blood eQTL data, we found that the lead CV
at the 17q21.32 risk locus, rs882380, was one of the top eQTLs for SNX11 and HOXB2, and the lead CV
at the 15q15.1 risk locus, rs937213, was one of the top eQTLs for SRP14 (Table 4 and Supplementary
Table S4). From the endometrial tumor eQTL data, we found that the top eQTL for the HiChIP target
gene BCL11A was rs7579014, a CV at the 2p16.1 risk locus (Table 4 and Supplementary Table S4).

Table 4. Endometrial cancer drivers interacting with proteins encoded by HiChIP target genes.

Protein Encoding Gene Similarity Score p-Value FDR 1 Value

TP53 0.60 3.65E−09 4.00E−06
ESR1 0.54 5.95E−07 1.27E−04

FOXA2 0.57 1.86E−06 1.99E−04
EP300 0.41 8.40E−06 4.27E−04

CTNNB1 0.47 1.35E−05 5.54E−04
PTEN 0.46 1.98E−05 7.05E−04

CCND1 0.49 2.12E−05 7.42E−04
FGFR2 0.44 3.97E−05 1.10E−03

RB1 0.50 8.21E−05 1.91E−03
MYCN 0.44 1.15E−04 2.51E−03
ERBB2 0.39 4.15E−04 6.28E−03
AKT1 0.35 5.24E−04 7.31E−03
ERBB3 0.39 1.12E−03 0.01
MAX 0.31 1.75E−03 0.02
NRIP1 0.32 1.82E−03 0.02
ATM 0.31 2.05E−03 0.02

CHD4 0.34 2.67E−03 0.02
FBXW7 0.38 3.75E−03 0.03
DICER1 0.33 4.44E−03 0.03
KRAS 0.33 9.91E−03 0.05
TAF1 0.27 0.03 0.11
ATR 0.29 0.04 0.13

PIK3R2 0.19 0.06 0.17
POLE 0.26 0.07 0.17
CHD3 0.20 0.14 0.26
TAB3 0.22 0.36 0.45

METTL14 0.21 0.40 0.49
KANSL1 0.09 0.67 0.67

1 False-discovery rate (FDR). Bolded proteins have a statistically significant similarity score (FDR < 0.05)

2.7. Protein-Protein Interaction Network of HiChIP Target Genes Reveals Enrichment for Endometrial Cancer
Driver Genes

The HiChIP target genes included three known pan-cancer driver genes (CDKN2A, TBX3 and
WT1) identified by Bailey et al. [24], but no known drivers of endometrial cancer from lists compiled
by Bailey et al. or Gibson et al. [25]. Pathway analysis was performed by ToppFun using the 103
candidate target genes to gain biological insights but no pathways were found to be enriched after
Bonferroni correction. To explore protein–protein interaction networks involving the candidate target
genes, we used the ToppGenet bioinformatic tool. Mining of protein–protein interaction databases
by ToppGenet revealed 2135 proteins that interacted with those encoded by HiChIP target genes
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(Supplementary Table S5). Prioritisation was then performed by ToppGenet to identify those proteins
with the most similar functional features to the HiChIP target gene set, i.e., a “guilt by association”
approach. Using this method, 387 of the interacting proteins had significant similarity scores at a 5%
false discovery rate (FDR) (Supplementary Table S5). The protein with the most statistically significant
similarity score was encoded by TP53, an endometrial and pan-cancer driver gene. Indeed, many
other proteins encoded by known cancer driver genes were observed in the prioritised set of proteins.
Of the 85 pan-cancer driver genes encoding interacting proteins, 55 were observed in the prioritised
set, a significant enrichment (OR = 9.49, 95% CI 6.06–14.80; p < 1 × 10−09; Supplementary Table S5).
The two available lists of endometrial cancer driver genes [24,25] were combined and of the 28 encoding
interacting proteins, 19 were observed in the prioritised set (Table 4; Supplementary Table S5), also a
significant enrichment (OR = 9.98, 95% CI 4.64–22.58; p = 1.8 × 10−08).

2.8. HiChIP Target Genes and Interacting Proteins Are Over-Represented in Relevant Biological Pathways

Pathway analysis using the combined list of 103 HiChIP target genes and 387 prioritised interacting
proteins found 462 pathways to be significantly enriched after Bonferroni correction (Supplementary
Table S6). Many of these pathways were related to gene regulation (e.g. “transcriptional misregulation
in cancer”) and cancer (e.g., “pathways in cancer”), including hallmarks of cancer identified by
Hanahan and Weinberg [26] (Table 5). A KEGG “endometrial cancer” pathway and pathways
related to endometrial cancer risk factors, such as obesity (e.g., “signaling by leptin”), insulinemia
(e.g., “insulin receptor signalling cascade”) and estrogen exposure (e.g.,“plasma membrane estrogen
receptor signalling”) were also found among the significantly enriched pathways.

Table 5. Examples of enriched pathways related to hallmarks of cancer.

Cancer Hallmark Related Pathway (Source) pBonferroni

Evading growth suppressors Regulation of TP53 activity (REACTOME) 1.44E−07

Avoiding immune destruction Innate immune system (REACTOME) 2.06E−06

Enabling replicative immortality Regulation of telomerase (Pathway Interaction Database) 1.43E−12

Tumor-promoting inflammation Inflammation mediated by chemokine and cytokine
signalling pathway (PantherDB) 0.03

Activating invasion and metastasis Focal adhesion (KEGG) 5.61E−15

Inducing angiogenesis VEGFA-VEGFR2 pathway (REACTOME) 9.10E−08

Genome instability and mutation RB Tumor Suppressor/Checkpoint Signaling in response
to DNA damage (MSigDB C2 BIOCARTA) 1.05E−04

Resisting cell death Apoptosis signaling pathway (Panther DB) 1.78E−08

Deregulating cellular energetics Choline metabolism in cancer (KEGG) 2.10E−04

Sustaining proliferative signalling PI3K-Akt signalling pathway (KEGG) 1.15E−18

3. Discussion

We performed H3K27Ac HiChIP in endometrial cell lines to enrich for enhancer–promoter
chromatin looping interactions and found more than a third of identified HiChIP chromatin loops
interacted with a promoter. The anchors of promoter-associated loops from two endometrial cancer
cell lines and an immortalised normal endometrial cell line were significantly enriched for endometrial
cancer heritability, highlighting the potential importance of these loops in mediating the effects of
endometrial cancer risk variation. Intersection of the promoter-associated loops with endometrial
cancer GWAS CVs revealed 103 HiChIP target genes at 13 loci, 36% of which were identified from loops
in multiple cell lines. At only two loci (2p16.1 and 12q24.21) was the nearest gene the only HiChIP
target identified (BCL11A and TBX3, respectively). Similar to another HiChIP study that integrated
chromatin interaction data with GWAS findings, the majority of HiChIP target genes (83%) involved a
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CV-promoter looping interaction that skipped the gene(s) closest to the CVs at that locus [12]. These
findings further highlight the potential for long-range regulation and the pitfalls of mapping GWAS
variation to the nearest gene (as we have previously discussed [27]). The median lengths of the
promoter-associated loops in the four HiChIP cell lines were all greater than 200 kb, consistent with
gene skipping by the putative enhancers at the endometrial cancer risk loci. Furthermore, the observed
rate of gene skipping was similar that found by HiChIP analyses of other disease risk loci [12].

The HiChIP target genes were enriched for genes that are differentially expressed in endometrial
tumors, providing evidence that these genes may be involved with endometrial cancer development
and that the HiChIP data can help identify biologically relevant genes. Moreover, of the 25 candidate
target genes previously identififed from endometrial cancer GWAS (reviewed in [4]), the targeting of
ten genes (MIR1207, WT1-AS, RCN1, SH2B3, BMF, GPR176, SRP14-AS1, SRP14, HNF1B and SNX11)
was supported by the HiChIP data. Anoher of the previously identified candidate target genes was
KLF5 at the 13q22.1 risk locus. Endometrial cancer GWAS risk variation has been found to loop to KLF5
in data generated by a local 3C-based technique [2], an interaction which we did not observe in our
HiChIP analyses. Our HiChIP approach had much higher resolution (due to the use of a restriction
enzyme producing smaller fragments) and closer examination of the HiChIP data at 13q22.1 revealed a
KLF5 promoter interaction in JHUEM-14 cells that looped to an anchor 23 bp from endometrial cancer
risk CV rs9600103.

Assessment of the other two loci without HiChIP target genes, 6q22.3 and 6q22.31, did not reveal
other promoter loops in such close proximity to CVs. It is possible, at these and other loci, that
additional genes may be targeted through chromatin looping occurring in cell types (or settings) not
studied here. Indeed, a limitation of this study is the use of cell lines to model chromatin looping
that occurs in normal or tumoral endometrial tissue. For example, chromatin looping patterns could
have been altered by immortalization (i.e., of the normal endometrial epithelial cells used to generate
the E6E7hTERT cell line), culture conditions (e.g., two-dimesional culture on plates) or incorporation
of mutations during passaging. Another limitation is that only chromatin looping associated with
H3K27Ac was captured by our approach, whereas the effects of some endometrial cancer risk variation
may relate to other epigenomic features or mechanisms (e.g., methylation). HiChIP analysis of tissue or
primary cells, or alternative functional genomic approaches (e.g., CRISPR genome/epigenome editing)
may thus prove useful in identifying further candidate target genes (particularly at 6q22.3, 6q22.31 and
13q22.1). Furthermore, these approaches would aid prioritisation and validation of candidate target
genes identified in this study.

To provide evidence to support the regulation of HiChIP target genes by endometrial cancer
risk CVs, we integrated available eQTL data and found that CVs associated with the expression of
four HiChIP target genes. Three of these associations were observed in whole blood (SNX11, HOXB2
and SRP14) and one in endometrial tumors (BCL11A). SNX11 encodes a member of the sorting nexin
family and is involved in endosomal intracellular trafficking [28] and may prevent degradation of
its endosomal cargo [29]. HOXB2 is a homeobox B gene and encodes a transcription factor that is
involved in development in mice [30]. Expression of HOXB2 (along with the HiChIP target genes
HOXB5 and PTHLH) has been found to be downregulated in a rare syndrome that is characterised by
abnormal development of the uterus and vagina [31]. In our study, we found that reduced HOXB2
expression in whole blood was associated with endometrial cancer risk variation, compatible with
reports that HOXB2 has a tumor-suppressor function [32,33]. SRP14 is involved in the formation of
stress granules [34], which can also be initiated by phosphorylation of the protein encoded by the
EIF2AK4 HiChIP target gene [35]. Consistent with our observation that endometrial cancer risk CVs
were associated with increased SRP14 expression, stress granules promote cell survival and cancer cell
fitness, and their components are upregulated in tumors (reviewed in [36]). Finally, BCL11A encodes a
zinc finger protein transcription factor and plays an important role in lymphocyte development [37].
In cancer, the role of BCL11A protein appears to be context-dependent. In some cancers, it has oncogenic
effects [38,39], whereas in T cell leukaemia, it may act as a tumor suppressor [37]. Further supporting a
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tumor-suppressor role are findings that down-regulation of BCL11A increases the resistance of cancer
cells to radiation [40] and loss of function of BCL11A is associated with genome instability in lung
cancer [41]. Concordant with an anti-cancer function, we found that endometrial cancer risk CVs were
associated with decreased BCL11A expression in endometrial tumors.

Six HiChIP target genes (BRAP, RASGRP1, HOXB1, HOXB6, HOXB7 and HOXB8) were enriched for
miRNA targets of MIR196A1, itself a HiChIP target gene, providing evidence to link these genes together
in a potential network that may mediate the effects of endometrial cancer risk variation. MIR196A1
miRNA has also been shown to regulate HOXB9, another HiChIP target gene [42]. Relevantly, expression
of MIR196A1 miRNA has been correlated with expression of the endometrial cancer candidate target
gene KLF5 in breast tumors, and has been associated with poor outcome in breast and ovarian cancer
patients [43,44]. MIR196A1 miRNA also inhibits a range of cancer cell phenotypes including apoptosis,
proliferation, migration and invasion [42,45–47]. Consistent with these observations, MIR196A1
miRNA levels are lower in endometrial tumors compared with healthy endometrial tissue [47].
There may also be a link between MIR196A1 and the endometrial cancer risk factors of obesity and
insulinemia [48,49]: MIR196A1 miRNA is upregulated in gluteofemoral fat, which is associated with
lower risk of diabetes [50]; and forced expression of the mouse homologue of MIR196A1 has been
found to make mice resistant to obesity and prevent them from developing insulin resistance [51].

Lastly, bioinformatic analysis was used to functionally prioritize 387 proteins that interact with
those encoded by the HiChIP target genes. This prioritized set had nearly a ten-fold over-representation
of proteins encoded by pan-cancer or endometrial cancer driver genes compared to other interacting
proteins. Further analysis demonstrated that the combined set of prioritised proteins and candidate
target genes was enriched for pathways relevant to hallmarks of cancer and endometrial cancer risk
factors. Taken together, these observations suggest that proteins encoded by HiChIP target genes may
mediate their effects through interactions with cancer drivers and other proteins that are involved in
endometrial cancer development pathways.

4. Materials and Methods

4.1. Cell Culture

Ishikawa, JHUEM-14, ARK-1 and E6E7hTERT cells were a gift from Prof PM Pollock (Queensland
University of Technology). Cell lines were authenticated using STR profiling and confirmed to be
negative for mycoplasma contamination. For routine culture, Ishikawa, ARK-1 and E6E7hTERT cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS)
and antibiotics (100 IU/mL penicillin and 100 µg/mL streptomycin). JHUEM-14 cells were cultured
in DMEM/F12 medium with 10% FBS and antibiotics. All cell lines were cultured in a humidified
incubator (37 ◦C, 5% CO2).

4.2. Cell Fixation

For fixation, cells on 10 cm tissue culture plates (~80% confluence) were washed with PBS and
fixed at room temperature in 1% formaldehyde in PBS. After 10 min, cells were placed on ice and the
formaldehyde was quenched by washing twice with 125 mm glycine in PBS. Cells were removed from
the dish with a cell scraper and washed with PBS before the storage of cell pellets at −80 ◦C. As we had
previously observed greater enrichment of endometrial cancer GWAS variation in epigenomic features
observed after estrogen stimulation, including those found in Ishikawa and JHUEM-14 endometrioid
endometrial cancer cell lines [1], these two cell lines were stimulated with 10 nm estradiol for 3 h prior
to fixation, as per [1]. Normal endometrium is considered estrogen-responsive [52], so E6E7hTERT
(a normal immortalised endometrial cell line) cells were also stimulated with estradiol; whereas,
ARK-1 cells (derived from a serous endometrial tumor) were not stimulated with estradiol as serous
endometrial tumors are not considered to be estrogen-responsive [53].
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4.3. HiChIP Library Generation

HiChIP libraries were generated as per the method of Mumbach et al. [14] with modifications.
Briefly, cell nuclei were extracted from fixed cell pellets and digested overnight with 375U of DpnII
to improve resolution [54]. After digestion, nuclei were resuspended in NEB buffer 2 (New England
Biolabs) and restriction fragment overhangs were filled-in with biotin-dATP using the DNA polymerase
I, large Klenow fragment (incubated at 30 ◦C for 2 h). Proximity ligation was performed for 4 h at 16 ◦C,
then nuclei lysed and chromatin sheared for 9 min using the Covaris S220 Sonicator as per Mumbach
et al. For each sample, sheared chromatin was split into two tubes and incubated overnight with 4.6
µg of H3K27Ac antibody (Abcam, EP16602). The next day, Protein A beads were used to capture
H3K27Ac-associated chromatin, which was eluted and purified with Zymo Research concentrator
columns (columns were washed twice with 10 µL of water). As per Mumbach et al., the DNA
concentration of the purified chromatin was to estimate the amount of TDE1 enzyme (Illumina) needed
for tagmentation, which was performed with biotin-labelled chromatin captured on streptavidin
beads. Sequencing libraries were then generated by PCR of tagmented samples using the Nextera
DNA preparation kit (Illumina) as per the manufacturer’s instructions. Afterwards, size selection
was performed using Ampure XP beads to capture 300–700 bp fragments. For each cell line, at least
two independent sequencing libraries were pooled together to provide 25 µL of library at ≥10 nm for
Illumina HiSeq4000 (AGRF, Brisbane, QLD, Australia) paired-end sequencing.

4.4. HiChIP Bioinformatic Analyses

HiChIP reads (fastq files) were aligned to the human reference genome (hg19) using HiC-Pro
version 2.9.0 [55] and default settings used to remove duplicate reads, assign reads to DpnII restriction
fragments and filter for valid interactions. The hichipper pipeline version 0.7.0 [56] was used to
process all valid reads from HiC-Pro, with the HiChIP reads used to identify H3K27Ac peaks using
the standard MACS2 background model. Chromatin interactions were filtered using a minimum
distance of 5 kb and a maximum of 2 Mb. The final set of chromatin loops used for further investigation
were interactions which were supported by a minimum of two unique paired-end tags and with a
Mango [57] q-value < 5%.

4.5. Stratified LD Score Regression Analysis

We used stratified LD score regression [58,59] to quantify enrichment of endometrial cancer risk
variation in HiChIP promoter-associated loops. Stratified LD score regression calculates enrichment as
the proportion of genetic heritability attributable to a particular set of variants (e.g., variants located
within HiChIP promoter-associated loops) divided by the proportion of total genetic variants annotated
to that set. Enrichment for each cell line HiChIP promoter-associated loops annotation categories
were assessed individually conditional on a “full baseline model” of 53 overlapping categories as
used previously (https://data.broadinstitute.org/alkesgroup/LDSCORE/) [59]. For regression, variants
were pruned to the HapMap3 variant list (~1 million variants) and the 1000 Genomes Project Phase 3
European population variants were used for the LD reference panel. The major histocompatibility
complex (MHC) region was removed from this analysis because of its complex LD structure.

4.6. Identification and Analysis of HiChIP Target Genes

Promoter-associated loops were defined as HiChIP loops with an anchor within 3 kb of a
transcription start site (GRCh37; accessed May 2019). To identify candidate target genes, HiChIP
promoter loops were intersected with endometrial cancer risk CVs (n = 457) which had been determined
using a 100:1 log likelihood ratio with the p-value for the lead variant at each GWAS locus. Differential
gene expression from TCGA endometrial tumor (n = 174) and normal (n = 13) samples was obtained
from GEPIA2 [60] using limma analysed data with a log2 fold cut-off of 1 and q < 0.01 for statistical
significance. All bioinformatic analysis of HiChIP target genes was performed using the ToppGene

https://data.broadinstitute.org/alkesgroup/LDSCORE/
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Suite of tools (accessed 7 June 2019) [61]. ToppFun was used to detect enrichment of gene lists based on
miRNA binding sites and pathways using hypergeometric distribution analysis. ToppGenet was used
to identify and prioritise genes in protein–protein interaction networks based on functional similarity
to the HiChIP target genes. Analyses to identify over-representation of genes in different sets was
performed using Fisher’s exact test in GraphPad Prism 8.1.2.

5. Conclusions

Here, we present the first global study of chromatin looping in endometrial cell lines, using an
H3K27Ac HiChIP approach to enrich for enhancer–promoter interactions. These data will provide an
extremely useful resource for genetic studies of not only endometrial cancer but also other diseases
that involve the endometrium. Through these data, we have found that promoter-associated HiChIP
loops are significantly enriched for endometrial cancer heritability and used these loops to identify a
set of candidate target genes at endometrial cancer GWAS loci, which contains an over-representation
of genes differentially regulated in endometrial tumors. Integration of eQTL data provided evidence
to prioritize candidates for functional studies and further supports the hypothesis that endometrial
cancer GWAS variation regulates gene expression through long-range regulatory interactions. Previous
reports from the literature suggests there is interplay among the products of HiChIP target genes
and that proteins encoded by HiChIP target genes interact with cancer drivers. Finally, bioinformatic
analysis indicates that the HiChIP target genes and their interacting protein–protein networks belong
to pathways that are relevant to endometrial cancer development.

In summary, this study has identified candidate endometrial cancer GWAS target genes for future
studies and furthers our understanding of the genetic basis of endometrial cancer development.
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