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Abstract 

Scaffold hopping is a central task of modern medicinal chemistry for rational drug design, which aims to design mol-
ecules of novel scaffolds sharing similar target biological activities toward known hit molecules. Traditionally, scaffold-
ing hopping depends on searching databases of available compounds that can’t exploit vast chemical space. In this 
study, we have re-formulated this task as a supervised molecule-to-molecule translation to generate hopped molecules 
novel in 2D structure but similar in 3D structure, as inspired by the fact that candidate compounds bind with their 
targets through 3D conformations. To efficiently train the model, we curated over 50 thousand pairs of molecules with 
increased bioactivity, similar 3D structure, but different 2D structure from public bioactivity database, which spanned 
40 kinases commonly investigated by medicinal chemists. Moreover, we have designed a multimodal molecular 
transformer architecture by integrating molecular 3D conformer through a spatial graph neural network and protein 
sequence information through Transformer. The trained DeepHop model was shown able to generate around 70% 
molecules having improved bioactivity together with high 3D similarity but low 2D scaffold similarity to the template 
molecules. This ratio was 1.9 times higher than other state-of-the-art deep learning methods and rule- and virtual 
screening-based methods. Furthermore, we demonstrated that the model could generalize to new target proteins 
through fine-tuning with a small set of active compounds. Case studies have also shown the advantages and useful-
ness of DeepHop in practical scaffold hopping scenarios.
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Introduction
Over the past decades, the hit identification process of 
drug discovery has been largely facilitated by the rapid 
developments of both high-throughput screening (HTS) 
and fragment-based screening technologies [1]. These 
screening strategies, together with the combinato-
rial compound library, discover extensive collections of 
diverse chemical series. Though these identified com-
pounds usually have weak potency and do not necessarily 

possess an ideal ADMET profile, they are starting points 
(hits) to identify more potent lead compounds through 
lead optimization or lead identification. [2]

One common strategy in the lead optimization is the 
scaffold hopping coined by Schneider and co-workers 
[3], where a given reference compound was modified 
in the backbone to generate structurally distinct com-
pounds while keeping the three-dimensional shape or 
the pharmacophore in order to preserve the biologi-
cal activity against its target protein [3, 4]. The strategy 
has been widely used because such design can result in 
novel chemotypes that have improved properties and/or 
achieve intellectual property rights. However, "hop" to 
a hit molecule is not guaranteed to work in an expected 
way due to an incomplete understanding of the protein–
ligand interaction mechanism [5], unfavorable ADMET 
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properties of the hopped structure, or activity cliff [6]. 
Empirical scaffold transformation rules like ring-break/
opening or bioisostere theory [7] summarized by medici-
nal chemists are insufficient to overcome the sophisti-
cated real-world cases.

To help chemists find better scaffold hops, there are a 
variety of computational methods having been proposed, 
including 3D shape-based similarity search, fingerprint-
based similarity search, pharmacophore matching, and 
fragment replacement techniques [4, 8–19]. These meth-
ods mainly relied on a predefined database to select a 
molecule or a fragment, with the differences between 
approaches arising from the searching algorithms of the 
database, the ways to define the similarity of compound 
pairs or the contents of the scanned database. Notwith-
standing the solid performance of existing scaffold hop-
ping methods, there remain three main challenges. First, 
the number of potential hops for a chemotype is too 
large to be memorized and requires considerable creativ-
ity and experience. As an example, the widely-used vir-
tual VEHICLe database [20] has 24,847 scaffolds, but it 
is composed of almost heteroaromatic mono- and bicy-
cles. It remains intricate to maintain a balance between 
diversity, size, and computational cost. Secondly, most 
of the currently utilized molecular fingerprints are the 
result of algorithms involving some degree of knowledge-
guided or manual feature engineering. While these rep-
resentations can clearly be successful, they always feature 
a trade-off in assigning importance to certain molecular 
features while neglecting others, with this choice hand-
coded in the algorithm and not amenable to problem-
specific tuning [21]. Lastly, these methods depend on a 
predefined database and can’t cover the vast chemical 
space estimated to contain 10 [23] and 10 [60] drug-like 
molecules [22]. Therefore, it’s necessary to develop novel 
schemes that can automatically dig into the prioritized 
chemical space while providing bespoke molecular repre-
sentation for hops identification.

In parallel, upon call for a more exhaustive and intel-
ligent exploration of chemical space, the de novo mole-
cule design has been advanced by recent breakthroughs 
in deep generative models [23, 24]. Various generative 
architectures, including RNNs [25–27], autoencoders 
[28, 29], and generative adversarial networks (GANs) 
[30] have been proven effective for generating desir-
able molecules by representing molecules with either 
the simplified molecular input line entry specification 
(SMILES) [31] or molecular graph [32]. Recent works 
also provide alternatives by combining the reinforce-
ment learning and docking methods to generate com-
pounds that satisfy key residue interactions with target 
protein [33–35]. These methods aimed to design struc-
turally diverse compounds from scratch and thus have 

the capability to search the whole drug-like space with-
out relying on any predefined database or rules. Albeit 
powerful, these de novo design approaches are rarely 
consider molecular optimization based on existing ref-
erence compounds.

Based on these observations, two research lines were 
recently carried out for molecule design under scaffold 
constraints. The first research line is called scaffold-
based molecule design proposed by Lim et al. [36] and 
Li et  al. [37], where the graph generative models were 
utilized to extend a given scaffold by sequentially add-
ing atoms and bonds. In this context, the generated 
derivatives are guaranteed to maintain the scaffold with 
certainty, and their properties can thus be controlled by 
conditioning the generation process on desired prop-
erties. However, the generated molecules often differ 
significantly from the starting points in the 3D level, 
and many of the proposed transformations are R-group 
modifications [38]. The other line is referred to as frag-
ment linking first proposed by Imrie and co-workers, 
where the original idea is to join fragments together 
with a generated linker while keeping the relative con-
formations of the fragments [39]. Yang et  al. further 
extended it as a sentence completion problem through 
transformer neural networks [40]. Although these 
approaches claim their capability in scaffold hopping 
to generate molecules with high 3D similarities to the 
original molecule, their generated molecules often have 
higher 2D similarities than expected due to the nature 
of fragment replacement, resulting in unfavorable intel-
lectual property issues. Moreover, all these models were 
trained in a ligand-based paradigm using a large num-
ber of bioactive compounds from the different public 
databases without using the information of the specific 
target proteins, imposing a limit in applications into the 
target-centric drug development process.

In this study, for the first time, we re-formulate the 
scaffold hopping task as a supervised molecule-to-mol-
ecule translation instead of search problem. Given a 
reference molecule and a specified protein target, our 
goal is to design scaffold hops incorporating 2D and 
3D structural information, protein target information, 
as well as bioactivity information. To this end, we have 
developed a novel target-based scaffold hopping frame-
work, DeepHop, to optimize hit/lead compounds based 
on a multimodal deep generative model. The model has 
been trained with over 50 K constructed scaffold hop-
ping pairs across 40 kinases. Extensive experiments 
show that our model is capable of generating isofunc-
tional molecular structures for seed molecules with 
novel backbones and improved activity. More impor-
tantly, our model could be easily extended to new 
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protein targets outside the training set, which is essen-
tial for target-centric drug development.

Methods
Task definition
An exemplary scaffold hop is shown in Fig.  1. In this 
work, we broadly define a scaffold hopping process as 
such: given an input reference molecule X and a speci-
fied protein target Z, the model predicts the "hopped" 
molecule Y with the improved pharmaceutical activity 
and similar 3D structure but dissimilar 2D structure.

Data preparation
There have only been a limited number of successfully 
reported examples for scaffold hopping. As a proof of 
concept, we constructed sets of scaffold-hopping pairs 
using a custom-made similarity scoring function from a 
subset of ChEMBL20 [41].

Specifically, we processed the ChEMBL20 dataset by 
filtering kinase-related target proteins with at least 300 
up to 5000 unique bioactivity instances. The scaffold 
hopping application in the kinase family has always been 
a topic of interest because the kinase patent literature 
is notoriously complicated and hard to break [42]. We 
further filtered out the SMILES strings containing dis-
connected ions or fragments. The molecules were then 
normalized using RDKit, which involved the removal of 
salt and isotopes, as well as charge neutralization. After 
the preprocessing, the final data set contained 103,511 

bioactivity data points across 152 kinases. Note that 

we used pChEMBL values as the standard activity unit, 
which were defined as: -Log(molar IC50, Ki, and Kd).

Deep QSAR model
Before constructing the scaffold hopping pairs, one 
important factor required to assess the performance of 
scaffold hopping is whether the generated molecules 
have similar bioactivity on the desired targets. To enable 
a rapid and accurate profiling of generated molecules, vir-
tual profiling models were trained on all the data points in 
the whole kinase datasets. We evaluated the state-of-the-
art directed messages passing neural networks (DMPNN) 
[43] and multi-task deep neural networks (MTDNN) [44] 
with molecular graphs or molecular fingerprints as the 
molecular representations. In particular, MTDNN was 
found to obviously outperform DMPNN with an aver-
age R2 of 0.62 and RMSE of 0.61 (pCHEMBL value) on 
internal test sets. Thus, the MTDNN model was used as 
the virtual profiling model in the following studies. The 
modeling details and results are shown in Supplementary 
files. For the quality of the virtual bioactive assessments, 
we kept only targets that had a fivefold cross-validation R2 
higher than 0.70, resulting in 40 targets in the end.

Construction of scaffold hopping pairs
The scaffold hopping definition emphasized two key 
components: (i) different core structure and (ii) similar 
topology and pharmacophore that ensure improved bio-
logical activities of the new compounds relative to the 
parent compounds. To mimic the scaffold hopping sce-
nario, we constructed our data set following the idea of 
matched molecular pairs (MMPs) proposed by Hussain 
et  al. [45]. More specifically, we sampled target-based 
hopping pair ((X; Y)|Z) with a significant bioactivity 
improvement (pCHEMBL Value ≥ 1) for new compound 
Y over original compound X in the context of protein 
Z and a strict molecular similarity condition (2D scaf-
fold similarity (X; Y) ≤ 0.6) ∩ (3D similarity (X; Y) ≥ 0.6). 
Following the recent study by Imrie et al [39], we meas-
ured 2D scaffold similarity through the Tanimoto score 
over Morgan fingerprints [46] of the compound scaffolds 
(here referred specifically to the Bemis and Murcko (BM) 
scaffold [47]), and 3D molecular similarity through the 
shape and color similarity score (SC score) (the pharma-
cophoric feature similarity [48] and the shape similarity 
[49]). To compute the SC score, we sampled 100 confor-
mations for each molecule using RDKit MMFF94 force 
filed and selected only the lowest-energy conformation. 
The SC score is a float value in the range of [0, 1], with 
a higher value representing a higher similarity between 

Fig. 1  A typical scaffold hop extracted from tankyrase-2 inhibitors [4]. 
The two compounds have improved bioactivity (pIC50 increase of 1.5) 
and similar 3D shapes (3D shape and pharmacophore similarity = 0.6) 
but different scaffolds (2D Tanimoto scaffold similarity = 0.2)
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molecule pairs. Scores above 0.6 indicate fair structural 
matches, and those above 0.8 indicate an excellent match.

To avoid redundancy of training pairs, we only allowed 
up to 10 hops for each source molecule. For each target, 
we first randomly selected 10% bioactive molecules as 
the test set and used the rest 90% molecules to construct 
scaffold hopping pairs for training and validation by a 
ratio of 9:1. These processing steps resulted in a training 
set of 57,537 pairs and a test set of 3656 molecules over 
40 kinases.

It should be noted that our method could be adapted 
to other applications by simply constructing molecular 
training pairs satisfying the specific requirements. We 
employed such a definition of scaffold hopping since 
there is no generally preferred definition of core struc-
tures or scaffolds or accepted metrics available for evalu-
ating the scaffold hopping potential.

Independent test set
To explore the generalization ability of proteins that have 
never been observed during the training process, we 
retrieved six targets from the rest of the curated database 
as the independent test set. Among them, three proteins 
(CHEMBL2208, CHEMBL2147, CHEMBL2523) are 
non-homologous with sequence identity less than 25% 
(calculated by the CDhit [50]) to any sequence in the 
training set, while others (CHEMBL4225, CHEMBL2292, 
CHEMBL2041) are homology to the training set with 
the highest sequence identities of 59, 63, 76%, respec-
tively. The compounds in these six proteins have never 
be observed in the model training, validating, and testing 
processes. The details of these six proteins are shown in 
Additional file 1: Table S3.

Model architecture
A novel multimodal graph transformer model was pro-
posed for generating scaffold hops with inputs of a source 
molecule and a protein sequence based on the trans-
former architecture [51]. As classical encoder-decoder 
architecture, Transformer has recently shown the state 
of the art performances in many sequence-to-sequence 
translation tasks, including machine translation [52], ret-
rosynthesis [53], and fragment assembly [40]. In previous 
chemical applications like retrosynthesis and fragment 
assembly, chemical structures were often converted into 
SMILES strings that ignored spatial information natu-
rally embedded in chemical 3D conformers. Also, none 
of them considered the protein target information dur-
ing the transformation of the molecule pairs. Obviously, 
both of these two features play crucial roles in the scaf-
fold hopping task that needs to be considered.

As shown in Fig.  2, DeepHop comprises three main 
components: (1) a molecular 3D graph neural network 
(GNN) for molecular conformer embedding, (2) a pre-
trained encoder for target protein embedding, and (3) a 
transformer for mapping the scaffold hopping pairs.

Molecular 3D conformer encoder
We adopted a simple 3D spatial GNN as the molecular 
conformer encoder following the strategy of Danel et  al. 
[54], which can learn both the molecular graph representa-
tion and spatial distances between atoms in the 3D space. 
The GNN follows the paradigm of message passing neural 
networks. The input of the conformer encoder is a 3D 
molecular graph G = (V ,E) , where V = {v1, . . . , vn} 
denotes a set of nodes (atoms) and E = [eij]

n
i,j=1

 represents 
edges (bonds) between atoms i and j. Each atom vi is repre-
sented by a d-dimensional initial feature vector hi contain-
ing the 2D chemical features computed by RDkit (See more 
details in Additional file 1: Table S1). The atom is addition-
ally attached with its 3D coordinates pi ∈ R

3 obtained by 
the molecular conformer. The 3D GNN then updates the 
atom embedding with message passing operations:

where h(l)j  is d-dimension the feature vector of atom 
(node) j at the l-th updating iteration, Ni is the set of 
neighbored atoms to atom i, U ∈ R

t×d and b ∈ R
d are 

trainable network parameters and ⊙ denotes element-
wise multiplication.

Herein, the overall atom embeddings of the molecule 
(graph) can be described as H (l) = {h

(l)
1
, . . . h

(l)
n } . In the 

last iteration of the node embedding updating, inspired 
by a recent molecular representation model [43], we 
introduced a Gated Recurrent Unit (GRU) network [55] 
to increase the power of the network and obtained the 
final atom embeddings, as shown as

where H (l)(v) is the set of atom representations in the 
molecular graph G.

Protein encoder
Compared to the drug molecules, protein molecules 
are much bigger, typically containing more than 1,000 
heavy atoms. To avoid a bulky model that contains too 
many parameters, we adopted the Tasks Assessing Pro-
tein Embeddings (TAPE) [56], a recently proposed semi-
supervised protein sequence representation learning 
method, to generate the protein pre-trained embeddings. 

h
(l+1)
i (U , b) =

∑

j∈Ni

ReLU
(
(UT (pj − pi)+ b)⊙ h

(l)
j

)

Ĥ(v) = GRU(H (l)(v))
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TAPE was trained by a large transformer neural net-
work in an unsupervised paradigm with millions of 
protein sequences. After training, it can generate an 
information-enriched feature vector for an input protein 
sequence. Formally, a protein can be described as a lin-
ear sequence that consists of a list of amino acid residues 
P = (r1, . . . rl) . After processing through the TAPE, a 
vector Hp can be obtained as a k-dimensional pre-trained 
feature vector.

Transformer architecture
The fundamental architecture of DeepHop is a typi-
cal Transformer neural network containing multiple 
encoder-decoder modules. Each encoder layer consists of 
a multi-head self-attention sub-layer and a position-wise 
feed-forward network (FFN) sub-layer. Multi-head atten-
tion has several scaled dot-product attention functions 
working in parallel, which allows the model to focus on 
messages from different subspaces at different positions. 
The attention between query (Q), keys (K), and values 
(V) was computed as

where a scaling factor dk (equal to the size of weight 
matrices) was introduced to avoid excessive dot prod-
ucts. The FFN sub-layer adopts the ReLU activation [57]. 
Then, layer normalization [58, 59] and a residual connec-
tion [60] were introduced to link the above two sub-lay-
ers. Each decoder layer has three sub-layers, including an 
FFN sub-layer and two attention sub-layers. The decoder 
self-attention sub-layer utilizes a mask function to hinder 
attending to unseen future tokens. The encoder-decoder 
attention layer helps the decoder to focus on essential 
parts in the source sequence, and to capture the relation-
ship between the encoder and decoder.

For a given source molecule, we concatenate the 
learned 3D graph representations Ĥ(v) with SMILES 
sequence embedding Ms = (s1, …, sm) in atomic level and 
convert them through a simple linear transformation. 

Attention(Q,K ,V ) = softmax

(
QKT

√
dk

)
V ,

Fig. 2  The basic architecture of the multimodal transformer model DeepHop. The model comprises three main components: (1) a 3D graph neural 
network for molecular conformer embedding, (2) a pre-trained encoder for the target protein embedding, and (3) a transformer for mapping the 
scaffold hopping pairs
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The combined multimodal molecular representations are 
then sent to the Transformer encoder to convert into a 
latent representation L ∈ R

m×f  , where m is the sequence 
length of molecular SMILES and f is the hidden state 
dimension. Afterward, we concatenate L with target pro-
tein embedding Hp ∈ R

k , resulting in a comprehensive 
representation L̂ ∈ R

m×(f+k) . Given L̂ , the decoder itera-
tively generates an output SMILES sequence Y = (y1, …, 
yo) until the ending token "⟨/s⟩" is generated.

During training, the model minimizes the cross-
entropy loss between the target sequence Mt = (t1, …, tk) 
and the output sequence Y.

Baseline models
We compare our approaches with the following baselines:

Conventional methods

1.	 Ligand-based virtual screening (LBVS). Here, we 
prepared a ZINC lead-like compound library by 
following the strategy of Moses [60], containing 
1,936,963 molecules with 448,854 unique Bemis-
Murcko scaffolds. For a fair comparison, we ran-
domly selected 50,000 molecules in the library 
(equaling to our training set size) and chose top-10 
molecules with the highest 3D similarity to the refer-
ence molecule as the final hops. The molecules with 
2D-similarity higher than 0.6 were pre-excluded from 
the random selection in the library.

2.	 MMPA. MMPA was performed by the implementa-
tion by Hussain et  al. [45], where molecular trans-
formation rules were extracted from the kinase 
dataset for corresponding tasks. During the test, we 
translated a source molecule 10 times using different 
matching transformation rules and selected the top-
10 translations with the highest average bioactivity as 
scored by the virtual profiling model if there are more 
than 10 matching rules.

Deep learning methods

3.	 Seq2seq. The seq2seq model utilizes SMILES strings 
to encode molecules. It consists of an LSTM encoder 
and an LSTM decoder with an attention mechanism. 
This architecture has been successfully applied to 
other molecular de novo design and molecule trans-
formation tasks [61].

L(Y ,M) = −

k∑

i=1

yilogti

4.	 G2G. The fourth baseline is a Graph-to-Graph 
model [62] that extends the junction variational 
autoencoder (VAE) via attention mechanism and 
generative adversarial networks (GAN). The model 
is capable of translating the current molecule to a 
similar molecule with predefined desired property 
(e.g., logP).

Notably, these algorithms were not designed for multi-
task transformation. We randomly chose four targets as 
representatives to evaluate the effectiveness of the base-
lines and our model.

Evaluation metrics
The scaffold hopping methods is often not comparable, 
similar to many virtual screening studies, partly due to 
the inconsistent definition of scaffold hop and lack of 
accepted benchmarks. We quantitatively analyze the 
hopping success rate, bioactivity improvement, validity, 
uniqueness, diversity, and novelty of different methods.

•	 Success rate is a metric that considers both simi-
larity and bioactivity improvement. Since this task 
aims to generate a molecule that (i) has a different 
scaffold from the input molecule and (ii) has bioac-
tivity improvement simultaneously. We design cri-
teria to judge whether it satisfies these two require-
ments by: the generated molecule Y should (a) meet 
the structural condition, i.e., (2D scaffold similar-
ity (X; Y) ≤ 0.6)∩(3D similarity (X; Y) ≥ 0.6); (b) has 
a positive bioactivity gain, i.e., pBioactivity(Y)—
pBioactivity(X) ≥ 0, where the activity of generated 
molecules was computed through the deep QSAR 
models. A constraint success rate is also accounted 
for by confining a significant increase of bioactivity 
as: pBioactivity(Y)—pBioactivity(X) ≥ 1.

•	 Bioactivity improvement is the average improve-
ment of biological activity between the source mol-
ecule and the generated molecule computed as 
pBioactivity(Y)—pBioactivity(X)

•	 Validity is the percentage of generated molecules 
that are chemically valid according to RDkit;

•	 Uniqueness refers to the number of unique struc-
tures generated;

•	 Novelty refers to the percentage of novel molecules 
(not present in the training set) among the chemi-
cally validly generated molecules.

Model training and optimization of hyperparameters
The DeepHop model was implemented based on Open-
NMT [63], and all scripts were written in Python [64] 
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(version 3.7). The models were trained on four GPU 
(Nvidia 2080Ti) and saved checkpoint per epoch. The 
best hyperparameters were decided based on the loss of 
the validation set (See more details in Additional file  1: 
Table S2). We adopted the beam search procedure [65] to 
generate multiple candidates with different beam widths. 
All generated candidates were canonicalized using RDkit 
and compared to the source molecules.

Results and discussion
In this section, we mainly discussed our DeepHop per-
formance from four parts. First, we evaluated our model 
with different training paradigms on the whole dataset. 
Then, we compared our methods with the state-of-the-
art deep learning models as well as conventional meth-
ods on four internal proteins. Subsequently, we tested 
our model in unseen protein sets and performed few-
shot transfer learning on proteins with low performance. 
Lastly, our DeepHop method was applied to several 
case study examples to demonstrate the capability of the 
model for practical scaffold hopping.

Evaluation of DeeopHop on the multi‑kinase dataset
We first assessed the performance of methods on the 
internal test set with different training paradigms, includ-
ing single-task, DeepHop-noGNN, DeepHop-noPro-
tein, and DeepHop. The top 10 candidate sequences for 
each reference compound were generated. As shown 
in Table  1, by averaging on 40 targets, our multimodal 
DeepHops achieved the best overall performance with 
a success rate of 65.2 ± 17.5 and constraint success rate 
of 43.7 ± 21.0. By comparison, the single-task method, 
which has separately trained and evaluated 40 models 
for each target protein, achieved the worst performance 
in most of the metrics with a success rate = 27.5 ± 15.9, 
constraint success rate = 15.5 ± 14.7. Specifically, the 
average validity is only 12.9 ± 6.3, much lower than > 90% 

by all other three methods. These should be caused by 
the relatively small number of data points for each sin-
gle kinase task, leading to a fragile model that is diffi-
cult to learn the transformation between scaffold pairs. 
When integrating all the pairs from different kinase sets 
for DeepHop-noProtein, the model can capture key 
structural information in molecular translation, achiev-
ing a success rate of 58.9% and a constraint success rate 
of 34.6. However, its average bioactivity improvement 
is 0.64, much lower than the 0.97 by DeepHop due to a 
lack of protein target information input to the model. On 
the other hand, DeepHop-noGNN, an removal of the 3D 
GNN module from DeepHop, also decreases the success 
rate by 3.4%, demonstrating the effectiveness of the 3D 
conformer information of input molecules. The separate 
results over targets are shown in Additional file  1: Figs. 
S1–S3.

Performance comparison with other methods
We further compared DeepHop with baseline meth-
ods. Since other baseline methods need to re-train the 

Table 1  Performance comparison of different training settings by the average and standard deviation on the internal test set of 40 
protein targets

The best performing numbers are in bold

The numbers in brackets are the standard deviation

Metrics Models

Single-task DeepHop-noGNN DeepHop-noProtein DeepHop

Success rate (%) 27.5(15.9) 61.8(18.6) 58.9(20.9) 65.2(17.5)

Constraint success (%) 15.5(14.7) 40.6(20.9) 34.6(19.7) 43.7(21.0)

Improvement 0.53(0.31) 0.92(0.27) 0.64(0.28) 0.97(0.24)

Validity (%) 12.9(6.3) 94.4(2.7) 92.7(3.8) 95.7(3.8)

Uniqueness (%) 8.7(5.5) 74.6(11.1) 88.2(8.8) 76.4(9.3)

Novelty (%) 99.0(0.9) 99.5(0.5) 99.6(0.3) 99.4(0.5)

Table 2  Performance comparison of five methods on four 
internal protein targets

Reported are average and standard deviation (numbers in brackets) over six 
metrics

Metrics Models

LBVS MMPA Seq2seq G2G DeepHop

Success Rate (%) 34.6(16.4) 33.9(13.2) 29.1(16.6) 33.4(6.6) 65.1(12.7)

Constraint Success 
(%)

10.4(7.2) 13.4(6.1) 15.9(8.5) 14.7(1.5) 33.5(8.8)

Improvement − 0.94(0.61) 0.31(0.15) 0.77(0.47) 0.88(0.65) 0.81(0.32)

Validity (%) – 97.3(0.04) 29.2(0.11) 99.7(0.03) 93.9(0.02)

Uniqueness (%) – 99.2(0.01) 17.8(0.03) 17.9(0.15) 70.7(0.05)

Novelty (%) – – 99.1(0.03) 100(0.00) 99.5(0.01)
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model or screen the whole database that is slow to run, 
we randomly selected four protein targets for compari-
son. As shown in Table 2, DeepHop achieved the best 
average success rate (65.1%) and constraint success 
rate (33.5%), consistent with the previous benchmark 
over the whole dataset. The rates by DeepHop are both 
around two times higher than four baseline methods 
and are shown to consistently outperform other meth-
ods in four protein targets (Additional file 1: Tables S4–
S7). In contrast, four baseline methods achieved similar 
success rates in the range of [29.1, 34.6] and constraint 
success rates of [10.4, 15.9]. Among these, two deep 
learning-based methods, Seq2seq and G2G, both suf-
fer from a low uniqueness of 18%. In addition, Seq2seq 
has a very low validity of 29.2% due to the internal dif-
ficulty of generating valid SMILE texts. These should be 
caused by the limited number of training data on single 
target data because the half success rate is similar to the 
level achieved by DeepHop (Single-task) on the test set. 

DeepHop alleviates this issue by integrating 40 protein 
target data sets and thus achieve relatively stable results 
in different targets. On the other hand, in conventional 
methods, LBVS achieved the lowest constraint success 
rate of 10.4%. This is because LBVS could ensure 100% 
validity and uniqueness through the database search, 
but it is hard to find optimized hits due to the limit 
of available compounds with an average bioactivity 
improvement of − 0.95. The MMPA improves the con-
straint success rate by increasing the average bioactiv-
ity improvement of generated compounds with a slight 
loss in validity and uniqueness.

We took CHEMBL267, which has a success rate close 
to the average of four targets, as a representative to ana-
lyze the performance. We conclude the statistical per-
formance of different methods for CHEMBL267 over 
(a) success rate, (b) 2D similarity to source compounds, 
(c) bioactivity improvement, (d) validity. To compare the 
physicochemical properties of the compounds generated 

Fig. 3  The statistical performance of different methods for CHEMBL267 over a success rate, b 2D similarity to source compounds, c bioactivity 
improvement, d validity. We also show e t-SNE projection of physicochemical descriptors of the source compounds and compounds generated by 
Deephop and several baseline models
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by various models, we first computed the 200 com-
mon physicochemical properties of each molecule by 
RDkit following Yang et  al. [66]. We then implemented 
dimensionality reduction to 2D with t-SNE. As a result, 
we found that MMPA could generate property-aligned 
molecules (Fig. 3e) that are highly similar in 2D to origi-
nal ones (Fig.  3b) and cannot provide novel scaffolds. 
This is unfavorable in scaffold hopping scenarios. LBVS, 
though generating compounds with the lowest 2D simi-
larity on average, is hard to produce appropriate hops 
due to the decreased bioactivity improvement relative to 
the source compounds (averagely -0.89), as depicted in 
Fig. 3c. Additionally, it’s limited to available compounds 
in the library without the ability to exploiting the whole 

chemical space, as shown in Fig.  3e. In deep learning 
models, Seq2seq has low valid rates (Fig. 3d) while G2G 
tends to generate outliers (Fig. 3e), resulting in an unsat-
isfactory success rate. The relatively high performance of 
the Seq2seq model indicates that the string-based mod-
els have the potential to design good hops if the issue of 
low success rate can be solved. Generally, only DeepHop 
can efficiently generate high-quality scaffold hops by a 
balanced performance in three measurements and pro-
ducing similar distributions of chemical property to the 
source compounds, leading to significantly higher suc-
cess rates and constraint success rates.

Figure 4 shows two examples of the top-predicted mol-
ecules generated by DeepHop. The modified groups lead 

Fig. 4  Example of top-4 successful hops with two test molecules generated by DeepHop for CHEMBL267. The changes in the generated molecules 
compared with starting molecule are highlighted in red
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to significant changes in 2D while small changes in 3D. 
More cases are shown in Additional file 1: Figs.S4, S5.

Model performance on unseen targets
We have shown that DeepHop achieves good perfor-
mance in the internal test set. However, in real-world 
cases, scaffold hopping is often required for target pro-
teins that have only a few known active compounds, and 
thus it is unable to construct sufficient scaffold hopping 
pairs for training. To mimic this scenario, we further 
examined whether DeepHop can be generalized to exter-
nal targets that have never been observed in the training 
set. Following the same sampling strategy as above, we 
generated ten molecules for each parent molecule on six 
unseen targets.

As shown in Table  3, the homogeneous targets per-
formed very well in the external test set, even if all the 
molecular structures and protein sequences in these tasks 
have never been observed by the model. The results are 
expected as the deep learning models are often capable 
of generalizing similar tasks. It also suggests that when 
there are only a few known actives for a specific target 
protein that has over 60% sequence identity similarity 
to the training target proteins, DeepHop can be alterna-
tively applied to generate scaffold hops directly without 
the need of re-training from scratch.

As expected, the model achieved low success rates on 
three heterogeneous protein targets that are non-homol-
ogous to our training proteins (sequence ID < 25%). The 
low rates were mostly caused by the drop in bioactivity 
improvement. For the heterogeneous target proteins, we 
wonder how many scaffold pairs are required to achieve a 
decent hopping. To this end, we equipped the model with 
the scheme of transfer learning and tested how well it can 
design inhibitors for unfamiliar proteins. Specifically, the 
trained DeepHop were fine-tuned with 5, 20, 50, 80% of 
scaffold hopping pairs from each unseen target protein, 
respectively.

As shown in Fig.  5, with transfer learning, only 5% 
(around 40 ~ 200, see more details in Additional file  1: 
Table S8–S12) scaffold pairs can help unseen proteins to 
achieve fair success rates. At this point, the uniqueness 

of the generated molecules is poor because of the overfit-
ting of limited data points. Thereafter, with the increase 
of scaffold hopping pairs, the model can gradually 
achieve a decent level of success rates and uniqueness. 
Note that the improvements are stable after fine-tuning 
5% pairs, suggesting that the bioactivity feature is easy 
to capture compared to structural ones. These results 
demonstrate that DeepHop can be further generalized to 
non-homologs proteins with few-shot active compounds.

Scaffold hopping case study
Next, we chose PIM-1 kinase (CHEMBL2147), a well-
studied target for antitumor drugs, as a representative to 
mimic a real-world scaffold hopping process. To search 
for novel inhibitors of the PIM-1 kinase, Saluste and co-
workers once reported a typical fragment hopping by 
replacing imidazopyridazine scaffold with triazolopyri-
dine, which maintained the primary activity and signifi-
cantly improved off-target selectivity as well as ADME 
property.

We started with one lead inhibitor (seed 1, 
IC50 = 0.024  nM) and two hit inhibitors (seed 2, 
IC50 = 155  nM; seed 3, IC50 = 130  nM), and aimed to 
generate potential scaffold hopping candidates with the 
improved pharmaceutical property. We used the trained 
model to generate 500 candidates for three seed com-
pounds, respectively. All the generated candidates were 
then carried out with the docking process using Auto-
Dock Vina [67].

As shown in Table  4, DeepHops can generate a large 
number of novel hops for each molecule by simply 
increasing the beam search width. The uniqueness val-
ues for seeds 1–3 are 77.4%, 52.8% and 66.4%, respec-
tively. Among them, there are 51, 66, and 40 structurally 
successful hops generated for seed 1,2, and 3, meeting 
the requirements of (2D scaffold similarity ≤ 0.6)∩(3D 
similarity (X; Y) ≥ 0.6). In terms of bioactivity, we found 
that 26.4%, 69.7%, and 60.8% of generated hops have a 
better docking score than the seed compounds, dem-
onstrating the effectiveness of our model. It is worth 
noting that even though seed 1 has extremely high activ-
ity (IC50 = 0.024  nM), there are 11 molecules to have 

Table 3  The independent tests of three heterogeneous proteins without homologs and three homogeneous proteins with homologs 
to the proteins in the training set

Metrics ChEMBL Target

Homologs Non-homologs

CHEMBL 4225 CHEMBL 2041 CHEMBL 2292 CHEMBL 2208 CHEMBL 4523 CHEMBL 2147

Success Rate 0.765 0.630 0.705 0.024 0.055 0.129

Constraint Success 0.471 0.519 0.341 0.024 0.009 0.036

Improvement 0.515 1.259 0.824 − 0.378 − 1.210 − 1.263
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better-predicted activities and 102 molecules that have 
better docking scores, suggesting that DeepHop could 
be a powerful tool in developing Me-too or Me-better 
molecules.

Several examples are shown in Fig. 6. All scaffold hops 
meet the condition of the structure while obtaining simi-
lar or improved activities compared to the starting seeds.

Discussions and conclusion
In this study, we have proposed a novel multimodal deep 
generative model, DeepHop, for scaffold hopping, which 
is a critical task in rational drug design. The model can 
generate large sets of potential hops with novel back-
bones and improved bioactivities. This can be used in not 
only early drug discovery phases like hit-to-lead or lead 
optimization but also patent busting for Me-Too and Me-
Better molecules. Furthermore, we demonstrated that 
the model could generalize to new target proteins if fine-
tuning with a small set of active compounds. This enables 

Fig. 5  Transfer learning with different ratios of scaffold hopping pairs on the heterogeneous unseen protein targets

Table 4  Scaffold hopping case study on PIM-1 kinase with three 
seed compounds

Metrics Scaffold Hopping

Seed 1 Seed 2 Seed 3

Unique structures 387 264 332

Structurally successful hops 51 66 40

Predicted activity < Lead 11 138 167

Docking score < Lead 102 184 202
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the generation of scaffold hops in low source scenarios. 
Through several case examples, we have shown that our 
method can be applied to practical scaffold hopping 
tasks, where most of the generated molecules have better 
docking scores than the original seeds while maintaining 
3D similar but 2D dissimilar structure.

We see three main advantages of our works. First, it 
provides an entirely data-driven scaffold hopping strat-
egy. The Transformer model implicitly learns the chem-
ical hopping rules and performs candidate ranking via 
the beam search decoding procedure, without any pre-
definition of screening databases and hand-encoded 

Fig. 6  Overlay of the seed inhibitors (sliver) and top-predicted hops (colors). The 2D structures are shown below, and the structural similarity (2D 
Scaffold Tanimoto Similarity and 3D Shape and Color Similarity) and docking scores (kcal/mol) are attached in the upper left. Protein structure is 
retrieved from 5KZI [68]
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rules. Second, the DeepHop is easy to train and to use, 
and can be adapted to different datasets without any 
modifications to the model architecture. Furthermore, 
the DeepHop scales better to larger training data sets, 
different from rule-based expert systems that need to 
define rules in the knowledge base manually and are 
hard to process large training datasets.

There are also several weak points in our model. One 
major problem is diversity. The diversity of the target 
chemical space is constrained by the limited high bio-
active compounds. It can be alleviated by active learn-
ing and iterative learning. Secondly, the evaluation of 
scaffold hopping should also be re-considered. The 
definition of what constitutes a scaffold hop is highly 
subjective and often differs, and currently, there is no 
accepted metric available for the evaluation of the scaf-
fold hopping potential. Li et al. [69] once introduced a 
mathematical function to quantify the "chemical dis-
tance" between scaffolds, which seems to be a rigid 
metric. To further advance research activities directed 
at scaffold hopping and to make the performance of dif-
ferent methods comparable, there is a need to establish 
generally applicable scaffold definitions and retrieval 
metrics.

We also noted the model couldn’t fully utilize protein 
information, especially protein 3D structural informa-
tion. Although the inclusion of protein sequence ena-
bles successful hopping for homologous proteins, it can’t 
recognize the complex protein-drug interactions. Fortu-
nately, we have shown this can be solved by transferred 
learning over dozens of known active compounds. In the 
future, we may include a pre-trained protein-drug inter-
action network for a more accurate prediction of protein-
drug interactions.

In addition, the definition of scaffold hopping in our 
work can be treated as a conditioned topological trans-
formation, which is also defined as 4°hopping [9]. An 
obvious direction for further exploration is to classify 
the types of scaffold hopping by analyzing the molecular 
transformation paradigm. The hopping mode, like hetero-
cycle replacement, ring-opening, and ring closure should 
become a controlled condition that guide the scaffold hop-
ping mode. Another interesting extension to the DeepHop 
models would be to use multi-objective reinforcement 
learning to allow our generated hops to match the compre-
hensive expectation (e.g., scaffold replacement, ADMET, 
synthesizability) of medicinal chemists [35].

In summary, DeepHop provides a novel method that 
can perform target-based scaffold hopping and can gen-
eralize to new target proteins through fine-tuning with a 
small set of active compounds.We believe that the strate-
gies described in our work will inpire future hit optimiza-
tion works.
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