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ABSTRACT: The endeavor to explore and characterize oil and gas
reservoirs presents significant challenges due to the inherent
heterogeneities that are further compounded by the existence of
thin sand layers encapsulated in shale strata. This complexity is
intensified by limited and low-resolution seismic data, missing
critical well-log information, and inaccessible angle stack data.
Conventional reservoir classification approaches have struggled to
address these issues, primarily due to their limitations in handling
missing data effectively and, hence, precise estimations. This study
focuses on the characterization of thin, heterogeneous potential
sands of the B-interval within the Lower Goru Formation, a proven
gas reservoir in the Badin area. The reservoir sands with varying
thicknesses are assessed in detail for their optimized description
and field productions by handling challenges, including low seismic resolutions, heterogeneities, and missing data sets. An innovative
solution is developed based on the integration of continuous wavelet transform (CWT) and machine learning (ML) techniques for
the approximation of missing data sets, i.e., S-wave (DTS), along with enhanced elastic and petrophysical properties. The improved
properties are augmented by the high resolution attained by CWT and captured variability more profoundly through the implication
of residual neural networks (ResNet). The limitations of conventional approaches are harnessed by ML solutions that operate with
limited input data and deliver significantly improved results in characterizing enigmatic thin sand reservoirs. The high-frequency
petroelastic properties reliably determined the thin heterogeneous potential sand bodies and illuminated a channelized play fairway
that can be tested for additional wells with low-risk involvement.

1. INTRODUCTION
The complex interlayers of sands and shales within the Lower
Goru Formation (LGF) are predominantly the result of
changing sediment influx and diverse depositional environ-
ments.1 The heterogeneous reservoir sand intervals of the LGF
exhibit varying thicknesses ranging from 20 to 35 m, which is
notably below the resolution capabilities of traditional seismic
imaging techniques. The high heterogeneity, limited and low-
resolution seismic data, missing DTS, and inaccessible angle
stack data add challenges to reliably characterizing these thin
reservoir sand intervals. As the LGF has demonstrated
promising production in certain wells, its characterization
and proper imaging are essential for the enhanced recovery
from the producing field.
Initially, conventional approaches, including seismic inter-

pretation,2 petrophysical assessments,3 and fault-seal analysis,4

have been done in the research area. Additionally, meticulous
approaches like deterministic and stochastic seismic inversions
have been employed in various nearby producing fields to
tackle these challenges.5−7 However, their effectiveness in such
complex geological settings often falls short, primarily due to
their inability to handle missing data effectively, and the

increased number of procedural steps may cause uncertainty.
In recent years, the comparable use of advanced ML
techniques has gained significant interest in subsurface imaging
and reservoir characterization due to their enhanced result,
robustness, and efficiency.8 A comprehensive solution has been
developed, focused on an integrated strategy that combines
different types of data along with various approaches
(petrophysics, rock physics, and seismic inversion) and
employs modern ML algorithms to successfully handle
reservoir challenges.
The available P-wave velocity (DTP) and density (RHOB)

proved valuable for subsurface characterization, but the
absence of DTS poses challenges and limitations in fully
understanding the subsurface facies. The conventional
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techniques have been employed by numerous researchers
previously for the prediction of DTS within the producing
fields both locally9 and globally.10 Conversely, a number of
researchers have recently used ML techniques for predicting
the DTS curve with success.8,11−14 ML techniques have been
developed for their robustness to address technical problems
like wellbore’s unrecorded logs or discrepancies along
measured logs based on analyzing and training consistent
well properties.13 Noise-free data form the foundation for
optimized results in ML, while noisy or limited point sets were
eliminated from the measured logs before training using a
designated model. The ML is comprehensively performed on
selected logs employed for the estimation of DTS, including
DTP, RHOB, volume of shale (Vsh), effective porosity
(PHIE), and water saturation (Sw), which provided a
reasonable improvement in comparison with empirically
derived DTS at well using Castagna’s equation.
The complex reflection pattern from thin beds generates

tuning effects and deteriorates the seismic amplitudes,
obscuring the precise low-frequency shadow zone of the
reservoir. The spectral decomposition (SD) technique is
widely employed to decompose frequency contents of various
signals in the time−frequency domain. The CWT of the SD
technique proves to be more effective in distinguishing
hydrocarbon-bearing reservoirs with varying thicknesses,
including both thin- and thick-bedded layers when compared
to the limited frequency range of seismic characteristics.15 It
identifies thin beds at a resolution of 1/4th of the wavelength
of the dominant period by the detection of extreme magnitude
response within the specified frequency range.16−19 The CWT
proved efficient in many fields, including Lakshmi field,
elucidating the channel morphology and forecasting the gross

sand thickness that amplitude-based methods could not
achieve.20 The CWT’s efficiency offered high-frequency
resolution comparatively to the short-time Fourier transform
(STFT) for identifying the hydrocarbon reserves21 as it can
record more accurately the delicate variations in frequencies
arising from the presence of hydrocarbons.22−25 In the past few
years, scholars approved the CWT application along with the
seismic inverted properties for the stratal inquiries of the
diverse reservoirs and evaluation of hydrocarbon capabilities.
The inverted characteristics (P-impedance, S-impedance, Vp/
V s ratio, etc.) have significantly proven their worth in
distinguishing fluids as well as the lithological components of
the reservoir. The probabilistic neural network (PNN), a
nonlinear interpolation associated with pattern recognition,
utilizes multiattributes of wells and seismic properties
(impedances, Vp/V s ratio, etc.),22 to better manage shales
inside sands and petrophysical distributions.23,24

The spatial variability is exceptionally assessed for enhanced
reservoir characterization by employing CWT along with
inverted attributes obtained through Residual Network
(ResNet), a deep neural network technique (DNN).32

Artificial intelligence can now be used to improve the precision
and resolution of subsurface property calculations after the
development of ResNet for image recognition tasks on seismic
and well-log data.33 Overall, in this integrated approach,
ResNet has played a central role in tackling the complexities of
heterogeneous reservoirs and thin sand beds on the CWT
components of seismic trace (real, imaginary, magnitude). Its
ability to train DNN effectively, while mitigating common ML
challenges, positions ResNet as a superior choice for capturing
intricate relationships between CWT seismic components and
identified facies.27 ResNet obtained impressive importance in

Figure 1. (a) Regional map depicting structural elements (modified after Kazmi and Snee)45 and study area and (b) stratigraphic chart illustrating
the petroleum system with a major source, reservoir, and seal.33,46

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c08169
ACS Omega 2024, 9, 4775−4791

4776

https://pubs.acs.org/doi/10.1021/acsomega.3c08169?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08169?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08169?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c08169?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c08169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


advancing the field of deep learning (DL) by incorporating
image identification, natural language processing, and machine
translation28,29 while alleviating issues like resilient to noise
and overfitting, vanishing gradients, and being more efficient
and less computationally expensive to train.30−32

The thin potential sands within the LGF have remained a
challenging puzzle in the field of reservoir characterization in
the Badin area, with no prior comprehensive work or
established solutions to resolve them. In the present work,
the novel machine learning (ML) approach optimized the
resolution limitations of approximated properties (elastic and
petrophysical) and evaluated the heterogeneities of reservoir
sands more comprehensively. The ML solutions employing
limited input data delivered significantly improved results and
highlighted channelized potential sands more pronouncedly
compared to traditional methods.

2. GEOLOGY AND STRATIGRAPHY OF THE AREA
The Indus Basin (IB) is the biggest onshore sedimentary basin
of Pakistan, located to the northwest of the Indian Shield.33

Based on structural makeup and potential for petroleum, the IB
is alienated into three sub-basins, i.e., upper, middle, and
lower.34 The Upper Indus Basin (UIB) exhibits a compres-
sional regime and is quite active tectonically, whereas the
Lower Indus Basin (LIB) lies in an extensional regime and is
relatively less active.35,36 During the Cretaceous period,
tectonic activity in the Indus Basin formed a rift zone, which
marked the beginning of the procedure that controlled the
depositional system within the LIB.35 The horst and graben
structures were caused by the late Cretaceous rifting that
occurred between India and the Seychelles.33 During this
period, the rate of spreading was rapid, ranging from 20 to 30
cm/a.35,37

The Badin region is situated in the eastern portion of the
LIB and is characterized by normal faulting in the region
(Figure 1a). It is bounded by the Indian Shield on the east, the

Kirthar Fold and Thrust Belt to the west, and Jacobabad high
to the north.1,38 The rate of deformation in the Badin region is
comparatively small because of its distance from the primary
tectonic zone.39 Within the Sindh monocline, the Badin area
has the highest success rate in terms of oil and gas
exploration.38 The reservoir in the Badin area is bounded by
normal faults providing a lateral seal for the hydrocarbons.35,40

The Cretaceous LGF is formed in a shallow marine
environment and provides important information about the
sea-level changes and the evolution of marine life during this
period.41,42 The formation is associated with westerly
prograding river-dominated deltas that were created by river
systems that drained through the Indian Shield from the east
and southeast. The B-sand interval of the Lower Goru
Formation exhibits considerable heterogeneity as a conse-
quence of the different depositional environments on the
proximal and distal sides.43 Grain size variability within the
formation is created by the transition from coarse to fine
sediments.44 These differences affect the rock’s permeability
and porosity, which affects fluid movement in subsurface
reservoirs. The interbedded shales between reservoir sands of
the LGF act as a seal, while the Sembar shales are the
dominant source in this area (Figure 1b).

3. MATERIALS AND METHODS
In this research, 3D seismic poststack and wireline logging
data, e.g., γ-ray (GR), spontaneous potential (SP), DTP, DTS,
RHOB, neutron porosity (NPHI), deep resistivity (LLD), and
shallow resistivity (LLS), have been incorporated using three
wells (Buzdar S_01, Buzdar SD_03, Buzdar SD_04). Well
reports of two blind wells, Buzdar S_02 and Buzdar SD_01,
were also used. The target reservoir is hit by the three wells
employed in the study lying with the 3D seismic cube. Key
information regarding formation tops, mineralogical properties,
and physical characteristics of the reservoir were assimilated to
generate a relationship between elastic and petrophysical

Figure 2. Complete workflow for the prediction of missing DTS and the estimation of petrophysical and elastic properties for the enhanced
characterization of thin heterogeneous sands, integrating CWT and ResNet algorithms.
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properties. The measured data quality regarding well logs was
fair, except for certain problems included during recording. For
instance, the RHOB was conceded in wells due to borehole
conditions, such as washout, while DTS was not recorded in
any of the wells. Such limitations hindered the reliable
approximations of reservoir properties; therefore, advanced
techniques were employed to handle the discrepancy in the
data set and estimate the thin heterogeneous profoundly.
Figure 2 shows the complete methodology adopted in this
research.
Starting with the analysis of well logs and seismic data, a

reliable seismic correlation is established and three horizons
from top to bottom, i.e., LGF, Badin shale, and Sand below
Badin shale, are subsequently mapped to determine their
spatial extent. The seismic data’s vertical resolution is less than
potential sand bed thicknesses, which is determined by the λ/
4th i.e., one-fourth of the trace wavelength.49 The observed
seismic data peak frequency is 20 Hz and the reservoir sand
interval velocity is 2650 m/s, hence depicting a maximum
resolution up to 47 m, proving the tuning of thin-bedded
potential sands at various locations throughout the field.50

Hence, band-limited seismic along with its inverted properties
with limited vertical resolution would be incapable of
producing credible results for comprehensive reservoir
characterization. Therefore, advanced ML approaches are
used to resolute thin pay sand beds with varying reservoir
thicknesses averaging 20−35 m in the present study.47

Conventional rock physics modeling (RPM) is carried out
for multiple purposes, including the assessment of hetero-
geneities, detailed reservoir characterization, and predicting
missing logs, mainly DTS.5,7,8,25,52 The consistent and
improved modeled DTS log was further utilized in seismic
inversion techniques for upgraded reservoir characterization.
Log data limitations of the IB, including poor RHOB along
with the absence of DTS, are assessed using traditional RPM,
incorporating petrophysical results, in situ parameters of the
reservoir, and integration of petroelastic attributes.
Despite the consistent results of RPM, the requirements of

interdependent processes make it highly subjective, because if
any error ascends it glides toward the outcome. Contrarily, ML

seemed as an effective tool having the capacity to develop a
direct link among log curves based on their prominent
features; hence, robust and reliable predictions of missing or
poor logs are made for comprehensive assessment of reservoir
characteristics. ML techniques have been recently employed
for the estimation of DTS by engaging test and training data
sets.9,10,12 ML is developed as an advanced approach for
handling practical complications, primarily related to unmeas-
ured logs or shortages within measured logs by examining,
testing, and training reliable logs.13 The algorithms of
supervised machine learning (SML), an elementary method
of ML, generate a model for associating data (or feature)
vectors to a corresponding label or target vector using training
data. The combination of input and its connected labels are
recognized and incorporated into the procedure.48 The
modeling of logs or their improvement acts as a basic part of
the regression model employed for forecasting the continuous
numerical variables.13 The wells providing logs for predicting
DTS in a similar well are termed test data, whereas the
remaining wells involved in the process are called training data.
Various SML techniques, including random forest (RF),
decision tree regressor (DTR), extended tree regressor
(ETR), multiple and support vector machine (SVR), etc.,
were incorporated for training the data set (seismic and well),
selecting the best technique based on evaluation metrics, and
further employed to extract elastic and petrophysical attributes.
The best method assessed for DTS prediction based on the
statistical analysis is ETR, which develops a comprehensive
relation with seismic trace components extracted through
CWT for the final prediction of petroelastic properties.
The modeling of corresponding logs due to washouts along

with measuring of logs in splice zones is a fundamental step in
the characterization of rock strata employed in petrophysical
properties estimation.49 The modeling of missing logs was
carried out after the removal of outliers and qualitative review
of input data. In the present research, the SML technique was
adopted for improving the measured log models. The DTS
curve was not available in any well, so it was initially derived
from Castagna’s empirical relationship using measured p-wave.
Therefore, DTS is predicted by finding an association with

Figure 3. (a) Measured DTS (red) and modeled DTS (purple) () delineated a good matching of trends and values. (b) Statistical analysis of the
adopted ML techniques depicted the performance of each algorithm employed for the prediction of DTS.
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recorded logs using advanced ML techniques. The empirically
approximated DTS by Castagna’s relationship is utilized in the
training procedures through many significant processes (RF,
DTR, SVR, and others), as shown in Figure 3a, for Buzdar
S_01. The unrecorded DTS was approximated in all of the
remaining wells by utilizing the aforementioned ML
techniques. To validate the implemented methodology
regarding DTS estimation, the modeled DTS of Buzdar
S_01 was shared for the prediction of DTS in Buzdar SD_04
wells while keeping the measured DTS curve blind in the
Buzdar SD_03 well. ML worked on improved logs by dividing
the data by 60% training and 40% testing. This testing and
training are changed randomly for each iteration.
The finest ML techniques are recognized by the evaluation

metrics established on various samples extracted from training,
including mean average error (MAE), mean square error
(MSE), root mean square error (RMSE), root mean square
least error (RMSLE), correlation coefficient (R2), mean
absolute percentage error (MAPE), and training time (TT).
Helpful values regarding the analyzed indicators suggested that
the model is probably operating more effectively.50 It was
observed that ETR proved to be the most effective ML
technique for estimating the unrecorded DTS with a maximum

R2 score of 0.99, a low MSE of 3.36, least TT of 0.28 sec. and
an RMSE of 1.83, accompanied by additional helpful statistical
measures (Figure 3b). The predicted DTS along with elastic
and petrophysical properties on decomposed seismic by CWT
(real part of seismic trace) is employed for volumetric
estimation through ResNet to accomplish the aforementioned
limitations.
3.1. Continuous Wavelet Transform. The CWT

algorithm within SD is widely employed, regarding the
decomposition of strata layers along with the analysis of
their compositional attributes.51 This transformation is also
referred to as frequency-dependent SD, as it breaks down the
traditional time-domain amplitudes into their frequency-
domain counterparts.52 Consequently, the isofrequency panels
provide a clear representation of how time-domain amplitudes
have been decomposed to frequency domain, a crucial aspect
of the current study. It operates by adjusting the time support
of the wavelets to accommodate diverse frequencies. Once the
time support expands or contracts, the frequency assistance of
the wavelet shifts toward higher or lower ranges of frequency,
respectively. Consequently, the resolution of the frequency
improves while the resolution in time diminishes, and vice
versa.53 CWT conveys remarkably improved vertical seismic

Figure 4. Petro and elastic properties of wells (a) Buzdar S_01 and (b) Buzdar SD_03 integrated with the real part of the seismic (decomposed by
CWT) along with usage of ResNet for predicting the petroelastic volumetric approximation. The facies probability is the final achievement with
net/gross thickness estimated through cutoffs i.e., Vsh < 30%, PHIE > 5%, and Sw < 45%.
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resolution when observed as a repeated panel of a nonsta-
tionary seismic signal. CWT offers precise characterization of
stratigraphic reservoirs within the time−frequency domain,
ultimately delivering the finest vertical seismic resolutions.54,55

The basic methodology comprises that CWT decomposes
the signal by convolving it with the wavelet.56 These wavelets
are scaled and translated to cover all possible scales and
positions and are then correlated with the signal. This
correlation provides information about the presence of features
or patterns in the signal on that particular scale and position.
CWT reduces the number of data points in the transformed
signal to focus on specific frequency components by selecting
certain scales or frequencies of interest and discarding others,
which allows preservation of high-frequency components.57 A
complex-valued signal is obtained as a result of CWT, which
has both real and imaginary parts.52 The real part of the CWT
represents the amplitude of the wavelet that best matches the
signal, whereas the imaginary part represents the phase
information.58 CWT analyzes the high-frequency components
effectively in seismic data that are crucial for characterizing the
subsurface by selecting the appropriate wavelets and scales.
This preserved high-frequency information can be related to
high-frequency well data, such as data from sonic logs, which
are sensitive to the subsurface’s elastic properties.59 The real
part of the CWT signal is trained on petrophysical properties
like PHIE, Vsh, and Sw along with the elastic properties,
including P-impedance, DTS, etc., which have direct effects on
the amplitude of seismic waves60 (Figure 4a,b). Assimilating
seismic data and well-log data, the CWT is applied to extract
features, which are then passed through the trained ResNet for
prediction.61

3.2. ResNet Architecture. ResNet works on a DNN
architecture having the ability to handle very deep networks
successfully. It consists of several layers, including convolu-
tional layers, residual blocks, and fully connected layers.62 The
input to a residual block is directly incorporated into the
outcome of that block. This means that the network can learn
to make small adjustments to the input feature map to produce
the desired output.62 After multiple residual blocks, a ResNet
typically includes fully connected layers or other specialized
layers for specific tasks like classification or regression.63 The
gradient can easily flow through the skip connections, making
it possible to train very deep networks.64

The ResNet model has multiple layers, including Conv1, SE-
Basic-Block, Conv2_x, Conv3_x, Conv4_x, and Conv5_x, a

global average pooling layer, and a fully connected layer
(Figure 5). A convolutional layer Conv1 includes a batch
normalization layer, activation function ReLU, and a max-
pooling layer.65 The max-pooling layer’s addition aids in
minimizing the model’s dimensions and parameters, expanding
the receptive fields, and retaining important feature informa-
tion. SE-Basic-Block is the second part and comprises a
residual basic block and a squeeze-and-excitation (SE) module.
There are two convolutional layers in the second part. The SE
module was embedded in the residual basic block to form a
SE-Basic-Block. Output features of SE-Basic-Block become
inputs of Conv2_x. This feature mapping similarly continues
to Conv3_x and so on up to Conv5_x. The seventh part global
average pool uses the GlobalAvgPool function, and the output
size of this layer is set to 1 × 1. The eighth part, the fully
connected layer, is the classifier of ResNet. Its output was set
to 1, which corresponds to the types of data sets to train and
classify, i.e., elastic, petrophysical, and gas sand facies. ResNet
is trained using backpropagation with RMSprop and a learning
rate of 0.0001.
The extracted features from CWT can serve as input to the

ResNet architecture. Thin bed gas sand facies prediction using
ResNet involves seismic data preprocessing, i.e., clean,
normalize, align, handling missing values and outliers to
remove noise and to extract relevant features.66 ResNet is
trained on labeled data, where the labels could represent
various geological or petrophysical properties of interest, such
as lithology, porosity, or fluid saturation, and split the labeled
data set into training, validation, and testing subsets.27 During
training, ResNet learns to map the extracted features from
CWT to the target properties, effectively learning the complex
relationships within the data. The integration of CWT and
ResNet creates an iterative framework that can be refined over
time with the enhanced band of seismic data and its derived
attributes.67

Once the ResNet model is trained, it can predict various
subsurface properties or classifications (elastic, petrophysical,
and gas sand probability volume) based on the learned
patterns, which can be critical for reservoir characterization or
exploration tasks.68 The integrated framework allows not only
accurate predictions but also interpretable outputs. Overall, the
integration of CWT and ResNet combines the strengths of
advanced signal processing techniques with the DL capabilities.
This approach can enhance the accuracy and efficiency of
subsurface characterization, making it particularly valuable in

Figure 5. Architecture of the proposed ResNet model represents major components and layers with ultimate results.
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Figure 6. Petrophysical properties of all three wells: (a) Buzdar S_01 highlighted a potential body of 40 m calculated by the behavior of low GR,
NPHI-RHOB crossover (filled by red), high LLD values than LLS (filled by red) with good porosity and less Sw; (b) Buzdar SD_03 depicted a
potential sand body of about 50m observing similar log behavior; and (c) Buzdar SD_04 shows comparatively thin plausible zone of only 15 m.
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the oil and gas industry for optimizing reservoir evaluation and
exploration efforts.

4. RESULTS
In the current study, many of the severe problems are handled
through combined techniques, including a definite reservoir
zone identification through petrophysics and stratal variation
through horizon picking along with structural delineation. Also,
missing data approximation and limitations in the seismic data
set, such as the range of angle sets, are exceptionally handled
by the implication of ML techniques. The integration of
ResNet with CWT provided a solution toward more enhanced
property prediction compensating for the data resolution
problems. The adopted workflow starting from missing data
prediction, generating high-frequency components, such as S-
impedance using poststack seismic along with its CWT
attributes, and then estimating petrophysical properties
delineated the heterogeneity of the reservoir more profoundly.
Finally, the reservoir facies are modeled through a relationship
utilizing both elastic (P-impedance, S-impedance, DTS,
RHOB) and petrophysical (PHIE, Vsh, Sw) properties for
the demarcation of producing sand probabilities.
4.1. Petrophysics. Several processes were performed for

petrophysical analysis, initiated by identifying the possible
reservoir zone within the prolific B-interval. The signatures of
logs are analyzed in detail to designate their potential
significance. All three wells delineated plausible gas-bearing
zones by the assessment of calculated petrophysical properties,
including Vsh, porosities, and Sw. The analysis approved the
presence of sands with intercalation of shales. Comparatively
to the B-interval in nearby fields, such as Kadanwari, Mehar,
Sawan, etc., the thickness of potential sands is good with a net
thickness of about 40 m within the depth range of 1250−1290
m in Buzdar S_01 (Figure 6a). The validation of the results
was confirmed by observing the NPHI-RHOB crossover, as
well as the clear demarcation among the deep (LLD) and
shallow (LLS) resistivity curves. The calculated reservoir
properties, i.e., Vsh ranging 9−10% in the lithology track (less
values demarcated clean potential sands within B-Interval),
PHIE about 15−18% within the porosity track, and Sw of

approximately 8% in the saturation track, result in gas-prone
sand facies delineation.
Similarly, Buzdar SD_03 is evaluated, and the gas-bearing

zone within the B-interval is recognized based on the hard
constraint well logs’ petrophysical evaluation. The thickness of
the potential body is approximately 50 m with PHIE ranges of
14−17%, Vsh is 8−10% and Sw of 8%, making it overall a
clean, porous, and potential sand (Figure 6b). Buzdar SD_04 is
less prominent as the producing sands’ net thickness is not as
much in comparison to the other interpreted two wells. The
net thickness observed for the gas sand lithofacies is about 15
m within the depth range of 1295−1310 m based on the
calculated properties, including Vsh of around 6−7%, PHIE
estimated to be 8−15%, and less Sw of 6% (Figure 6c).
4.2. Seismic Interpretation. The formation tops of

various lithologies observed during the well drilling were
correlated with seismic data for interpreting horizons. Overall,
three horizons have been interpreted, depicting the strati-
graphical variation of beds, namely, Lower_Goru, Badin_shale,
and Sand_Below Badin_shale (Figure 7). The interpreted
section of an arbitrary line covering the entire field demarcated
the deepening of formations in the northwest while shallower
regions in the southeast due to basement high. The basement
highs provided the sediment influx that is deposited westward
and can be observed on flattened seismic sections by the
thickening of the deposited sediments. Deposition at all levels
is believed to be from the southeast to northwest direction.2

The wells are drilled comparatively in deeper zones while
bonded locally in the horst-graben structural styles, hence
confirming the extensional regime with the normal faulting
pattern. Such structures are present throughout the LIB along
with basic elements of the petroleum system. Grabens are the
main areas for the generation of hydrocarbons, whereas
accumulation is made via horsts that trap hydrocarbons. The
main constituents of the petroleum system are present as
proven by the number of oil and gas discoveries in the area.2

4.3. Elastic and Petrophysical Properties. The con-
sistent DTS is estimated using ML techniques that are
furthermore employed for the prediction of S-impedance
volumes using poststack seismic by the integration of ResNet
and CWT. The dependency of single properties, i.e., acoustic

Figure 7. Interpreted seismic section on an arbitrary line passing through wells employed in the study delineates the overall trend of the interpreted
horizons (dipping in the northwest direction due to basement highs in the southeast) covering the LGF. The index map shows the arbitrary line
coverage in the field.
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impedance, vanished by providing additional components of
seismic data along with improved resolution for characterizing
thin heterogeneous sands. The conventional seismic inversion
techniques offer a qualitative assessment of subsurface
configurations and struggle to accurately depict thin geological
layers, all while being constrained by limited vertical seismic
resolution. Additionally, deterministic inversion methods are
challenged by their inability to directly recover precise values
of acoustic impedance from seismic traces due to band
limitation.69

A comparison between model-based seismic inversion
(conventional) and ML-approximated acoustic impedance
(integrating ResNet and CWT algorithms) is depicted in
Figure 8a,b, respectively. The blocky nature of deterministic
inverted property suggested the missing high-frequency
components with only low-frequency incorporation through
the LFM. The conventional inverted property is band-limited

in nature and tuned the thin sands of varied B-interval
dispersed throughout the field. It clearly differentiated that
layers refining are prominent in the ML-derived acoustic
impedance. In both techniques, a good match of estimated
volumetrics is observed at well locations by coloring wells with
relevant properties, however, the layer resolution is compre-
hensively increased in ML property. The low-value ranges
(7500 m/s*g/cm3) encompassing the gas sands between
shales demarcate the potential presence in the B-interval. As
the resolution is enhanced and finer resolution is achieved, the
ML property deals more thoroughly with the heterogeneities.
The map of the ML-based P-impedance is depicted in Figure
9, which demarcated the channelized potential body passing
through good gas-producing wells, i.e., Buzdar S_01 and
Buzdar SD_03, along with limited production well of Buzdar
SD_04. The blind wells, i.e., Buzdar S_02 and Buzdar SD_01,

Figure 8. (a) Conventional P-impedance observing low resolution for potential sand bodies and (b) advanced ML technique improved the
resolution of P-impedance with enhanced capability of illuminating heterogeneous thin potential sands.
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Figure 9. Average values within the B-interval depicted low impedances (<7500 m/s*g/cm3) for potential sand bodies.

Figure 10. (a) RHOB displayed in section view through an arbitrary line delineating low-density sand bodies within the B-interval of the LGF and
(b) the less dense body is passing through all of the wells (active and blind) while illustrating channelized sands throughout the field.

Figure 11. (a) Section of S-impedance demarcated the potential zone through specific value ranges (<4000 m/s*g/cm3) passing through wells
colored with similar properties and (b) the map assessed the S-impedance throughout the field and captured similar trends of channelized potential
body comparable to P-impedance.
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demonstrated low impedances, hence confirming their
productivity.
The other important property, including the RHOB, is

depicted on an arbitrary line in Figure 10a. The RHOB serves
as a crucial indicator to validate the existence of less dense
fluids. Low RHOB values i.e., <2.3 g/cm3, are typically
associated with the presence of fluid gas within rock
formations.70 Porous sand reservoirs containing hydrocarbons
reduce the stiffness and hence reduce elastic properties, such as
P-impedance, S-impedance, RHOB, and the Vp/(V s) ratio.
Low RHOB values suggest that the subsurface material is not
very compact and contains porous materials with less dense
fluids, mainly gas. The map of RHOB generated by taking the
average values within reservoir B-sands exhibited low values for
gas-prone sand bodies (Figure 10b). The low values in all three
wells along with the blind wells confirm the presence of less
dense sand bodies.70

The product of RHOB and DTS is a vital property for
confirming the fluids in the reservoir sands. The S-impedance
is normally evaluated alongside the P-impedance for
lithological as well as pore fluid identification.70 Figure 11a
depicts the S-impedance section bisecting wells and prom-
inently demarcates the potentially important B-interval sand
body. Below the major gas-bearing sand bed, a thin gas-prone
bed is also present around the time (910 ms) passing through
active wells and observed also in other elastic property
sections, including P-impedance and RHOB. This thin bed can

be assessed as a future prospect of the field. The S-impedance
is mapped within the B-interval and a very similar trend of the
channelized gas-prone zone delineated through values (<4000
m/s*g/cm3) is observed throughout the field passing through
active and blind wells (Figure 11b).
The estimation of petrophysical properties plays its part in

elaborating the heterogeneities, regarding porosities, shale
volumetrics, and fluid distribution, mainly water. The Vsh
property displayed in the section through a similar arbitrary
line demonstrated the presence of low shale contents in the B-
interval (Figure 12a). Overall, clean sands are present at well
locations with values less than 30%, while comparatively high
shaly contents are observed in the southeastern portion. A
decent tie is perceived among the modeled Vsh displayed in
sections and wells that are colored with similar attributes. The
Vsh mapping in the B-interval captured the variability
regarding shale distribution throughout the field and depicted
less quantities by supporting the results derived through elastic
properties (Figure 12b).
One of the key petrophysical properties, i.e., PHIE is

displayed in the section view bisecting well locations (Figure
13a). The wells are colored with similar properties and a good
match is observed among PHIE volumetric and wells. Good
porosity values are present at well locations in the B-interval
ranging up to a maximum of 20%. For an obvious
understanding, the porosity is mapped, which depicts porous
channelized sand bodies that act as play fairways (Figure 13b).

Figure 12. (a) Less Vsh is estimated within the B-interval sands of LGF with a decent match of wells and (b) Vsh map outlined less shaly content
(<0.30) passing through wells while outlining additional promising zones.

Figure 13. (a) High porosity is observed within B-interval sands passing through all wells and (b) the porosity distribution map highlighted porous
zones feasible for entrapping gaseous fluids.
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Overall, there is diversity in the distribution of porosity in the
field with the demarcation of compacted zones (porosity less
than 5%), which are not feasible for additional wells.
The Sw is depicted in the section view, where low values

(<0.45) are present at well locations within the B-interval
(Figure 14a). The results obtained are too supportive among
other petrophysical properties for the vibrant discrimination of
clean, porous sands filled with gas. The Sw map also
illuminated the sands with low water content throughout the
field having average values of less than 50% in the B-interval
(Figure 14b).
One of the key advantages is the approximation of the gas

sand facies distribution utilizing the estimated Vsh, PHIE, and
Sw. For gas sands, the Sw less than 45%, Vsh less than 30%,
and PHIE greater than 5% are employed clearly distinguished
producing sands as depicted on the section view (Figure 15a).
High probability values at the B-interval are aligned with the
identified gas-bearing sand facies at the well location. For the
distribution of gas sands, the B-interval is mapped that justifies
all of the results (elastic and petrophysical) and discriminates
the producing sand bodies (Figure 16). The map demon-

strated high gas sand probability values and confirmed that the
channelized sand body acts as a play fairway for the producing
wells.

5. DISCUSSION
Seismic data can be affected by numerous factors, encompass-
ing lithological variations, complexities in data acquisition,
limitations in frequency bands, issues related to scale, and
variations in both vertical and lateral sedimentary deposition.71

Nonetheless, when the hydrocarbon-bearing strata lie beneath
the vertical resolution of seismic data, the task of characterizing
the reservoir becomes notably more formidable.72 Comparable
challenges were encountered in a research area in which the
detection of heterogeneous thin prospective sands proved
elusive when utilizing a data set having limitations among a
limited frequency range of poststack seismic data. In this
situation, not only did the conventional seismic data lack
information regarding low-high frequency ranges but attempts
to enhance its utility through deterministic inversion of
poststack model-based inversion, focusing solely on low

Figure 14. (a) Low Sw is present among all wells, clarifying the potential capability of B-interval, and (b) Sw is mapped as having low values at
producing wells along with discrimination of plausible gas-prone sands.

Figure 15. Decent match between wells and estimated gas sands is observed, while high gas sand probability is present in the B-interval sand.
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frequencies, also proved unsuccessful in highlighting subtle
geological features. This signifies the difficulty in accurately
characterizing the reservoir on the band-limited seismic data
set along with the unavailability of its multiangle ranges. The
missing DTS also created a hurdle for building a petroelastic
relationship that helps capture the complexity of the subsurface
geology.73

DTP and DTS play a vital role in building rock physics
templates for the classification of lithofacies.74,75 Previously, to
address the issues regarding DTP and DTS, linear relationships
were taken among the seismic velocities and relevant rock
properties, such as pores, fluids, shale volumetrics, etc., for
assessing poor or missing zones.76−78 Contrarily, ML acts as an
efficacious tool having the capability of building nonlinear
relationships amid logs based on prominent features for
unrecorded log estimation especially DTS that comprehen-
sively appraise the reservoir characteristics. Due to the intricate
reservoir properties of the B-interval along with the limitations
in data, the ML techniques proved critical and acted as an
enhanced tool for approximating the DTS.8 The accuracy of
the estimated DTS is valued by statistical measures, including
R2 and MAPE.78 Few many researchers have successfully
applied ML approaches for DTS prediction, i.e., Gamal et al.,12

employed RF for building sonic prediction models in complex
lithology rocks, including sandstone, limestone shale, and
carbonate formations. In the study area, the most effective ML
algorithm in predicting the missing DTS was DTS, identified
through evaluation metrics applied to the different sample data
sets extracted from training.
Recent studies conducted in the LGF sand intervals were

performed to highlight the plausible gas-bearing sands.79

Various authors performed multiple poststack inversion
methods to calculate the reservoir parameters integrating
seismic attributes, well logging, and inversion techni-
ques.24,80,81 However, developing a novel approach incorporat-
ing wells and seismic for petroelastic relationships through

integration of ResNet and CWT provided comprehensive
results for quantitative assessments of facies heterogeneity.
The CWT of seismic data serves as an effective technique for

improving resolution capabilities and analyzing the strati-
graphic units in more detail. Cumulatively, it encompasses the
optimized hydrocarbon-bearing reservoir characterization,
thickness estimation, stratigraphy imaging, and the successful
exploration, and discovery of oil and gas resources.51,54,82 The
researchers have proven the application of CWT along with
conventional seismic inversion for sedimentological inves-
tigations assessing heterogeneities, including horizontal and
vertical variability of facies and fluids.25,26 Advanced data
analysis techniques, including signal processing (CWT) and
DNN (ResNet), are employed to obtain robust, efficient,
multicomponent outcomes on limited data sets for predicting
elastic and petrophysical properties that gain thorough insights
about the subsurface.
The classic neural networking (NN) approximation is

adopted for handling various geophysical concerns, including
wavelet calculations,55 velocity investigation,83 autopick of
horizons,84 lithofacies classification on seismic,85−87 and for
the relationship of seismic extracted attributes toward their
reservoir characteristics.88 However, notwithstanding its
numerous effective procedures in exploration geophysics, the
classic NN method has severe restrictions and shortcomings.
In specific, the NN method is chiefly limited by its gradient-
based nature.89 ResNet is a DNN architecture that has gained
recognition for its proficiency in effectively managing excep-
tionally deep networks. Its composition encompasses multiple
layers, encompassing convolutional layers, residual blocks, and
fully connected layers.62

The integration of CWT and the ResNet architecture brings
together the advantages of the robust learning capabilities of
DNN. This innovative method has the potential to significantly
enhance the precision and effectiveness of subsurface
characterization, making it extremely beneficial in the oil and

Figure 16. Integrated approach of ResNet and CWT modeled the probabilistic output of gas sands, illuminating the porous, gaseous, and
channelized sand bodies.
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gas industry. It plays a pivotal role in optimizing reservoir
evaluation and exploration activities.
Low P-impedance of the studied field acknowledged gas-

prone sand lithologies encased between shaly compartments
having comparatively higher values due to their compactness
and stiffness.90 The low-value ranges (less than 7000 m/s*g/
cm3) of P-impedances are also observed in nearby gas-
producing fields for thin heterogeneous potential sand intervals
of the LGF, including Kadanwari, Mubarak, Rehmat, etc., using
conventional procedures. The exact values of thin heteroge-
neous Khadro Formation of the LIB are successfully observed
through the conventional technique of stochastic inversion
after following a detailed and multistep process.91 Similarly, S-
impedance obtained through advanced ML integrated
techniques followed trends that strengthened P-impedance
outcomes with low values, illuminating gas-filled sands. S-
impedances approximated through conventional algorithms
played their role by providing valuable information regarding
fluids, including Zamzama and Rehmat gas fields.6,7,24

The main geological factors that introduce the heterogeneity
effects include porosity, shale contents, and fluids.24 These
properties are comprehensively assessed in the research area,
and their variability is demarcated throughout the field. The
low Vsh values (less than 30%) along with high Vsh values
(10−15%) indicate prominent reservoirs of the LIB.92,93

Overall, low Vsh and high PHIE with low Sw are observed
in the study area, which clarifies the distribution of the B-
interval channelized sand body in the study area, which is more
pronouncedly delineated by the facies distribution mapping.
Good portions of potential capabilities are observed in the field
that can be tested for additional wells and enhanced
production from the field.

6. CONCLUSIONS
Numerous goals have been accomplished, beginning with
overcoming data restrictions by precisely predicting missing
DTS in all wells through ML algorithms. Limitation of low-
resolution seismic for characterizing thin sand had been
attained by developing a novel approach, i.e., an integrating
advanced ML technique (ResNet) with decomposed seismic
traces of CWT. The incorporation of multiscale properties
through the employed technique has the potential to
revolutionize subsurface properties through the approximation
of enhanced elastic and petrophysical attributes, benefiting
hydrocarbon exploration and production efforts. The elastic
attributes (P-impedance <7500 m/s*g/cm3, S-impedance
<4000 m/s*g/cm3, RHOB < 2.3 g/cm3) and the petrophysical
properties, such as Vsh < 0.3, PHIE ≈ 20, and Sw < 0.45,
successfully demarcated the thin channelized sand body
throughout the field along with the incorporation of the
heterogeneities. Risk-efficient potential zones have been
designated that can be drilled for optimized production of
the field. Hence, the cost-effective, time-efficient, and less
laborious techniques successfully handled major data limi-
tations with improved property extraction for accurate
characterization of thin potential heterogeneous bodies.
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