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The risk of suicide in patients with major depressive disorder (MDD) poses a major concern, with 
studies suggesting that genetics may be a contributing factor. Although there are many transcriptomic 
studies on postmortem brain tissue related to suicidal behavior, the blood transcriptional mechanisms 
of suicidal ideation (SI) remain unknown. This study utilized a weighted gene coexpression network 
analysis (WGCNA) approach to investigate the associations between gene coexpression modules and 
SI in individuals with MDD using peripheral blood RNA-seq data from 75 MDD patients with SI (MDD_
SI), 82 MDD patients without SI (MDD_nSI), and 149 healthy controls (HC). An ANCOVA was conducted 
to assess differences in gene coexpression modules among groups, with age and sex included as 
covariates. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases 
were used to annotate module functions. Results indicated that the magenta module (associated 
with RNA splicing processes) differentiated MDD_SI from MDD_nSI (p = 0.021), while the green 
module (related to immune and inflammatory responses) distinguished MDD_SI from HC (p = 0.004). 
Additionally, three modules showed differences between MDD_nSI and HC: magenta (p = 0.009), 
brown (related to innate immunity and mitochondrial metabolism; p = 0.001), and turquoise 
(associated with energy metabolism and neurodegeneration; p = 0.005). Our findings highlight that 
gene expression regulation, immune response, and inflammation may be linked to SI in patients with 
MDD, while pathways associated with innate immunity, energy metabolism, mitochondrial function, 
and neurodegeneration appear to be more broadly related to MDD.
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Major depressive disorder (MDD) is a serious and debilitating psychiatric disorder that affects approximately 
121 million individuals globally1. Patients with MDD face an elevated risk of suicide, a leading cause of death 
worldwide that results in an estimated 1 million fatalities annually2. Among individuals who died by suicide with 
a psychiatric diagnosis, up to 38.9% had previously been diagnosed with MDD3. Suicidal ideation (SI), an early 
warning sign of potential suicidal behavior, frequently occurs in patients with MDD and presents a crucial target 
for timely intervention4,5. However, the biological mechanisms that underlie SI in MDD patients remain largely 
unexplored and poorly understood6.

Genetic factors have been suggested to play a role in suicide7–9, but focusing solely on DNA-level studies 
has limitations, as suicide risk is shaped not only by genetics but also by environmental factors and personal 
circumstances10. Recent advances in transcriptomics offer promising avenues for understanding the complex 
biological processes associated with MDD and suicide by examining RNA-level gene expression, which provides 
insights into gene structure, function, and regulatory networks across the genome11. Transcriptomic studies 
using postmortem brain tissue have shed light on gene expression patterns associated with MDD and suicide. 
For example, Pantazatos et al. (2017) identified 34 differentially expressed genes (DEGs) linked to MDD and 
suicide, particularly genes involved in oligodendrocyte differentiation and ATPase activity12. Similarly, Pandey 
et al. (2019) observed increased expression of cytokines, inflammasomes, and Toll-like receptors (TLRs) in 
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brain samples from patients with MDD who died by suicide13. Furthermore, Sha et al. (2023) reported that 
inflammatory and neurodevelopmental pathways are associated with suicide in postmortem brain tissue14. 
However, these studies ignored the high interconnection between genes with similar functions and focused only 
on the identification of DEGs.

Gene coexpression modules, which represent groups of interconnected genes with shared functions, provide 
a more nuanced understanding of complex biological mechanisms15. Weighted gene coexpression network 
analysis (WGCNA) has been utilized to cluster genes with similar expression into a gene coexpression module, 
and this approach has been widely applied to biological processes related to neurological and psychiatric disorders, 
including MDD16–18. Previous studies have employed the WGCNA algorithm to analyze the transcriptome of 
human postmortem brain tissue from suicide decedents and found that suicidal behavior is related to nitric 
oxide synthase activation, the estrogen signaling pathway, and synaptic dysfunction15,19. However, suicide is a 
complex process, and the biological mechanisms of SI and suicidal behavior may not be completely consistent4. 
Detecting the transcriptome in clinically depressed individuals with SI, may uncover RNA expression patterns 
specifically related to SI. To our knowledge, only one study to date has explored the gene coexpression modules 
in clinical patients with MDD to reveal the biological processes and pathways underlying SI20. This study 
indicated that SI-associated gene modules were enriched for functions related to defending against microbial 
infections, inflammation, and adaptive immune responses20. Furthermore, evidence suggests that over 80% of 
gene expression in peripheral blood is similar to that in the brain21. Given the accessibility of peripheral blood, 
it may provide a practical means of exploring the transcriptomic landscape of SI, potentially circumventing the 
limitations of postmortem brain tissue studies.

Identifying gene coexpression modules associated with SI might be pivotal in clinical translational studies for 
developing blood-based biomarkers that could identify individuals at risk of suicide early. Thus, the aim of this 
study was to employ the WGCNA method22 to identify the gene coexpression modules associated with SI using 
peripheral blood RNA-seq data. Subsequently, functional enrichment analysis of the modules was conducted to 
elucidate their biological functions, with the goal of uncovering transcriptomic mechanisms associated with SI 
in MDD patients.

Results
Demographics and relevant clinical measurements for the participants are shown in (Table 1). There was no 
difference in age among the three groups, but sex (F = 9.16, p = 0.010) was significantly different among the 
three groups. The MDD patients with SI (MDD_SI) and MDD patients without SI (MDD_nSI) groups did not 
differ in onset age, total duration, onset number, or HAMA score, but as expected, they differed in HAMD score 
(t = 35.6, p < 0.001).

The data are presented as the mean (SD) unless otherwise stated.
MDD_nSI major depressive disorder without suicidal ideation, MDD_SI major depressive disorder with 

suicidal ideation, HC healthy control, HAMD hamilton rating scale for depression, HAMA hamilton rating scale 
for anxiety.

Gene coexpression network construction
In this study, we identified 61,806 mRNA transcripts through alignment with the reference genome. After 
removing transcripts with low expression levels, 10,884 genes were retained for further analysis. Through 
WGCNA, a total of 19 coexpression modules were constructed, with the number of genes in each module 
ranging from 37 to 2955. Notably, the grey module comprised 734 genes and did not belong to any specific 
module (Table S1). Four modules were significantly different among the three groups (Fig. 1). Post hoc analysis 
revealed that one module differed between the MDD_SI and MDD_nSI groups (MEmagenta: p = 0.021), three 
modules differed between the MDD_nSI and healthy controls (HC) groups (MEmagenta: p = 0.009, MEbrown: 
p = 0.001, MEturquoise: p = 0.005), and one module differed between the MDD_SI and HC groups (MEgreen, 
p = 0.004).

Functional annotation of genes in the coexpression modules
The GO and KEGG functional annotation and pathway enrichment analyses were performed to reveal the 
biological functions of the genes within the modules. For modules with more than 15 significant terms, only 
the top 15 are presented (Fig. 2, Table S2). The magenta module was mainly enriched in nuclear RNA speck 

Characteristics MDD-nSI MDD-SI HC Statistics p values

Sample size 87 81 150 NA NA

Age (years) 28.48 (9.64) 27.32 (9.89) 26.92 (8.64) 0.797 0.452

Sex (M, %) 36 (41.38%) 16 (19.73%) 47 (31.33%) 9.16 0.010

Onset age 26.1 (9.73) 25.1 (9.25) NA 0.437 0.510

Total duration (months) 31.91 (46.89) 29.04 (39.34) NA 0.173 0.678

Onset number 5.62 (18.59) 2.96 (11.68) NA 1.07 0.303

HAMD scores 19.76 (3.89) 23.77 (4.79) NA 35.6 < 0.001

HAMA scores 15.59 (5.85) 16.19 (6.37) NA 0.396 0.53

Table 1.  Characteristics of the participants.
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processing and regulation of alternative metabolic processes, such as RNA splicing (enrichment = 0.056, 
FDR-p < 0.001) and regulation of mRNA processing (enrichment = 0.065, FDR-p = 0.013), and no KEGG 
pathway significant after FDR multiple correct in this module. The brown module was mainly associated 
with the activation of innate immune-related biological processes and mitochondrial metabolism pathways, 
such as the innate immune response-activating signaling pathway (enrichment = 0.187, FDR-p < 0.001), the 
FoxO signaling pathway (enrichment = 0.191, FDR-p < 0.001), and the thyroid hormone signaling pathway 
(enrichment = 0.198, FDR-p < 0.001). The turquoise module was primarily related to the regulation of 
metabolism and energy production, including pathways such as oxidative phosphorylation (enrichment = 0.522, 
FDR-p < 0.001), proton motive force-driven ATP synthesis (enrichment = 0.645, FDR-p < 0.001), and 
thermogenesis (enrichment = 0.375, FDR-p < 0.001). It was also enriched in pathways related to multiple 
types of neurodegenerations, including Parkinson’s disease (enrichment = 0.368, FDR-p < 0.001), Huntington’s 
disease (enrichment = 0.340, FDR-p < 0.001), and Alzheimer disease (enrichment = 0.286, FDR-p < 0.001). The 
green module was mainly enriched in immune and inflammatory responses, including pathways such as cell 

Fig. 1.  Differences in gene coexpression modules among the MDD-SI, MDD-nSI, and HCs groups. MDD_nSI 
major depressive disorder without suicidal ideation, MDD_SI major depressive disorder with suicidal ideation, 
HC healthy control, ME module eigengene.
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and leukocyte activation involved in the immune response (enrichment = 0.162, FDR-p < 0.001), the B-cell 
receptor signaling pathway (enrichment = 0.214, FDR-p < 0.001), Th17 cell differentiation (enrichment = 0.185, 
FDR-p = 0.001), the JAK-STAT signaling pathway (enrichment = 0.151, FDR-p = 0.001), the chemokine signaling 
pathway (enrichment = 0.146, FDR-p = 0.001), and Fc gamma R-mediated phagocytosis (enrichment = 0.216, 
FDR-p < 0.001).

Hub genes of the differential modules
The PPI networks were constructed for the top-ranking genes within the magenta, brown, green, and turquoise 
modules. These networks were visualized using Cytoscape software, as shown in (Fig. 3). The genes with the 
highest connectivity were the hub genes for these modules and were identified using the cytoHubba plugin 
(Table  2). Eukaryotic translation initiation factor 4A3 (EIF4A3), serine and arginine rich splicing factor 11 
(SRSF11), and splicing factor 3B subunit (SF3B1) were identified in the magenta module, which was enriched 
in RNA splicing and translation initiation (Fig.  3A). Tumor protein p53 (TP53), E1A binding protein p300 
(EP300), TNF receptor associated factor 6 (TRAF6), and histone deacetylase 1 (HDAC1) were identified in 

Fig. 2.  The GO and KEGG functional enrichment analysis of gene coexpressed modules. GO gene ontology, 
KEGG Kyoto encyclopedia of genes and genomes.
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the brown module and were enriched in the repair of damaged DNA, regulation of immune responses and 
inflammation (Fig. 3B). Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (FAU), ribosomal 
protein S3 (RPS3), RPS11, RPL23, and RPS8 were identified in the turquoise module, which is enriched in 
cellular processes, including regulation of apoptosis, mRNA translation, and protein synthesis (Fig. 3C). Spleen 
tyrosine kinase (SYK), Lck/Yes-related novel tyrosine kinase (LYN), phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit delta (PIK3CD), protein tyrosine phosphatase nonreceptor type 6 (PTPN6), signal 
transducer and activator of transcription 3 (STAT3), tyrosine kinase 2 (TYK2), interleukin 1 beta (IL1B), cluster 
of differentiation 8 alpha (CD8A), and integrin subunit beta 2 (ITGB2) were identified in the green module; 
these genes are enriched in inflammation and immune response and regulate signaling cascades in immune cells 
such as B cells, T cells, and macrophages (Fig. 3D).

The relationships between differential modules and depressive symptoms
Furthermore, in the analysis of the relationships between depressive symptoms and gene modules, only the 
magenta module was significantly related to HAMD scores in the MDD without SI group (r = 0.23, p = 0.037; 
Fig. 4).

Module Hub genes Role of hub genes

Megenta EIF4A3 (15), SRSF11 (14), SF3B1 (13) RNA splicing and translation initiation.

Brown TP53 (22), EP300 (16), TRAF6 (15), HDAC1 (15) Repair damaged DNA, regulation of immune responses and inflammation.

Turquoise FAU (86), RPS3 (78), RPS11 (77), RPL23 (75), RPS8 (74) Cellular processes, including regulation of apoptosis, mRNA translation, protein synthesis.

Green SYK (19), LYN (16), PIK3CD (15), PTPN6 (14), STAT3 (13), 
TYK2 (11), IL1B (10), CD8A (9), ITGB2 (9)

Inflammation and immune response, regulates signaling cascades in immune cells such as 
B cells, T cells, and macrophages.

Table 2.  Hub genes of modules with differential expression patterns among the MDD-SI, MDD-nSI and HC 
groups.

 

Fig. 3.  Protein-protein interaction networks and hub genes of gene coexpression modules.
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Discussion
In this study, we used transcriptional data to investigate the differences in blood gene expression among the 
MDD_SI, MDD_nSI, and HC groups. We found that two modules were linked to the MDD_SI, while three 
modules were specifically associated with the MDD_nSI. GO and KEGG enrichment revealed that genes 
within the MDD_SI modules were primarily involved in gene expression regulation, immune response, and 
inflammatory. On the other hand, the MDD_nSI modules were found to be associated with functions related to 
innate immunity, energy metabolism, mitochondrial function, and neurodegeneration.

Over the past two decades, a growing body of research has supported a theory that immune and 
inflammatory processes play a significant role in the pathogenesis of MDD and suicide23,24. Our results 
suggested that MDD_SI exhibit alterations in immune-related pathways, including cell and leukocyte activation, 
B-cell receptor signaling, Th17 cell differentiation, JAK-STAT signaling, and chemokine signaling pathways. 
These findings align with previous studies suggesting that MDD patients at high suicide risk may experience 
immune dysregulation, affecting both innate and adaptive immunity. This dysregulation involves key cell types 
related to inflammatory response and memory cells essential for long-term immune defense25,26. Altered Th17 
cell differentiation, observed in both animal models and humans, has been linked to the onset of depression27. 
Imbalances in T helper cell distribution in the bloodstream have been associated with suicide28. Increased IL1B 
expression was observed in MDD patients with a high risk of suicide29,30. A meta-analysis further demonstrated 
significantly greater levels of the proinflammatory cytokines interleukin (IL)-1β and IL-6 in suicide victims than 
in nonsuicidal patients and HC across blood, cerebrospinal fluid, and postmortem brain samples31. Moreover, 
Holmes et al.32 demonstrated heightened microglial activation in MDD_SI but not in those MDD_nSI32. 
Another study also suggested that the low-grade inflammation associated with MDD and suicidality may involve 
microglial priming and macrophage recruitment in the brain33. Activated microglia might increase cytokine 
production within the central nervous system, influencing noradrenergic or serotonergic neurotransmission 
and potentially contributing to suicidality34.

Our findings revealed RNA splicing, reflecting transcriptional mechanisms related to gene expression 
regulation, are associated with MDD_SI. Posttranscriptional processes, including alternative splicing and RNA 
editing, have been reported to contribute to suicide risk in individuals with MDD35. In particular, the hub genes 
EIF4A3, SRSF11, and SF3B1 identified in the brown module are known to be involved in the regulation of 
RNA splicing. Previous research has highlighted the connection between RNA splicing and suicidal behavior36. 
Furthermore, a postmortem brain tissue study demonstrated that aberrant alternative splicing and RNA editing 

Fig. 4.  Relationships between gene coexpression networks and depressive symptoms. MDD_nSI major 
depressive disorder without suicidal ideation, MDD_SI major depressive disorder with suicidal ideation, ME 
module eigengene, HAMD hamilton rating scale for depression, HAMA hamilton rating scale for anxiety.
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of the 5HT2C receptor and tryptophan hydroxylase are associated with suicidal behaviors, highlighting RNA 
splicing as a potentially modifiable mechanism in suicide pathology37.

Our findings suggest a correlation between energy metabolism and MDD. Researches have highlighted the 
significance of energy metabolism disturbances in the pathophysiology of MDD1,38. Notably, disturbances in 
energy metabolism, such as altered glucose metabolism39, mitochondrial dysfunction40, and abnormal ATP 
levels41, have been documented both in animal models and in clinical studies. A recent meta-analysis further 
proposed that abnormal extracellular ATP secretion, especially by astrocytes, is associated with depression, 
suggesting that targeting ATP may be an innovative antidepressant strategy42.

Cellular processes such as apoptosis regulation, mRNA translation, protein synthesis may also be 
related to the onset and development of MDD. Our study indicates that multiple pathways associated with 
neurodegenerative diseases are linked to MDD. Clinical studies suggest that MDD increased susceptibility 
to secondary neurodegenerative diseases such as Alzheimer’s disease43 and Parkinson’s disease44, which is 
support the findings of this study. We speculate that there is a shared neurobiological basis between MDD and 
neurodegenerative diseases. In addition, the expression of TP53, a hub gene in the brown module known for 
its role as a tumor suppressor and promotor of apoptosis, was altered under cellular stress. Increased apoptosis 
has been reported in animal models of stress-induced depression and in MDD patients45–47. Moreover, RPL23 
suppresses apoptosis, and its downregulation is associated with antidepressant efficacy48,49.

This study has several limitations. First, the sample size was limited, and expanding the sample size in future 
studies could enhance the robustness of the results. Second, the WGCNA aggregation of modules into a single 
value might obscure single gene-level details, and these outcomes lack experimental validation. Third, although 
we have included sex as a covariate, differences in sex across the three groups remain, and there may be an impact 
on the transcriptomic results. Finally, the current study did not assess the severity of SI or account for suicidal 
behavior. Future research should increase the sample size and assess SI and suicidal behavior independently to 
better understand the similarities and differences in their transcriptomic mechanisms.

In the present study, WGCNA was applied to construct gene-weighted coexpression network from peripheral 
blood to identify differentially expressed gene modules among the MDD_SI, MDD_nSI, and HC groups. The 
findings provide further evidence that SI in MDD patients is associated with gene expression regulation, immune 
response, and inflammatory, whereas that in MDD_nSI is related to pathways involving innate immunity, energy 
metabolism, mitochondrial function, and neurodegeneration. Our results enhance the understanding of the 
molecular mechanisms underlying suicide risk in MDD, offering potential insights into diagnostic biomarkers 
or therapeutic targets for managing suicide risk in MDD patients.

Materials and methods
Participants
Study participants aged 18–65 and patients were recruited from the Mental Health Center of West China Hospital 
at Sichuan University. The participants provided written informed consent as approved by the Ethics Committee 
of West China Hospital of Sichuan University (No. [2016] 170). The diagnosis of MDD was confirmed by trained 
psychiatrists based on the Structured Clinical Interview for DSM-IV (SCID)50. All patients did not use any 
antidepressants for at least 3 months before enrollment and had taken medication for no more than 1 week. The 
17-item Hamilton Depression Rating Scale (HAMD 17)51 and the Hamilton Anxiety Rating Scale (HAMA)52 
were used to measure the severity of depressive and anxiety symptoms, respectively. The inclusion criteria for 
healthy controls were that they had no DSM-IV diagnosis, no history of suicidal ideation or behavior, and no 
history of mental disorders or suicidal behavior in their first-degree relatives. Patients with serious physical 
illness and long-term substance use were also excluded.

MDD patients were divided into two subgroups: those with/without SI based on HAMD item 3 (suicide). 
The item evaluates SI as follows: 0 represents absent, 1 represents feeling that life is not worth living, 2 indicates 
wishes for death or thoughts of self-injury, 3 represents suicidal ideations or gestures, and 4 indicates attempted 
suicide. In this study, participants with a score of 2 or above indicated the presence of SI, as was the case in 
previous studies53–55. Finally, three groups were included in this study: 75 MDD_SI patients, 82 MDD_nSI 
patients, and 149 HC.

RNA extraction and quality control
Peripheral blood samples (3 ml) were collected from participants using Tempus Blood RNA Tubes (Applied 
Biosystems, Foster City, CA, United States). The tubes were inverted for 10 s to ensure thorough mixing and then 
stored at −80 °C for further analysis. Total RNA was isolated using the MagMAX Stabilized Blood Tubes RNA 
Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. RNA 
concentration was measured with a NanoDrop ND-2000 spectrophotometer.

RNA sequencing and data processing
A total of 1 µg RNA was used for RNA sequencing. The mRNA was isolated from the total RNA using oligo (dT) 
beads and then fragmented into small segments with lengths between 200 and 500 nt. The fragmented mRNA 
served as a template for the synthesis of first-strand complementary DNA (cDNA), followed by the generation 
of second-strand cDNA. The double-stranded cDNA was purified and subjected to end repair, dA tailing, and 
ligation to Illumina sequencing adapters. PCR amplification was subsequently carried out to generate the cDNA 
library. The library was sequenced on a NovaSeq 6000 System (by Illumina) using a 2 × 150 bp (PE) configuration 
according to the manufacturer’s instructions. The raw reads were subjected to a filtration process to yield clean 
reads. The cleaned reads were then mapped onto the reference genome using HISAT2 software (v 2.0.1). The 
RNA sequencing procedures were conducted by Genewiz (Suzhou, P. R. China).
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RNA sequencing data processing was conducted using the R package EdgeR56. Transcripts exhibiting 
counts per million (CPM) less than 1 across more than 5% of the total samples were discarded to eliminate low 
expression. Then, normalization was executed through the utilization of the trimmed mean of M-values (TMM) 
method57. To measure sample anomalies and establish overall associations, a biological coefficient of variation 
(BCV) plot was constructed58. Dispersions were estimated by employing the quantile-adjusted conditional 
maximum likelihood (qCML) strategy58.

Weighted coexpression network construction
The WGCNA algorithm, which follows a scale-free distribution, was applied to construct the coexpression 
network module in all samples22,59. The pickSoftThreshold function was applied to calculate the soft-threshold β 
based on the scale-free topology. A threshold of 8 was chosen when the fit index reached 0.85 (Figure S1A). The 
adjacency matrix was transformed into a topological overlap matrix (TOM) with the TOMsimilarity function60. 
Then, genes with similar expression patterns were clustered into the same color modules, with a minimum 
module size of 30 genes, while genes in the gray module were excluded from further analysis22,61. The module 
eigengene (ME), which represents the overall expression level of genes within a specific module, was calculated 
as the first principal component of the gene expression data.

Functional enrichment analysis of genes in the modules
We conducted a functional enrichment analysis by employing ClusterProfiler (v3.9) in the R package to 
determine further biological implications associated with the identified gene modules. This analysis used 
the biological process (BP) category of gene ontology (GO)62 and Kyoto encyclopedia of genes and genomes 
(KEGG) databases63. Pathways with a p-value < 0.05 after false discovery rate (FDR) correction were deemed to 
be significantly different. If more than 15 significant terms were identified, only the top 15 terms were presented.

Construction of protein-protein networks and identification of hub genes
To analyze the crucial genes in each module, genes from each module were mapped to the STRING database, 
which is instrumental in protein‒protein networks (PPIs)64. The transcriptional regulatory networks for each 
module were then established and visualized using the CytoHubba plug-in in Cytoscape software (v 3.7.2), and 
genes with the maximum degree of connectivity were identified as the hub genes.

Statistical analysis
Statistical analysis was conducted using the R software environment. One-way ANOVA was utilized to compare 
age, while the chi-square test was used to compare sex differences among the MDD_nSI, MDD_SI, and HC 
groups. Student’s t test was employed to assess the differences in onset age, onset number, total disease duration, 
HAMA scores, and HAMD scores between the MDD_nSI and MDD_SI groups. ANCOVA was performed to 
compare the averages among the MDD_nSI, MDD_SI, and HC groups, with age and sex included as covariates. 
Post hoc multiple comparisons were carried out using Tukey’s test with the R package multcomp. Additionally, 
Spearman’s correlation was utilized to investigate the relationships between the eigengenes of gene coexpression 
modules and HAMD or HAMA scores.

Data availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, 
Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China Na-
tional Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: 
HRA009854) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA009854.
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