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Abstract. Glaucoma is the leading cause of irreversible 
blindness globally. It is known that the incidence of glau-
coma is closely associated with inheritance. A large number 
of studies have suggested that genetic factors are involved 
in the occurrence and development of glaucoma, and even 
affect the drug sensitivity and prognosis of glaucoma. 
In the present review, 22 loci of glaucoma are presented, 
including the relevant genes (myocilin, interleukin 20 
receptor subunit B, optineurin, ankyrin repeat- and SOCS 
box-containing protein 10, WD repeat-containing protein 
36, EGF‑containing fibulin‑like extracellular matrix protein 
1, neurotrophin 4, TANK-binding kinase 1, cytochrome 
P450 subfamily I polypeptide 1, latent transforming growth 
factor β binding protein 2 and TEK tyrosine kinase endothe-
lial) and 74 other genes (including toll-like receptor 4, sine 
oculis homeobox Drosophila homolog of 1, doublecortin-like 
kinase 1, RE repeats-encoding gene, retinitis pigmentosa 
GTPase regulator-interacting protein, lysyl oxidase-like 
protein 1, heat-shock 70-kDa protein 1A, baculoviral IAP 
repeat-containing protein 6, 5,10-methylenetetrahydrofolate 
reductase and nitric oxide synthase 3 and nanophthalmos 1) 
that are more closely associated with glaucoma. The patho-
genesis of these glaucoma-associated genes, glaucomatous 
genetics and genetic approaches, as well as glaucomatous risk 
factors, including increasing age, glaucoma family history, 
high myopia, diabetes, ocular trauma, smoking, intraocular 
pressure increase and/or fluctuation were also discussed.
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1. Introduction

Glaucoma, a neurodegenerative eye disease, may lead to 
damage to the optic nerve and consequent vision loss, and is 
the leading cause of irreversible blindness globally (1). Vision 
loss results from damage to the optic nerve, which is caused by 
increased intraocular pressure (IOP) in glaucoma. If untreated, 
once vision loss from glaucoma has occurred, it is life long. 
There are an estimated 57.5 million people worldwide with 
glaucoma (2); for every 1,000 people, approximately eight 
are affected with glaucoma. It has been reported recently that 
there will be ~79.6 million people with glaucoma by 2020 (3) 
and an expected 111.8 million glaucoma cases by 2040 (4). 
Glaucoma has numerous subtypes; however, the different types 
have a number of common clinical manifestations, including 
nausea, mid-dilated pupils, serious eye pain, redness and 
blurred vision (5). Glaucoma has a number of classifications, 
according to anatomy, etiology, onset age and pathogenesis, 
and the clinical classifications (6) are presented in Fig. 1.

Besides genetics, there are numerous other risk factors 
for glaucoma, including increasing age (7-9), estrogen (10), 
frailty (11), myopia (12), diabetes (13-17), high myopia (18), 
hyperopia (19), hypertension (20), vasospasm (13), low ocular 
perfusion pressure (21), family history of glaucoma (7), sex (22), 
race (23), migraine (24), pigmentary dispersion syndrome (25), 
pseudoexfoliation syndrome (PEX) (7,9), oral microbiome (26), 

Research progress on human genes involved in 
the pathogenesis of glaucoma (Review)

HONG-WEI WANG1,  PENG SUN2,  YAO CHEN1,  LI-PING JIANG3,  HUI-PING WU4,  WEN ZHANG5  and  FENG GAO6

1Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500; 2Department of Ophthalmology, 
Longgang District People's Hospital, Shenzhen, Guangdong 518172; 3Department of Ophthalmology, 

The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041;  
4Department of The Scientific Research, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500;  

5Medical School, Nantong University, Nantong, Jiangsu 226001; 6Department of Hospital Administration, 
Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China

Received November 10, 2017;  Accepted April 12, 2018

DOI:  10.3892/mmr.2018.9071

Correspondence to: Dr Feng Gao, Department of Hospital 
Administration, Jingjiang People's Hospital, 28 Jingjiang Zhongzhou 
Road, Jingjiang, Jiangsu 214500, P.R. China
E-mail: wangyutingwangxin@163.com

Key words: gene, human glaucoma, pathogenesis, risk factor



WANG et al:  HUMAN GENES INVOLVED IN THE PATHOGENESIS OF GLAUCOMA 657

butanoate metabolism (27), unstable oxygen supply (28), infec-
tion (29,30), hematopoietic cell lineage (27), the p38-mitogen 
activated protein kinase pathway (31), retinitis pigmentosa (32), 
mitochondrial dysfunction (33), obstructive sleep apnea 
syndrome (34), basal transcription factors (27), calcium channel 
medication, α-blocker medication (7), treatment for systemic 
hypertension or Raynaud's disease (35), adrenergic agents (36), 
γ-aminobutyric acid and acetyl-coenzyme A metabolism (27), 
sulfa-based drug (36), corticosteroids (37), smoking (17), lysine 
degradation (27), IOP fluctuation (38), IOP increase (39) and 
caffeine (40). Of those risk factors for glaucoma mentioned, 
increased IOP is the strongest risk factor in the majority of 
subtypes of glaucoma (41); however, its pathogenesis remains 
unclear. Increased IOP may subsequently lead to posterior 
displacement and thinning of the lamina cribrosa (LC), which 
causes axonal damage and disrupted axonal transport to and 
from the lateral geniculate nucleus (LGN). Disruption of axonal 
transport interrupts retrograde delivery of nutrients from relay 
neurons of the LGN to retinal ganglion cells (RGCs) (42), 
possibly leading to the death of RGCs.

In addition to the afore-mentioned pathogenic factors for 
glaucoma, heredity additionally serves an important role in 
the pathogenesis of glaucoma. A previous study suggested 
that glaucoma maybe inherited from one generation to the 
next (43), indicating that specific types of glaucoma may have 
a genetic basis. Furthermore, familial clustering and twin 
studies demonstrate that specific types of glaucoma arise from 
heredity (44,45). The present review focuses on the current 
understanding and newest breakthroughs in pathogenic genes 
for glaucoma with the purpose of providing a comprehensive 
analysis of how reported gene mutations involved in glaucoma 
lead to the clinical phenotypes expressed in glaucoma. An 
overview of glaucoma-associated genes is presented.

2. Genetics of glaucoma

It is well known that there is a genetic basis for glaucoma in 
specific populations due to sex, ethnicity and positive family 
history predisposition to glaucoma. There has been strong 
evidence suggesting that glaucoma is markedly affected by 
genetic factors and is a complex, multi-factorial disease (46). 
Glaucoma has numerous types, of which the two most common 
are primary open-angle glaucoma (POAG) and primary 
angle-closure glaucoma (PACG) (47). POAG is associated 
with high heritability and complex genetic factors. POAG is 
responsible for 74% of all glaucoma cases, of which 47% of 
POAG cases are of Asian descent and ~24% are European (1). 
In contrast to Asian and European descent, the prevalence of 
severe and rapid POAG progression is increased in Hispanic 
and African-Caribbean populations (48,49). A previous study 
additionally suggested that American Caucasians have a lower 
prevalence of severe and rapid POAG compared with African 
Americans, who have the highest severe and rapid POAG 
prevalence (5.2% at 60 years and 12.2% at 80 years) (50). The 
increase in POAG prevalence per decade of age is highest 
among Hispanic and Caucasian populations, with the lowest in 
East and South Asian populations (50). There has been strong 
evidence that the POAG incidence in populations of African 
descent is two to five times higher compared with those of 
European descent (50,51). All the data suggests that POAG 

is affected via ancestral factors associated with genetics. 
Furthermore, certain articles indicate that men are more 
susceptible to POAG compared with women in Australia (52) 
and the Netherlands (53). Abu-Amero et al (50) demonstrated 
that a positive family history is a risk factor for POAG. A 
previous study demonstrated that the prevalence among 
individuals with a positive family history of POAG is five to 
10 times greater compared with individuals without a positive 
family history (54).

For PACG, a positive family history is one of the principal 
risk factors. There is a lot of evidence to support the hypothesis. 
From previous studies it is known that there is high prevalence 
among siblings of patients affected with PACG (55), and that 
the risk of having PACG is increased by 3.7 times in Greenland 
Eskimos (56,57), 3.5 times in Eskimos (58), and six times in 
the Chinese (59) for siblings with a positive family history. 
Furthermore, high IOP (60,61) and the depth of the anterior 
chamber (56,57) are associated with genetic factors involved 
in the pathogenesis of PACG. The association between the 
depth of the anterior chamber and PACG reveals that a predis-
position of morphological features to PACG is additionally 
heritable. It is recognized that high IOP and the size of the 
anterior chamber are markedly affected in PACG. Besides 
genetic risk factors, PACG is additionally associated with sex. 
There is evidence that the sex ratio of PACG prevalence is 
~3.25 female to 1 male (62).

3. Genetic approaches for glaucoma study

Research on glaucoma inheritance has benefited from the 
development of genetic approaches to identify loci that are 
involved in a specific glaucomatous phenotype or mutations 
that account for glaucoma. Traditional linkage analysis based 
on one or more families with multiple members affected 
with glaucoma have been widely used to establish the 
linkage of different phenotypes of glaucoma to particular 
loci [GLC1A to GLC1N (63), GLC1P (63), GLC3A Online 
Mendelian Inheritance in Man (OMIM) no. 231300], 
GLC3B (OMIM no. 600975) and has been less frequently 
applied to glaucomatous gene mutations, except myocilin 
(MYOC) (64,65), optineurin (OPTN) (65,66), glutathione 
S-transferase mu-1 (65), WD repeat-containing protein 36 
(WDR36) (65,67-69), cytochrome P450 subfamily I polypep-
tide 1 (CYP1B1) (65), neurotrophin 4 (NTF4) (70), ankyrin 
repeat- and SOCS box-containing protein 10 (ASB10) (71) and 
TANK-binding kinase 1 (TBK1) (63). The aforementioned 
studies demonstrated that this approach is useful to identify 
glaucomatous loci. However, linkage analysis is largely limited 
by its reliance on prior knowledge of disease pathophysiology. 
This traditional candidate gene approach appears to have been 
powerless to examine an unclear pathophysiology of complex 
diseases, such as glaucoma (72,73).

Glaucoma is a complex disease, which may be a polygenic 
disease rather than a monogenic disease. Glaucoma-causing 
genes have small variations, including single nucleotide 
polymorphisms (SNPs), and larger variations, including copy 
number variations (CNVs). Furthermore, the pathogenic levels 
of these variations differ, from highly to medium to weakly 
pathogenic, possibly pathogenic, or even protective. Therefore, 
traditional linkage analysis has not been applicable to study 
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these variations in glaucoma, which is more complex and with 
unknown pathophysiology (72). A suggested alternative to 
linkage analysis, genome-wide association studies (GWAS), 
based on SNPs arrays (73), was proposed. GWAS, additionally 
known as whole genome association studies, is a genome-wide 
approach that compares the genetic profile of SNPs throughout 
the genome, among affected cases and unaffected controls 
to see if any genomic regions are associated with a certain 
trait or disease (73). In the examination of the glaucomatous 
pathology, the most common approach of GWAS to glaucoma 
is the case-control setup; one control group and the other 
case group affected with glaucoma. GWAS primarily focuses 
on the associations between SNPs and traits of glaucoma. 
There is strong evidence that GWAS is more powerful than 
linkage analysis in identifying causal variations in genes 
of weak effect, which may account for the development of 
glaucoma (73,74).

It was thought that SNPs were the most prevalent genetic 
variations. However, recently, certain studies revealed CNVs 
area principal source of variations (73) that may be pathogenic 
in POAG (75). CNVs manifest primarily as submicroscopic 
deletions and duplications. Numerous CNVs in POAG have 
been reported. It is worth mentioning that CNVs contain more 
nucleotide content compared with SNPs per genome, and that 
suggests the importance of CNVs in the evolution and diver-
sity of genes (76).

4. Pathogenic genes associated with glaucoma

Pathogenic genes located in the GLC1A‑GLC1Q and 
GLC3A‑GLC3E loci. To date, 22 loci of glaucoma (Table I) 
have been identified and designated as GLC1A-Q and 
GLC3A-E. POAG is linked to 17 loci; GLC1A, 1C, 1E-H, 
1O-P, for which the responsible genes are MYOC, inter-
leukin 20 receptor subunit β (IL20RB), OPTN, ASB10, 
WDR36, EGF containing fibulin-like extracellular matrix 
protein 1 (EFEMP1), NTF4 and TBK1, respectively; and 

GLC1B, 1D, 1I-N, and 1Q, for which the responsible genes 
remain unidentified. There are five loci linking to primary 
congenital glaucoma (PCG), GLC3A and 3D-E, for which the 
responsible genes are CYP1B1, latent transforming growth 
factor-β-binding-protein 2 (LTBP2) and TEK tyrosine kinase 
endothelial (TEK), respectively; the responsible genes of 
GLC3B‑C remain unidentified. GLC1A‑Q, except GLC1A, 
1J, 1K, 1M and 1N, which contribute only to juvenile open 
angle glaucoma (JOAG), contribute to adult-onset POAG. All 
of GLC3A-E have been implicated in PCG. Glaucoma-causing 
mutations may be classified into two groups. One is autosomal 
dominant, including POAG-causing genes (MYOC, IL20RB, 
OPTN, EFEMP1 and TBK1) and a PCG-causing gene (TEK). 
The other is autosomal recessive, including a PCG-causing 
gene (CYP1B1). Of the 22 loci, GLC1A (MYOC) and GLC3A 
(CYP1B1) are the most important for glaucoma; they have 
correspondingly been the most investigated in research.

Only four pathogenic genes, MYOC (64,65), NTF4 (65,70), 
OPTN (65,77) and WDR36 (65,78), have been definitively 
linked to POAG. Furthermore, it was reported that mutations 
in OPTN, MYOC or WDR36 account for ~4% of all glau-
coma (79). The link between ASB10, IL20RB and EFEMP1, 
and POAG, is less certain. TBK1 is controversial, since GLC1P 
covers three other genes, n-acetylglucosamine-6-sulfatase, 
ras association domain family protein 3 and exportin-t (80); 
however, TBK1 has been suggested to be the most possible 
glaucoma-causing gene for GLC1P (80).

Only one pathogenic gene for PCG, CYP1B1 (6), has been 
clearly identified in the locus GLC3A. Numerous genes have 
been observed in 1p36 that contain GLC3B, however, none 
have been demonstrated to be associated with PCG (6). To 
date, it remains to be investigated whether LTBP2 is associated 
with the GLC3C or GLC3D loci. LTBP2 is ~1.3 Mb proximal 
to GLC3C (82), thus there is a hypothesis that LTBP2 may 
be the GLC3C gene; however, the possibility that it may be 
an adjacent gene associated with PCG may not be ruled out. 
Another study suggested that GLC3D is distal to GLC3C 

Figure 1. General classifications of glaucoma. IH, intraocular hemorrhage.
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without overlapping (83). Furthermore, there is evidence 
that LTBP2 is a candidate for GLC3D (82); therefore, in the 
present review LTBP2 is presented as the GLC3D gene. There 
is strong evidence (OMIM) that mutations of TEK may result 
in GLC3E, and the locus of TEK is GLC3E.

Other genes associated with glaucoma. To the best of 
the authors' knowledge, besides the 22 loci of glaucoma 
mentioned, there are 74 genes that are more closely associated 
with glaucoma presented in Table II. Of those 74, 48 (64%) 
are associated with POAG, followed by PACG (16%), PCG 
(4%) and pseudoexfoliation glaucoma (PEXG; 4%). Toll-like 
receptor 4, sine oculis homeobox Drosophila homolog of 1, 
doublecortin-like kinase 1, RE repeats-encoding gene, retinitis 
pigmentosa GTPase regulator-interacting protein, lysyl 
oxidase-like protein 1 (LOXL1), heat-shock 70-kD protein 1A 
(HSP70-1), baculoviral IAP repeat-containing protein 6, 
5,10-methylenetetrahydrofolate reductase (MTHFR) and nitric 
oxide synthase 3 (ENOS) are human genes involved in more 
than one phenotype of glaucoma. Nanophthalmos 1 is identified 
to be the only human gene known to cause PACG (140). For 
other genes (ATP-binding cassette subfamily C member 5, 
SPARC-related modular calcium-binding protein 2, matrix 
metalloproteinase 9, membrane-type frizzled-related protein, 
hepatocyte growth factor, HSP70-1, pleckstrin homology 
domain-containing protein family A member 7, collagen 
type XI α‑1, MTHFR and ENOS) identified to be associated 
with PACG in Table II, it remains unclear whether they are 
pathogenic genes for PACG; however, they may be a risk factor 
for the development of PACG. Among genes associated with 
PEXG and PEX, the majority of research has been conducted 
on LOXL1 to determine whether it is pathogenic and how it 
contributes to the two diseases. PEX, characterized by the 
accumulation of protein fibers in the eyes, may have a genetic 
basis. The accumulation of protein obstructs aqueous humor 
(AH) outflow, and that results in PEXG. Previously, two 
studies (111,141) have confirmed that LOXL1 is significantly 
associated with PEXG and PEX. A decrease in LOXL1 
expressionmay cause degenerative tissue alterations in LC, 
and consequently results in patients with PEX being more 
vulnerable to optic nerve damage caused by pressure (141), a 
risk factor for PEXG development.

5. MYOC in the GLC1A locus

To date, the majority of research efforts have been on MYOC 
among all the glaucoma-causing genes. There is a consensus 
that 2-4% of POAG cases harbor MYOC mutations (142) 
and MYOC mutations have been reported to be the most 
frequent in POAG. In the present review, the research 
findings on MYOC are detailed and summarized. In 1993, 
Sheffield et al (143) discovered the first genetic locus, GLC1A, 
for POAG, and in 1997, a glaucoma-causing gene, MYOC, was 
identified by Stone et al (64). MYOC is a gene associated with 
POAG, JOAG, normal tension glaucoma (NTG), high-tension 
glaucoma (HTG) and steroid-induced glaucoma (144). In 1997, 
the location of MYOC was linked to chromosome 1q23-q24 
by Kubota et al (145), and there was a report on fine mapping 
to chromosome 1q24.3-q25.2 (146). In 1998, cells treated with 
steroids secreted the same MYOC protein, which was termed 
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TIGR (trabecular meshwork-induced glucocorticoid response 
protein) (147). Under stress, eyes may produce the MYOC 
protein in increased amounts, suggesting that MYOC may 
serve a protective role similar to a molecular chaperone (148). 
The MYOC protein is produced by numerous ocular 
tissues (43,73,149), including the ciliary body, trabecular 
meshwork (TM), optic nerve, LC, cornea, iris, sclera, retina 
and lens, and is usually visualized in muscles, including the 
ciliary muscle, iris and smooth muscle. MYOC is additionally 
secreted into the vitreous humor for undetermined reasons. 
Stone et al (64) suggested that there is a possible association of 
the muscle-associated ciliary body with increased IOP. MYOC 
expression does not exhibit a significant difference in the blood 
of patients with POAG compared with blood from individuals 
without POAG; however, there is a significant difference in 
the TM (150). Therefore MYOC expression may account for 
a genetic susceptibility to POAG in specific tissues, including 
the ciliary body and TM.

Pathogenesis of MYOC. The pathogenesis of MYOC 
mutations is unclear; however, the three most possible causes 
for glaucoma are as follows. In the unhealthy state, there is 
poor normal MYOC protein secretion. MYOC mutations may 
lead to accumulation of mutated MYOC proteins within the 
TM (151-154). Retention of abnormal MYOC protein may be 
harmful to TM cells and result in their dysfunction or death, 
which may obstruct AH outflow, and consequently increase 
IOP (43,64,147,155,156). In addition, accumulation of mutated 
MYOC proteins in the endoplasmic reticulum activates 
the unfolded protein response (UPR) in TM cells (157), 
subsequently leading to apoptosis that may cause high IOP. 
Over activated UPR may lead to certain neurodegenerative 
diseases, and inhibiting UPR is a possible therapy for these 
diseases (158). Thus, this method may additionally be 
applicable to glaucoma. Normal MYOC is involved in exosome 
shedding into the aqueous humor, and exosomes are associated 
with paracrine and autocrine signaling (74), that therefore may 
serve as vehicles of MYOC protein trafficking. Notably, normal 
MYOC protein is absent in the aqueous humor of glaucomatous 
patients with pathogenic MYOC mutations (151). Thus, another 
prevalent hypothesis on the pathogenesis of MYOC mutations 
is that they interfere with MYOC protein trafficking and 
lead to the intracellular aggregation of the misfolded MYOC 
protein (74). Accumulation of misfolded MYOC proteins 
decreases AH out flow, and that influences IOP regulation; 
however, its mechanism is unclear (74). The third hypothesis 
is regarding specific interactions between MYOC mutations 
and mitochondria in the TM (159,160). A subsequent study 
indicated that MYOC mutations lead to dysregulation of 
calcium channels resulting in mitochondrial depolarization 
in the TM, consequently resulting in TM contraction, which 
decreases AH outflow and further causes increased IOP (161).

Digenic and polygenic mechanism of MYOC. There is strong 
evidence that only ~5% of POAG (65) is caused by a single 
gene, and other cases of POAG are caused by digenic or 
polygenic cooperation mechanisms, none of which may alone 
cause glaucoma. Usually, cooperation of MYOC mutations 
with one or more genes contributes to glaucoma. Mutations 
in MYOC, OPTN and CYP1B1 are identified to coexist 

in ~3.59% of POAG cases (162). This demonstrates that 
mutations in the three genes together may be involved in the 
pathogenesis of POAG. There are other studies investigating 
the association between MYOC and OPTN. OPTN and MYOC 
are observed in POAG (69,162-166), exfoliative glaucoma (164) 
and exfoliation syndrome (164). Overexpression of OPTN may 
upregulate MYOC in TM and stabilize MYOC mRNA (167). 
There is a possible polygenic interaction among MYOC, OPTN 
and apolipoprotein E (APOE). Disease-causing mutations in 
MYOC and OPTN contribute to only a small number of Chinese 
POAG cases (163). However, common polymorphisms in 
MYOC, OPTN (69,163,166), APOE (69,163) and WDR36 (69) 
may together account for POAG. Common polymorphisms of 
these genes are not associated with POAG alone; however, they 
may cooperatively contribute to the disease, which indicates a 
polygenic pathogenesis. A study reported that the mean onset age 
of carriers with only MYOC mutations is 51 years; however, the 
mean onset age of carriers with MYOC and CYP1B1 mutations 
is 27 years (168). This indicates that mutations in the two genes 
may interact to advance the onset age of glaucoma. Notably, 
in a study (169) Gln48His, a MYOC mutation, was observed 
in POAG and PCG; however, one patient with PCG had a 
CYP1B1 mutation (Arg368His), and the other patient with PCG 
had none of the CYP1B1 mutations. These results demonstrate 
that there is a possible digenic interaction between MYOC 
and CYP1B1, without excluding the possibility that there has 
been an unidentified gene associated with glaucoma. However, 
another study reported that none of the CYP1B1 mutations was 
observed in all five POAG cases with MYOC mutations (170). 
Forkhead box C1 (FOXC1) may regulate MYOC secretion 
through modulation of RAB3 GTPase-activating protein 
catalytic subunit 1 RAB, synaptosomal-associated protein 
25-kD and RAB3 GTPase-activating protein noncatalytic 
subunit (144). A different study (171) suggested that MYOC 
and FOXC1 mutations are not associated with the pathogenesis 
of PCG. The mutations Leu486Phe in MYOC and Val108Ile in 
UDP-Gal: β GlcNAc β-1,4-galactosyltransferase polypeptide 3 
may cooperatively contribute to the pathogenesis of POAG (94).

6. Pathogenic genes in the GLC1B‑GLC1Q loci

OPTN. OPTN, widely expressed in retinal ganglion cells (172), 
the nonpigmented ciliary epithelium, human TM and the 
retina (77), is an autophagy receptor. Autophagy may remove 
damaged organelles and proteins via lysosomal degrada-
tion (172). Autophagy and membrane vesicle trafficking serve 
an important role in the regulation of OPTN functions (172). 
Furthermore, the level of autophagy mediated through OPTN 
is very important for the survival of retinal cells (172). 
Mutations in OPTN are involved in POAG (172). Another 
conclusion contradicted this result, reporting that OPTN is not 
associated with POAG in Spain (173). Of these disease-causing 
mutations, two are noteworthy, Glu50Lys and Met98Lys.

The frequency of Glu50Lys in POAG is 13.5% (77). 
Notably, 81.6% of POAG cases with recurrent Glu50Lys have 
normal IOP; whereas only 18.4% of those have increased 
IOP (77). However, another study suggested that OPTN 
mutations are involved in POAG rather than glaucoma with 
normal IOP in Japanese patients (174). Glu50Lys impairs 
autophagy (172) and trafficking (172,175), resulting in the 
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death of retinal cells through apoptosis (172) and disrupting 
the endocytic recycling that is very important for maintaining 
homeostasis (175).

Rezaie et al (77) first reported that Met98Lys is a 
risk-causing mutation for POAG, and the frequency of 
Met98Lys in POAG (13.6%) is significantly higher compared 
with controls (2.1%). In another study by Sripriya et al (176), 
Met98Lys was not identified in controls; however, it 
was identified in POAG (4.1%) and NTG (6%) (162). 
Mukhopadhyay et al (177) did not detect Met98Lys in NTG, 
and the frequency of Met98Lys was 11% in POAG and 5.5% 
in controls. An alternative study (162) presented the contrary 
conclusion that Met98Lys may not be a risk-causing factor 
for POAG on account of a very similar frequency in POAG 
(7.97%) and controls (7.29%). Met98Lys is usually known 
as a disease-causing mutation and the majority of POAG 
cases with Met98Lys additionally have normal IOP, similar 
to Glu50Lys (77). The possible pathogenesis of Met98Lys 
is that it may impair autophagy, which consequently leads 
to the death of retinal cells through apoptosis and trans-
ferrin receptor degradation (172). However, the pathogenic 
mechanism of glaucoma-causing Met98Lys requires further 
research and examination.

WDR36. WDR36, located within the POAG linkage locus 
GLC1G and first identified by Monemi et al (78), is widely 
expressed in numerous ocular tissues, including the optic 
nerve, ciliary body, retina, TM, ciliary muscles, iris, lens and 
sclera. Monemi et al (78) formerly suggested that the frequency 
of WDR36 mutations in POAG is 1.6-17%. There is a possible 
association of WDR36 with the pathogenic mechanism of 
HTG (67,68). WDR36 mutations may alter the cell phenotype 
supporting the theory that WDR36 is associated with the 
polygenic pathogenesis of glaucoma (178). To date, WDR36 
importance remains unclear; furthermore, its pathogenicity 
is controversial. As subsequent studies did not demonstrate 
WDR36 mutations to be POAG-causing mutations, it was 
demonstrated that WDR36 mutations may only be a risk factor 
for POAG (67-69). In addition, Fingert et al (179) were not able 
to confirm the association of WDR36 with pathogenesis of 
POAG.

NTF4, ASB10, EFEMP1 and IL20RB. NTF4, located within 
the POAG linkage locus GLC1O, is localized to RGCs (70). 
Pasutto et al (70) suggested that the frequency of NTF4 muta-
tions in POAG is 1.7% and there is strong genetic evidence 
that NTF4 mutations are involved in POAG of European 
origin. Liu et al (180) additionally identified coding alterations 
in five POAG cases and 12 controls of European origin from 
Southeastern USA, of which two mutations were previously 
detected by Pasutto et al (70). Therefore, Liu et al concluded 
that these NTF4 coding alterations are not significantly asso-
ciated with the pathogenesis of POAG. In addition, another 
study by Chen et al (181) suggested that NTF4 does not mainly 
contribute to the molecular genetics of POAG. From the above, 
the association of NTF4 mutations with POAG pathogenesis 
remains to be investigated. In addition, besides the European 
origin, NTF4 mutations have been identified in Chinese popu-
lations (182). This indicates that NTF4 mutations may derive 
from multiple ancestors.

ASB10, located within the POAG linkage locus 
GLC1F (183), influences AH outflow (71). ASB10 is most 
highly expressed in the iris, followed by human TM, RGCs, 
the ciliary body, choroid, optic nerve, retina, lamina and a 
little in the lens (71). Among patients with POAG and controls, 
the frequency of ASB10 mutations is 6 and 2.8%, respec-
tively (71). To test whether ASB10 influences AH drainage, 
Pasutto et al (71) applied RNA interference silencing for 
knockdown of ASB10 mRNA expression in perfused human 
anterior segment cultures. The results revealed that the 
decrease in AH outflow facility was ~50%. In addition, ASB10 
may be involved in the ubiquitin-mediated degradation path-
ways through interactions of ASB10 with the α4 subunit of the 
20s proteasome and with HSP70 in TM (184).

EFEMP1, located within the POAG linkage locus GLC1H, 
is a plausible candidate for POAG (185). Although there have 
been a few efforts to confirm the linkage to GLC1H, it remains 
uncertain. Mutations in EFEMP1 are involved in decreasing 
the optic disc area (186). Another mutation, c.418C>T in 
EFEMP1 may be predictive for POAG (185). Expression of 
EFEMP1 may be influenced by transforming growth factor 
(TGF)-β2. A study by Junglas et al (187) reported that TGF-β2 
is more highly expressed in AH of POAG and maybe associated 
with the increase in AH outflow resistance in POAG. Higher 
amounts of TGF-β2 inhibit the expression of EFEMP1 (188).

IL20RB, located within the POAG linkage locus GLC1C, 
has a role in POAG pathogenesis (189). An IL20RB mutation, 
Thr104 Met, lying in an active binding site of IL20RB (190), 
has been observed in a large POAG family (189); therefore, this 
additionally demonstrates that IL20RB may be implicated in 
the pathogenesis of POAG. According to OMIM (no. 605621), 
IL20RB is highly expressed in human skin and testes, and 
less expressed in the muscle, placenta, heart, ovary and lung. 
Recently, IL20RB was detected to be additionally expressed in 
human TM (191). To the best of the authors' knowledge, thus 
far, little research effort has been made to investigate IL20RB 
as a POAG-causing gene.

7. Pathogenic genes in the GLC3A‑GLC3E loci

CYP1B1. In humans, the CYP1B1 gene encodes cytochrome 
P450 1B1, and is regulated via the aryl hydrocarbon receptor. 
CYP1B1 was the first gene identified in PCG-associated 
loci (GLC3A-3E) (192), and its role has been clearly under-
stood (65). CYP1B1 is widely expressed in the eyes, including 
the retina, iris, ciliary body and TM (193). However, certain 
previous studies suggested that CYP1B1 is not expressed 
in TM at any stage of eye development (194). CYP1B1 has 
been thought to be significantly associated with human fetal 
eye development (194). To date, at least 147 CYP1B1 muta-
tions have been identified globally in 542 patients with PCG 
in various countries, including Brazil, China, India, Iran, 
Morocco, Russia, Saudi Arabia, Slovak Gypsy populations, 
Turkey, USA, Spain, Pakistan, Oman, the Netherlands, 
Mexico, Kuwait, Japan, Israel, Indonesia, Germany, Ecuador, 
Canada, Britain and Algeria (6,195). Among CYP1B1 muta-
tions, Glu387Lys has been traced to a common genetic origin 
for PCG (196). CYP1B1 mutations, which have been reportedly 
associated with a wider range of glaucomatous phenotypes, 
including PCG (6,169,195-197), POAG (198-200), JOAG (201) 
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and PEXG (199), appear in patients with glaucoma at a 
higher frequency compared with other glaucoma-associated 
genes (199). CYP1B1 mutations may confer increased suscep-
tibility to PCG and are the most common pathogenic factors of 
PCG (6). However, the frequency of PCG-causing mutations in 
CYP1B1 varies significantly in different populations, including 
Mexican (<10%) (202), Vietnamese (16.7%) (197), Chinese, 
Japanese and Indonesian (all 20%) (202), Indian (40%) (169). 
Furthermore, PCG-causing mutations in CYP1B1 occur 
with extremely high incidence in Slovak Gypsy and Saudi 
Arabian populations (202), which supports an additional study 
reporting that consanguinity is a fundamental mechanism 
for high PCG incidence in Slovak Gypsy and Saudi Arabian 
populations (203) Available data demonstrate that CYP1B1 
may not be the primary disease-causing gene for glaucoma in 
East Asians and South East Asians, unlike in Gypsy and Saudi 
Arabian populations. Furthermore, PCG in Mexicans may not 
be caused by CYP1B1 mutations. In addition, only ~10% of 
cases of POAG in Mexico harbor CYP1B1 mutations (198), 
demonstrating that CYP1B1 mutations may not be the cause of 
the pathogenesis of POAG; however, dysfunction of CYP1B1 
may increase the risk of POAG. A low percentage of JOAG 
cases (~5%) harbor CYP1B1 mutations (168), and CYP1B1 
possibly contributes to JOAG in a monogenic model (201).

An increasing amount of research attention is focusing on 
the interactions of CYP1B1 with other genes. There is growing 
evidence that interactions of CYP1B1 with MYOC occur in 
patients with PCG (169,204). In the process of interactions, 
MYOC is a potential modifier gene (205). In addition, TEK 
mutations co-occur with CYP1B1 mutations in patients with 
PCG; notably, the parents of these patients with PCG harbor 
either heterozygous CYP1B1 or TEK alleles and are asymp-
tomatic (206). Furthermore, there is strong evidence suggesting 
that the interaction between CYP1B1 and TEK accounts for 
the pathogenesis of PCG (206); however, the mode of inter-
action remains unclear regarding whether an overlapping or 
independent mode is involved in the pathogenic mechanism 
of PCG. The interaction of CYP1B1 with MYOC and TEK, 
respectively, in the pathogenesis of PCG further lends support 
to the digenic inheritance of PCG.

Although CYP1B1 mutations are the most common cause 
of PCG, these mutations only contribute to a very small 
proportion of the total amount of PCG (6). Besides CYP1B1, 
there are a number of genes demonstrated to be associated 
with PCG, including LTBP2, FOXC1 and MYOC. Therefore, 
it is reasonable to speculate that other genes may participate in 
the pathogenesis of PCG; however, there still remain a large 
number of unknown genes requiring identification.

LTBP2. LTBP2, located within the PCG linkage locus 
GLC3D, is the largest member of the latent TGF-β family 
whose signaling failure in the anterior and posterior eye may 
cause pathogenic alterations in POAG (84). LTBP2 is most 
highly expressed in the lens capsule (192), secondly in the TM 
and ciliary processes (82,192) that are thought to be associated 
with PCG pathogenesis, with a very small amount in the sclera, 
corneal stroma and iris (192). LTBP2 mutations are identified 
in different populations, including Pakistani (82), Indian (207), 
Gypsy (82), Iranian, Moroccan, and Saudi Arabian populations 
(OMIM). From the aforementioned data, LTBP2 mutations 

appear to derive from West Asia and South Asia. Although 
Morocco is located in Africa, 75% of Moroccans are of Arabic 
descent; furthermore, the origin of the Gypsy ethnicity is 
thought to be in Ancient India. To the best of our knowledge, 
LTBP2 mutations have been not observed in other populations. 
Therefore, it is reasonable to hypothesize that LTBP2 muta-
tions may have the same ancestor.

LTBP2 is a disease-causing gene for PCG (192) and is 
very important in the development of the anterior chamber 
of the human eye, where LTBP2 possibly serves a role in 
maintaining ciliary muscle tone (82). Besides PCG, LTBP2 
mutations maybe associated with PACG and POAG (208). 
Therefore, there may be an overlap in the pathogenic mecha-
nism among various types of glaucoma. It is this overlap that 
may account for the common characteristics among these 
various types of glaucoma, including optic nerve impairment 
and decreased vision, and for the common clinical presentation 
at onset, including eye pain, red-eye, blurred vision, nausea 
and mid-dilated pupils. However, another study (207) had 
contrary conclusions that LTBP2 mutations are not implicated 
in the pathogenesis of PCG. In addition, LTBP2 is not thought 
to be a disease-causing gene for PCG in the Han Chinese 
population (209).

TEK. TEK, located within the PCG linkage locus 
GLC3E, is an angiopoietin receptor, additionally termed 
cluster of differentiation 202B and tyrosine kinase with 
immunoglobulin-like and EGF-like domains 2, and may 
regulate vascular homeostasis (210). Although TEK and 
other vascular growth factors are important for AH outflow 
and Schlemm's canal development, their association with 
glaucoma remains unclear (211). A 50% decrease in TEK 
adequately demonstrated defective Schlemm's canal 
development and impaired AH outflow (210), and this 
demonstrates that TEK concentration is important for the AH 
drainage pathways. Variable expression of TEK is possibly 
produced by oligogenic or digenic inheritance, in line with 
other ocular disorders of developmental origin produced by 
mutations in optic atrophy 1, FOXC1, paired box gene 6 and 
MYOC (210). In addition, another recent study demonstrated 
that TEK mutations co-occur with CYP1B1 mutations in 
PCG (206), and demonstrated that interactions between 
TEK and CYP1B1 account for digenic inheritance in PCG 
pathogenesis.

8. Potential pathogenic mechanism and recent advances in 
treatments

Potential pathological mechanism. Among the 96 genes, 
mutations of MYOC (GLC1A) and CYP1B1 (GLC3A) 
have the closest associations with potential pathological 
mechanisms in glaucoma. Besides the aforementioned 
glaucomatous pathogenesis, a novel pathogenic mechanism 
for MYOC-associated glaucoma is proposed. Extracellular 
matrix (ECM) proteins of TM are synthesized in the endo-
plasmic reticulum (ER) and finally secreted into the ECM. 
Malfunction of the ER during ER stress caused by mutant 
myocilin accumulation in the ER may affect ECM protein 
processing and secretion, which results in aberrant intra-
cellular accumulation of ECM proteins in TM (212). The 
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accumulation of ECM proteins may deteriorate ER stress, 
leading to TM cell dysfunction and obstructing AH outflow, 
thereby increasing IOP (212).

CYP1B1 defects cause angle abnormalities involving TM 
and Schlemm's canal (213). CYP1B1 mutations lower activity 
or stability of the enzyme in the mitochondria (214,215) and 
reduce expression levels of ECM proteins in TM (215). These 
may impact the development or filtering function of TM. In 
addition, abnormal mitochondria caused by CYP1B1 muta-
tions [the same case as with MYOC mutations (161)] may cause 
dysregulation of calcium channels resulting in mitochondrial 
depolarization in TM, consequent TM contraction, reduction 
of AH outflow and an increase in IOP.

Recent advances in treatment. Based on previous studies on 
the potential pathogenic mechanism of MYOC mutation, at 
present, there have been three novel approaches to treatment 
for MYOC-associated POAG: i) Using chemical chaperones 
(based on molecular mechanisms) to decrease misfolding or 
unfolding of proteins and increase MYOC secretion (216); 
ii) given the gain-of-function nature of MYOC mutations, 
another novel approach is targeting MYOC mRNA or the 
myocilin protein (216); and iii) targeting MYOC by gene 
editing with clustered regularly interspaced short palindromic 
repeats-Cas9 technology to reduce ER stress and lower 
IOP (216).

According to previous studies on potential pathogenic 
mechanisms of CYP1B1 mutation, researchers developed two 
novel therapies: One is the approach based on the gene, directly 
attempting to correct or replace abnormal CYP1B1 (217); the 
more novel approach differentiates into a specific lineage and 
transfers stem cells containing wild-type CYP1B1 to stimulate 
the normal development of TM cells (217).

9. Conclusion and prospects

As mentioned, the pathogenic mechanism of MYOC- or 
CYP1B1-associated glaucoma is associated with aberrant 
ECM proteins in TM. The accumulation of deposits of ECM 
proteins may lead to ER stress as described, resulting in the 
misfolding or unfolding of MYOC proteins. If ER stress is 
too severe or if UPR (an adaptive response to ER stress) fails 
to compensate for the ER stress, dysfunction and apoptosis 
occurs (218-221), which may cause increased IOP. At present, 
the novel protein-remodeling factors as potential therapeutics 
are highly promising to correct the misfolding or unfolding 
of proteins in neurodegenerative diseases or disorders (221). 
Therefore, as glaucoma is a neurodegenerative disease, the 
highly promising protein-remodeling factors (including engi-
neered Hsp104 mutations) may be useful in the development 
of novel glaucoma therapies, and to better understand the 
glaucomatous mechanism.

Additionally, combined with the prospect for glaucoma 
healthcare, certain important problems require addressing in 
future studies. More in vivo animal models (monkey, pig and 
cow, whose eyes are similar to human), with stem cell-based 
studies on glaucoma-associated genes, including MYOC and 
CYP1B1, are required. In addition, using autologous stem 
cells, including bone marrow derived stem cells (217), that 
have been genetically modified to serve an important role in 

the pathogenic mechanism of glaucoma may be a promising 
future therapy for MYOC- or CYP1B1-associated glaucoma.

In conclusion, strong evidence indicates that genes are 
significantly associated with the pathogenesis of glaucoma, and 
additionally provides a stimulus for the identification of these 
pathogenic genes. Further efforts to research clinical trials on 
potential feasible therapeutic targets are necessary, which may 
construct future therapeutic paradigms for glaucoma. Presently, 
although a number of genes have been identified to be associated 
with glaucoma, their pathogenic mechanisms remain unclear, 
with the exception of MYOC and CYP1B1. Furthermore, 
certain studies are controversial, even contradictory. Therefore, 
further research is required to better comprehend the associa-
tion between pathogenic genes and glaucoma.
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