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Abstract. Glaucoma is the leading cause of irreversible
blindness globally. It is known that the incidence of glau-
coma is closely associated with inheritance. A large number
of studies have suggested that genetic factors are involved
in the occurrence and development of glaucoma, and even
affect the drug sensitivity and prognosis of glaucoma.
In the present review, 22 loci of glaucoma are presented,
including the relevant genes (myocilin, interleukin 20
receptor subunit B, optineurin, ankyrin repeat- and SOCS
box-containing protein 10, WD repeat-containing protein
36, EGF-containing fibulin-like extracellular matrix protein
1, neurotrophin 4, TANK-binding kinase 1, cytochrome
P450 subfamily I polypeptide 1, latent transforming growth
factor §§ binding protein 2 and TEK tyrosine kinase endothe-
lial) and 74 other genes (including toll-like receptor 4, sine
oculis homeobox Drosophila homolog of 1, doublecortin-like
kinase 1, RE repeats-encoding gene, retinitis pigmentosa
GTPase regulator-interacting protein, lysyl oxidase-like
protein 1, heat-shock 70-kDa protein 1A, baculoviral IAP
repeat-containing protein 6, 5,10-methylenetetrahydrofolate
reductase and nitric oxide synthase 3 and nanophthalmos 1)
that are more closely associated with glaucoma. The patho-
genesis of these glaucoma-associated genes, glaucomatous
genetics and genetic approaches, as well as glaucomatous risk
factors, including increasing age, glaucoma family history,
high myopia, diabetes, ocular trauma, smoking, intraocular
pressure increase and/or fluctuation were also discussed.
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1. Introduction

Glaucoma, a neurodegenerative eye disease, may lead to
damage to the optic nerve and consequent vision loss, and is
the leading cause of irreversible blindness globally (1). Vision
loss results from damage to the optic nerve, which is caused by
increased intraocular pressure (IOP) in glaucoma. If untreated,
once vision loss from glaucoma has occurred, it is life long.
There are an estimated 57.5 million people worldwide with
glaucoma (2); for every 1,000 people, approximately eight
are affected with glaucoma. It has been reported recently that
there will be ~79.6 million people with glaucoma by 2020 (3)
and an expected 111.8 million glaucoma cases by 2040 (4).
Glaucoma has numerous subtypes; however, the different types
have a number of common clinical manifestations, including
nausea, mid-dilated pupils, serious eye pain, redness and
blurred vision (5). Glaucoma has a number of classifications,
according to anatomy, etiology, onset age and pathogenesis,
and the clinical classifications (6) are presented in Fig. 1.
Besides genetics, there are numerous other risk factors
for glaucoma, including increasing age (7-9), estrogen (10),
frailty (11), myopia (12), diabetes (13-17), high myopia (18),
hyperopia (19), hypertension (20), vasospasm (13), low ocular
perfusion pressure (21), family history of glaucoma (7), sex (22),
race (23), migraine (24), pigmentary dispersion syndrome (25),
pseudoexfoliation syndrome (PEX) (7,9), oral microbiome (26),
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butanoate metabolism (27), unstable oxygen supply (28), infec-
tion (29,30), hematopoietic cell lineage (27), the p38-mitogen
activated protein kinase pathway (31), retinitis pigmentosa (32),
mitochondrial dysfunction (33), obstructive sleep apnea
syndrome (34), basal transcription factors (27), calcium channel
medication, a-blocker medication (7), treatment for systemic
hypertension or Raynaud's disease (35), adrenergic agents (36),
v-aminobutyric acid and acetyl-coenzyme A metabolism (27),
sulfa-based drug (36), corticosteroids (37), smoking (17), lysine
degradation (27), IOP fluctuation (38), IOP increase (39) and
caffeine (40). Of those risk factors for glaucoma mentioned,
increased IOP is the strongest risk factor in the majority of
subtypes of glaucoma (41); however, its pathogenesis remains
unclear. Increased IOP may subsequently lead to posterior
displacement and thinning of the lamina cribrosa (LC), which
causes axonal damage and disrupted axonal transport to and
from the lateral geniculate nucleus (LGN). Disruption of axonal
transport interrupts retrograde delivery of nutrients from relay
neurons of the LGN to retinal ganglion cells (RGCs) (42),
possibly leading to the death of RGCs.

In addition to the afore-mentioned pathogenic factors for
glaucoma, heredity additionally serves an important role in
the pathogenesis of glaucoma. A previous study suggested
that glaucoma maybe inherited from one generation to the
next (43), indicating that specific types of glaucoma may have
a genetic basis. Furthermore, familial clustering and twin
studies demonstrate that specific types of glaucoma arise from
heredity (44,45). The present review focuses on the current
understanding and newest breakthroughs in pathogenic genes
for glaucoma with the purpose of providing a comprehensive
analysis of how reported gene mutations involved in glaucoma
lead to the clinical phenotypes expressed in glaucoma. An
overview of glaucoma-associated genes is presented.

2. Genetics of glaucoma

It is well known that there is a genetic basis for glaucoma in
specific populations due to sex, ethnicity and positive family
history predisposition to glaucoma. There has been strong
evidence suggesting that glaucoma is markedly affected by
genetic factors and is a complex, multi-factorial disease (46).
Glaucoma has numerous types, of which the two most common
are primary open-angle glaucoma (POAG) and primary
angle-closure glaucoma (PACG) (47). POAG is associated
with high heritability and complex genetic factors. POAG is
responsible for 74% of all glaucoma cases, of which 47% of
POAG cases are of Asian descent and ~24% are European (1).
In contrast to Asian and European descent, the prevalence of
severe and rapid POAG progression is increased in Hispanic
and African-Caribbean populations (48,49). A previous study
additionally suggested that American Caucasians have a lower
prevalence of severe and rapid POAG compared with African
Americans, who have the highest severe and rapid POAG
prevalence (5.2% at 60 years and 12.2% at 80 years) (50). The
increase in POAG prevalence per decade of age is highest
among Hispanic and Caucasian populations, with the lowest in
East and South Asian populations (50). There has been strong
evidence that the POAG incidence in populations of African
descent is two to five times higher compared with those of
European descent (50,51). All the data suggests that POAG
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is affected via ancestral factors associated with genetics.
Furthermore, certain articles indicate that men are more
susceptible to POAG compared with women in Australia (52)
and the Netherlands (53). Abu-Amero et al (50) demonstrated
that a positive family history is a risk factor for POAG. A
previous study demonstrated that the prevalence among
individuals with a positive family history of POAG is five to
10 times greater compared with individuals without a positive
family history (54).

For PACG, a positive family history is one of the principal
risk factors. There is a lot of evidence to support the hypothesis.
From previous studies it is known that there is high prevalence
among siblings of patients affected with PACG (55), and that
the risk of having PACG is increased by 3.7 times in Greenland
Eskimos (56,57), 3.5 times in Eskimos (58), and six times in
the Chinese (59) for siblings with a positive family history.
Furthermore, high IOP (60,61) and the depth of the anterior
chamber (56,57) are associated with genetic factors involved
in the pathogenesis of PACG. The association between the
depth of the anterior chamber and PACG reveals that a predis-
position of morphological features to PACG is additionally
heritable. It is recognized that high IOP and the size of the
anterior chamber are markedly affected in PACG. Besides
genetic risk factors, PACG is additionally associated with sex.
There is evidence that the sex ratio of PACG prevalence is
~3.25 female to 1 male (62).

3. Genetic approaches for glaucoma study

Research on glaucoma inheritance has benefited from the
development of genetic approaches to identify loci that are
involved in a specific glaucomatous phenotype or mutations
that account for glaucoma. Traditional linkage analysis based
on one or more families with multiple members affected
with glaucoma have been widely used to establish the
linkage of different phenotypes of glaucoma to particular
loci [GLCIA to GLCIN (63), GLCI1P (63), GLC3A Online
Mendelian Inheritance in Man (OMIM) no. 231300],
GLC3B (OMIM no. 600975) and has been less frequently
applied to glaucomatous gene mutations, except myocilin
(MYOC) (64,65), optineurin (OPTN) (65,66), glutathione
S-transferase mu-1 (65), WD repeat-containing protein 36
(WDR36) (65,67-69), cytochrome P450 subfamily I polypep-
tide 1 (CYP1BI1) (65), neurotrophin 4 (NTF4) (70), ankyrin
repeat- and SOCS box-containing protein 10 (ASB10) (71) and
TANK-binding kinase 1 (TBK1) (63). The aforementioned
studies demonstrated that this approach is useful to identify
glaucomatous loci. However, linkage analysis is largely limited
by its reliance on prior knowledge of disease pathophysiology.
This traditional candidate gene approach appears to have been
powerless to examine an unclear pathophysiology of complex
diseases, such as glaucoma (72,73).

Glaucoma is a complex disease, which may be a polygenic
disease rather than a monogenic disease. Glaucoma-causing
genes have small variations, including single nucleotide
polymorphisms (SNPs), and larger variations, including copy
number variations (CNVs). Furthermore, the pathogenic levels
of these variations differ, from highly to medium to weakly
pathogenic, possibly pathogenic, or even protective. Therefore,
traditional linkage analysis has not been applicable to study
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Figure 1. General classifications of glaucoma. IH, intraocular hemorrhage.

these variations in glaucoma, which is more complex and with
unknown pathophysiology (72). A suggested alternative to
linkage analysis, genome-wide association studies (GWAS),
based on SNPs arrays (73), was proposed. GWAS, additionally
known as whole genome association studies, is a genome-wide
approach that compares the genetic profile of SNPs throughout
the genome, among affected cases and unaffected controls
to see if any genomic regions are associated with a certain
trait or disease (73). In the examination of the glaucomatous
pathology, the most common approach of GWAS to glaucoma
is the case-control setup; one control group and the other
case group affected with glaucoma. GWAS primarily focuses
on the associations between SNPs and traits of glaucoma.
There is strong evidence that GWAS is more powerful than
linkage analysis in identifying causal variations in genes
of weak effect, which may account for the development of
glaucoma (73,74).

It was thought that SNPs were the most prevalent genetic
variations. However, recently, certain studies revealed CNVs
area principal source of variations (73) that may be pathogenic
in POAG (75). CN'Vs manifest primarily as submicroscopic
deletions and duplications. Numerous CN'Vs in POAG have
been reported. It is worth mentioning that CN'Vs contain more
nucleotide content compared with SNPs per genome, and that
suggests the importance of CNVs in the evolution and diver-
sity of genes (76).

4. Pathogenic genes associated with glaucoma

Pathogenic genes located in the GLCIA-GLCIQ and
GLC3A-GLC3E loci. To date, 22 loci of glaucoma (Table I)
have been identified and designated as GLC1A-Q and
GLC3A-E. POAG is linked to 17 loci; GLC1A, 1C, 1E-H,
10-P, for which the responsible genes are MYOC, inter-
leukin 20 receptor subunit f (IL20RB), OPTN, ASBIO0,
WDR36, EGF containing fibulin-like extracellular matrix
protein 1 (EFEMPI1), NTF4 and TBKI, respectively; and

GLCIB, 1D, 1I-N, and 1Q, for which the responsible genes
remain unidentified. There are five loci linking to primary
congenital glaucoma (PCG), GLC3A and 3D-E, for which the
responsible genes are CYP1B1, latent transforming growth
factor-p-binding-protein 2 (LTBP2) and TEK tyrosine kinase
endothelial (TEK), respectively; the responsible genes of
GLC3B-C remain unidentified. GLCI1A-Q, except GLCIA,
1J, 1K, IM and 1IN, which contribute only to juvenile open
angle glaucoma (JOAG), contribute to adult-onset POAG. All
of GLC3A-E have been implicated in PCG. Glaucoma-causing
mutations may be classified into two groups. One is autosomal
dominant, including POAG-causing genes (MYOC, IL20RB,
OPTN, EFEMP1 and TBK1) and a PCG-causing gene (TEK).
The other is autosomal recessive, including a PCG-causing
gene (CYP1BI). Of the 22 loci, GLC1A (MYOC) and GLC3A
(CYPI1BI) are the most important for glaucoma; they have
correspondingly been the most investigated in research.

Only four pathogenic genes, MYOC (64,65), NTF4 (65,70),
OPTN (65,77) and WDR36 (65,78), have been definitively
linked to POAG. Furthermore, it was reported that mutations
in OPTN, MYOC or WDR36 account for ~4% of all glau-
coma (79). The link between ASB10, IL20RB and EFEMP]1,
and POAG, is less certain. TBK1 is controversial, since GLC1P
covers three other genes, n-acetylglucosamine-6-sulfatase,
ras association domain family protein 3 and exportin-t (80);
however, TBK1 has been suggested to be the most possible
glaucoma-causing gene for GLCIP (80).

Only one pathogenic gene for PCG, CYP1BI (6), has been
clearly identified in the locus GLC3A. Numerous genes have
been observed in 1p36 that contain GLC3B, however, none
have been demonstrated to be associated with PCG (6). To
date, it remains to be investigated whether LTBP2 is associated
with the GLC3C or GLC3D loci. LTBP2 is ~1.3 Mb proximal
to GLC3C (82), thus there is a hypothesis that LTBP2 may
be the GLC3C gene; however, the possibility that it may be
an adjacent gene associated with PCG may not be ruled out.
Another study suggested that GLC3D is distal to GLC3C
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without overlapping (83). Furthermore, there is evidence
that LTBP2 is a candidate for GLC3D (82); therefore, in the
present review LTBP2 is presented as the GLC3D gene. There
is strong evidence (OMIM) that mutations of TEK may result
in GLC3E, and the locus of TEK is GLC3E.

(Refs.)/OMIM no
OMIM no.600221

Other genes associated with glaucoma. To the best of
the authors' knowledge, besides the 22 loci of glaucoma
mentioned, there are 74 genes that are more closely associated
with glaucoma presented in Table II. Of those 74, 48 (64%)
are associated with POAG, followed by PACG (16%), PCG
(4%) and pseudoexfoliation glaucoma (PEXG; 4%). Toll-like
receptor 4, sine oculis homeobox Drosophila homolog of 1,
doublecortin-like kinase 1, RE repeats-encoding gene, retinitis
pigmentosa GTPase regulator-interacting protein, lysyl
oxidase-like protein 1 (LOXLI), heat-shock 70-kD protein 1A
(HSP70-1), baculoviral IAP repeat-containing protein 6,
5,10-methylenetetrahydrofolate reductase (MTHFR) and nitric
oxide synthase 3 (ENOS) are human genes involved in more
than one phenotype of glaucoma. Nanophthalmos 1 is identified
to be the only human gene known to cause PACG (140). For
other genes (ATP-binding cassette subfamily C member 5,
SPARC-related modular calcium-binding protein 2, matrix
metalloproteinase 9, membrane-type frizzled-related protein,
hepatocyte growth factor, HSP70-1, pleckstrin homology
domain-containing protein family A member 7, collagen
type XI a-1, MTHFR and ENOS) identified to be associated
with PACG in Table II, it remains unclear whether they are
pathogenic genes for PACG; however, they may be a risk factor
for the development of PACG. Among genes associated with
PEXG and PEX, the majority of research has been conducted
on LOXLI to determine whether it is pathogenic and how it
contributes to the two diseases. PEX, characterized by the
accumulation of protein fibers in the eyes, may have a genetic
basis. The accumulation of protein obstructs aqueous humor
(AH) outflow, and that results in PEXG. Previously, two
studies (111,141) have confirmed that LOXL1 is significantly

Association with glaucoma
Obstructing AH outflow and causing increased IOP

Glaucoma subtype
PCG

.§ o associated with PEXG and PEX. A decrease in LOXLI

§ Q expressionmay cause degenerative tissue alterations in LC,

Q|9 and consequently results in patients with PEX being more
vulnerable to optic nerve damage caused by pressure (141), a
risk factor for PEXG development.

Q

=

& 5.MYOC in the GLC1A locus

% = To date, the majority of research efforts have been on MYOC

s among all the glaucoma-causing genes. There is a consensus

@)

that 2-4% of POAG cases harbor MYOC mutations (142)
and MYOC mutations have been reported to be the most
frequent in POAG. In the present review, the research
findings on MYOC are detailed and summarized. In 1993,
Sheffield et al (143) discovered the first genetic locus, GLCIA,
for POAG, and in 1997, a glaucoma-causing gene, MYOC, was
identified by Stone ef al (64). MYOC is a gene associated with
POAG, JOAG, normal tension glaucoma (NTG), high-tension
glaucoma (HTG) and steroid-induced glaucoma (144). In 1997,
the location of MYOC was linked to chromosome 1q23-q24
by Kubota ef al (145), and there was a report on fine mapping
to chromosome 1q24.3-q25.2 (146). In 1998, cells treated with
steroids secreted the same MYOC protein, which was termed

Locus name
GLC3E

glaucoma; JOAG, juvenile open angle glaucoma; AH, aqueous humor; IOP, intraocular pressure; TM, trabecular meshwork; JPOAG, juvenile POAG; PCG, primary congenital glaucoma; MYOC, myocilin;

IL20RB, interleukin 20 receptor 3; OPTN, optineurin; ASB10, ankyrin repeat- and SOCS box-containing protein 10; WDR36, WD repeat-containing protein 36; EFEMP1, EGF-containing fibulin-like
extracellular matrix protein 1; NTF4, neurotrophin 4; TBK1, TANK-binding kinase 1; CYP1B1, cytochrome P450 subfamily I polypeptide 1; LTBP2, latent transforming growth factor-f-binding protein 2;

EFEMP1 is unclear as a GLC1H gene. TIGR, trabecular meshwork-induced glucocorticoid response protein; POAG, primary open-angle glaucoma; NTG, normal tension glaucoma; HTG, high-tension
TEK, TEK tyrosine kinase endothelial; SG, secondary glaucoma.

Table I. Continued.

Authors, year
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TIGR (trabecular meshwork-induced glucocorticoid response
protein) (147). Under stress, eyes may produce the MYOC
protein in increased amounts, suggesting that MYOC may
serve a protective role similar to a molecular chaperone (148).
The MYOC protein is produced by numerous ocular
tissues (43,73,149), including the ciliary body, trabecular
meshwork (TM), optic nerve, LC, cornea, iris, sclera, retina
and lens, and is usually visualized in muscles, including the
ciliary muscle, iris and smooth muscle. MYOC is additionally
secreted into the vitreous humor for undetermined reasons.
Stone et al (64) suggested that there is a possible association of
the muscle-associated ciliary body with increased IOP. MYOC
expression does not exhibit a significant difference in the blood
of patients with POAG compared with blood from individuals
without POAG; however, there is a significant difference in
the TM (150). Therefore MYOC expression may account for
a genetic susceptibility to POAG in specific tissues, including
the ciliary body and TM.

Pathogenesis of MYOC. The pathogenesis of MYOC
mutations is unclear; however, the three most possible causes
for glaucoma are as follows. In the unhealthy state, there is
poor normal MYOC protein secretion. MYOC mutations may
lead to accumulation of mutated MYOC proteins within the
TM (151-154). Retention of abnormal MYOC protein may be
harmful to TM cells and result in their dysfunction or death,
which may obstruct AH outflow, and consequently increase
10OP (43,64,147,155,156). In addition, accumulation of mutated
MYOC proteins in the endoplasmic reticulum activates
the unfolded protein response (UPR) in TM cells (157),
subsequently leading to apoptosis that may cause high IOP.
Over activated UPR may lead to certain neurodegenerative
diseases, and inhibiting UPR is a possible therapy for these
diseases (158). Thus, this method may additionally be
applicable to glaucoma. Normal MYOC is involved in exosome
shedding into the aqueous humor, and exosomes are associated
with paracrine and autocrine signaling (74), that therefore may
serve as vehicles of MYOC protein trafficking. Notably, normal
MYOC protein is absent in the aqueous humor of glaucomatous
patients with pathogenic MYOC mutations (151). Thus, another
prevalent hypothesis on the pathogenesis of MYOC mutations
is that they interfere with MYOC protein trafficking and
lead to the intracellular aggregation of the misfolded MYOC
protein (74). Accumulation of misfolded MYOC proteins
decreases AH out flow, and that influences IOP regulation;
however, its mechanism is unclear (74). The third hypothesis
is regarding specific interactions between MYOC mutations
and mitochondria in the TM (159,160). A subsequent study
indicated that MYOC mutations lead to dysregulation of
calcium channels resulting in mitochondrial depolarization
in the TM, consequently resulting in TM contraction, which
decreases AH outflow and further causes increased IOP (161).

Digenic and polygenic mechanism of MYOC. There is strong
evidence that only ~5% of POAG (65) is caused by a single
gene, and other cases of POAG are caused by digenic or
polygenic cooperation mechanisms, none of which may alone
cause glaucoma. Usually, cooperation of MYOC mutations
with one or more genes contributes to glaucoma. Mutations
in MYOC, OPTN and CYPI1BI are identified to coexist
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in ~3.59% of POAG cases (162). This demonstrates that
mutations in the three genes together may be involved in the
pathogenesis of POAG. There are other studies investigating
the association between MYOC and OPTN. OPTN and MYOC
are observed in POAG (69,162-166), exfoliative glaucoma (164)
and exfoliation syndrome (164). Overexpression of OPTN may
upregulate MYOC in TM and stabilize MYOC mRNA (167).
There is a possible polygenic interaction among MYOC, OPTN
and apolipoprotein E (APOE). Disease-causing mutations in
MYOC and OPTN contribute to only a small number of Chinese
POAG cases (163). However, common polymorphisms in
MYOC, OPTN (69,163,166), APOE (69,163) and WDR36 (69)
may together account for POAG. Common polymorphisms of
these genes are not associated with POAG alone; however, they
may cooperatively contribute to the disease, which indicates a
polygenic pathogenesis. A study reported that the mean onset age
of carriers with only MYOC mutations is 51 years; however, the
mean onset age of carriers with MYOC and CYP1B1 mutations
is 27 years (168). This indicates that mutations in the two genes
may interact to advance the onset age of glaucoma. Notably,
in a study (169) GIn48His, a MYOC mutation, was observed
in POAG and PCG; however, one patient with PCG had a
CYPIBI mutation (Arg368His), and the other patient with PCG
had none of the CYP1B1 mutations. These results demonstrate
that there is a possible digenic interaction between MYOC
and CYP1BI, without excluding the possibility that there has
been an unidentified gene associated with glaucoma. However,
another study reported that none of the CYP1B1 mutations was
observed in all five POAG cases with MYOC mutations (170).
Forkhead box C1 (FOXCI1) may regulate MYOC secretion
through modulation of RAB3 GTPase-activating protein
catalytic subunit 1 RAB, synaptosomal-associated protein
25-kD and RAB3 GTPase-activating protein noncatalytic
subunit (144). A different study (171) suggested that MYOC
and FOXC1 mutations are not associated with the pathogenesis
of PCG. The mutations Leu486Phe in MYOC and Vall08lle in
UDP-Gal: B GlcNAc B-1,4-galactosyltransferase polypeptide 3
may cooperatively contribute to the pathogenesis of POAG (94).

6. Pathogenic genes in the GLC1B-GLC1Q loci

OPTN.OPTN, widely expressed in retinal ganglion cells (172),
the nonpigmented ciliary epithelium, human TM and the
retina (77), is an autophagy receptor. Autophagy may remove
damaged organelles and proteins via lysosomal degrada-
tion (172). Autophagy and membrane vesicle trafficking serve
an important role in the regulation of OPTN functions (172).
Furthermore, the level of autophagy mediated through OPTN
is very important for the survival of retinal cells (172).
Mutations in OPTN are involved in POAG (172). Another
conclusion contradicted this result, reporting that OPTN is not
associated with POAG in Spain (173). Of these disease-causing
mutations, two are noteworthy, GluS0Lys and Met98Lys.

The frequency of Glu50Lys in POAG is 13.5% (77).
Notably, 81.6% of POAG cases with recurrent Glu50Lys have
normal IOP; whereas only 18.4% of those have increased
IOP (77). However, another study suggested that OPTN
mutations are involved in POAG rather than glaucoma with
normal IOP in Japanese patients (174). Glu50Lys impairs
autophagy (172) and trafficking (172,175), resulting in the
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death of retinal cells through apoptosis (172) and disrupting
the endocytic recycling that is very important for maintaining
homeostasis (175).

Rezaie et al (77) first reported that Met98Lys is a
risk-causing mutation for POAG, and the frequency of
Met98Lys in POAG (13.6%) is significantly higher compared
with controls (2.1%). In another study by Sripriya et al (176),
Met98Lys was not identified in controls; however, it
was identified in POAG (4.1%) and NTG (6%) (162).
Mukhopadhyay et al (177) did not detect Met98Lys in NTG,
and the frequency of Met98Lys was 11% in POAG and 5.5%
in controls. An alternative study (162) presented the contrary
conclusion that Met98Lys may not be a risk-causing factor
for POAG on account of a very similar frequency in POAG
(7.97%) and controls (7.29%). Met98Lys is usually known
as a disease-causing mutation and the majority of POAG
cases with Met98Lys additionally have normal IOP, similar
to Glu50Lys (77). The possible pathogenesis of Met98Lys
is that it may impair autophagy, which consequently leads
to the death of retinal cells through apoptosis and trans-
ferrin receptor degradation (172). However, the pathogenic
mechanism of glaucoma-causing Met98Lys requires further
research and examination.

WDR36. WDR36, located within the POAG linkage locus
GLCIG and first identified by Monemi et al (78), is widely
expressed in numerous ocular tissues, including the optic
nerve, ciliary body, retina, TM, ciliary muscles, iris, lens and
sclera. Monemi et al (78) formerly suggested that the frequency
of WDR36 mutations in POAG is 1.6-17%. There is a possible
association of WDR36 with the pathogenic mechanism of
HTG (67,68). WDR36 mutations may alter the cell phenotype
supporting the theory that WDR36 is associated with the
polygenic pathogenesis of glaucoma (178). To date, WDR36
importance remains unclear; furthermore, its pathogenicity
is controversial. As subsequent studies did not demonstrate
WDR36 mutations to be POAG-causing mutations, it was
demonstrated that WDR36 mutations may only be a risk factor
for POAG (67-69). In addition, Fingert et al (179) were not able
to confirm the association of WDR36 with pathogenesis of
POAG.

NTF4, ASB10, EFEMPI and IL20RB. NTF4, located within
the POAG linkage locus GLCI1O, is localized to RGCs (70).
Pasutto er al (70) suggested that the frequency of NTF4 muta-
tions in POAG is 1.7% and there is strong genetic evidence
that NTF4 mutations are involved in POAG of European
origin. Liu er al (180) additionally identified coding alterations
in five POAG cases and 12 controls of European origin from
Southeastern USA, of which two mutations were previously
detected by Pasutto et al (70). Therefore, Liu et al concluded
that these NTF4 coding alterations are not significantly asso-
ciated with the pathogenesis of POAG. In addition, another
study by Chen er al (181) suggested that NTF4 does not mainly
contribute to the molecular genetics of POAG. From the above,
the association of NTF4 mutations with POAG pathogenesis
remains to be investigated. In addition, besides the European
origin, NTF4 mutations have been identified in Chinese popu-
lations (182). This indicates that NTF4 mutations may derive
from multiple ancestors.

MOLECULAR MEDICINE REPORTS 18: 656-674, 2018

ASBI10, located within the POAG linkage locus
GLCIF (183), influences AH outflow (71). ASBI10 is most
highly expressed in the iris, followed by human TM, RGCs,
the ciliary body, choroid, optic nerve, retina, lamina and a
little in the lens (71). Among patients with POAG and controls,
the frequency of ASB10 mutations is 6 and 2.8%, respec-
tively (71). To test whether ASB10 influences AH drainage,
Pasutto et al (71) applied RNA interference silencing for
knockdown of ASB10 mRNA expression in perfused human
anterior segment cultures. The results revealed that the
decrease in AH outflow facility was ~50%. In addition, ASB10
may be involved in the ubiquitin-mediated degradation path-
ways through interactions of ASB10 with the a4 subunit of the
20s proteasome and with HSP70 in TM (184).

EFEMPI, located within the POAG linkage locus GLCIH,
is a plausible candidate for POAG (185). Although there have
been a few efforts to confirm the linkage to GLC1H, it remains
uncertain. Mutations in EFEMP1 are involved in decreasing
the optic disc area (186). Another mutation, c.418C>T in
EFEMPI1 may be predictive for POAG (185). Expression of
EFEMPI1 may be influenced by transforming growth factor
(TGF)-B2. A study by Junglas ef al (187) reported that TGF-[32
is more highly expressed in AH of POAG and maybe associated
with the increase in AH outflow resistance in POAG. Higher
amounts of TGF-f2 inhibit the expression of EFEMP1 (188).

IL20RB, located within the POAG linkage locus GLCIC,
has a role in POAG pathogenesis (189). An IL20RB mutation,
Thr104 Met, lying in an active binding site of IL20RB (190),
has been observed in a large POAG family (189); therefore, this
additionally demonstrates that IL20RB may be implicated in
the pathogenesis of POAG. According to OMIM (no. 605621),
IL20RB is highly expressed in human skin and testes, and
less expressed in the muscle, placenta, heart, ovary and lung.
Recently, IL20RB was detected to be additionally expressed in
human TM (191). To the best of the authors' knowledge, thus
far, little research effort has been made to investigate IL20RB
as a POAG-causing gene.

7. Pathogenic genes in the GLC3A-GLC3E loci

CYPIBI. In humans, the CYP1BI gene encodes cytochrome
P450 1Bl1, and is regulated via the aryl hydrocarbon receptor.
CYPIBI1 was the first gene identified in PCG-associated
loci (GLC3A-3E) (192), and its role has been clearly under-
stood (65). CYP1BI is widely expressed in the eyes, including
the retina, iris, ciliary body and TM (193). However, certain
previous studies suggested that CYP1BI is not expressed
in TM at any stage of eye development (194). CYP1BI1 has
been thought to be significantly associated with human fetal
eye development (194). To date, at least 147 CYP1BI1 muta-
tions have been identified globally in 542 patients with PCG
in various countries, including Brazil, China, India, Iran,
Morocco, Russia, Saudi Arabia, Slovak Gypsy populations,
Turkey, USA, Spain, Pakistan, Oman, the Netherlands,
Mexico, Kuwait, Japan, Israel, Indonesia, Germany, Ecuador,
Canada, Britain and Algeria (6,195). Among CYP1B1 muta-
tions, Glu387Lys has been traced to a common genetic origin
for PCG (196). CYP1B1 mutations, which have been reportedly
associated with a wider range of glaucomatous phenotypes,
including PCG (6,169,195-197), POAG (198-200), JOAG (201)
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and PEXG (199), appear in patients with glaucoma at a
higher frequency compared with other glaucoma-associated
genes (199). CYPIB1 mutations may confer increased suscep-
tibility to PCG and are the most common pathogenic factors of
PCG (6). However, the frequency of PCG-causing mutations in
CYPI1BI varies significantly in different populations, including
Mexican (<10%) (202), Vietnamese (16.7%) (197), Chinese,
Japanese and Indonesian (all 20%) (202), Indian (40%) (169).
Furthermore, PCG-causing mutations in CYPIB1 occur
with extremely high incidence in Slovak Gypsy and Saudi
Arabian populations (202), which supports an additional study
reporting that consanguinity is a fundamental mechanism
for high PCG incidence in Slovak Gypsy and Saudi Arabian
populations (203) Available data demonstrate that CYP1B1
may not be the primary disease-causing gene for glaucoma in
East Asians and South East Asians, unlike in Gypsy and Saudi
Arabian populations. Furthermore, PCG in Mexicans may not
be caused by CYP1B1 mutations. In addition, only ~10% of
cases of POAG in Mexico harbor CYP1B1 mutations (198),
demonstrating that CYP1B1 mutations may not be the cause of
the pathogenesis of POAG; however, dysfunction of CYP1BI1
may increase the risk of POAG. A low percentage of JOAG
cases (~5%) harbor CYP1B1 mutations (168), and CYPI1BI1
possibly contributes to JOAG in a monogenic model (201).

An increasing amount of research attention is focusing on
the interactions of CYP1BI1 with other genes. There is growing
evidence that interactions of CYP1B1 with MYOC occur in
patients with PCG (169,204). In the process of interactions,
MYOC is a potential modifier gene (205). In addition, TEK
mutations co-occur with CYP1B1 mutations in patients with
PCG; notably, the parents of these patients with PCG harbor
either heterozygous CYP1BI1 or TEK alleles and are asymp-
tomatic (206). Furthermore, there is strong evidence suggesting
that the interaction between CYP1BI1 and TEK accounts for
the pathogenesis of PCG (206); however, the mode of inter-
action remains unclear regarding whether an overlapping or
independent mode is involved in the pathogenic mechanism
of PCG. The interaction of CYP1B1 with MYOC and TEK,
respectively, in the pathogenesis of PCG further lends support
to the digenic inheritance of PCG.

Although CYP1BI mutations are the most common cause
of PCG, these mutations only contribute to a very small
proportion of the total amount of PCG (6). Besides CYP1BI,
there are a number of genes demonstrated to be associated
with PCG, including LTBP2, FOXC1 and MYOC. Therefore,
it is reasonable to speculate that other genes may participate in
the pathogenesis of PCG; however, there still remain a large
number of unknown genes requiring identification.

LTBP2. LTBP2, located within the PCG linkage locus
GLC3D, is the largest member of the latent TGF-f family
whose signaling failure in the anterior and posterior eye may
cause pathogenic alterations in POAG (84). LTBP2 is most
highly expressed in the lens capsule (192), secondly in the TM
and ciliary processes (82,192) that are thought to be associated
with PCG pathogenesis, with a very small amount in the sclera,
corneal stroma and iris (192). LTBP2 mutations are identified
in different populations, including Pakistani (82), Indian (207),
Gypsy (82), Iranian, Moroccan, and Saudi Arabian populations
(OMIM). From the aforementioned data, LTBP2 mutations

667

appear to derive from West Asia and South Asia. Although
Morocco is located in Africa, 75% of Moroccans are of Arabic
descent; furthermore, the origin of the Gypsy ethnicity is
thought to be in Ancient India. To the best of our knowledge,
LTBP2 mutations have been not observed in other populations.
Therefore, it is reasonable to hypothesize that LTBP2 muta-
tions may have the same ancestor.

LTBP2 is a disease-causing gene for PCG (192) and is
very important in the development of the anterior chamber
of the human eye, where LTBP2 possibly serves a role in
maintaining ciliary muscle tone (82). Besides PCG, LTBP2
mutations maybe associated with PACG and POAG (208).
Therefore, there may be an overlap in the pathogenic mecha-
nism among various types of glaucoma. It is this overlap that
may account for the common characteristics among these
various types of glaucoma, including optic nerve impairment
and decreased vision, and for the common clinical presentation
at onset, including eye pain, red-eye, blurred vision, nausea
and mid-dilated pupils. However, another study (207) had
contrary conclusions that LTBP2 mutations are not implicated
in the pathogenesis of PCG. In addition, LTBP2 is not thought
to be a disease-causing gene for PCG in the Han Chinese
population (209).

TEK. TEK, located within the PCG linkage locus
GLC3E, is an angiopoietin receptor, additionally termed
cluster of differentiation 202B and tyrosine kinase with
immunoglobulin-like and EGF-like domains 2, and may
regulate vascular homeostasis (210). Although TEK and
other vascular growth factors are important for AH outflow
and Schlemm's canal development, their association with
glaucoma remains unclear (211). A 50% decrease in TEK
adequately demonstrated defective Schlemm's canal
development and impaired AH outflow (210), and this
demonstrates that TEK concentration is important for the AH
drainage pathways. Variable expression of TEK is possibly
produced by oligogenic or digenic inheritance, in line with
other ocular disorders of developmental origin produced by
mutations in optic atrophy 1, FOXCI, paired box gene 6 and
MYOC (210). In addition, another recent study demonstrated
that TEK mutations co-occur with CYP1B1 mutations in
PCG (206), and demonstrated that interactions between
TEK and CYPI1BI account for digenic inheritance in PCG
pathogenesis.

8. Potential pathogenic mechanism and recent advances in
treatments

Potential pathological mechanism. Among the 96 genes,
mutations of MYOC (GLC1A) and CYPIB1 (GLC3A)
have the closest associations with potential pathological
mechanisms in glaucoma. Besides the aforementioned
glaucomatous pathogenesis, a novel pathogenic mechanism
for MYOC-associated glaucoma is proposed. Extracellular
matrix (ECM) proteins of TM are synthesized in the endo-
plasmic reticulum (ER) and finally secreted into the ECM.
Malfunction of the ER during ER stress caused by mutant
myocilin accumulation in the ER may affect ECM protein
processing and secretion, which results in aberrant intra-
cellular accumulation of ECM proteins in TM (212). The
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accumulation of ECM proteins may deteriorate ER stress,
leading to TM cell dysfunction and obstructing AH outflow,
thereby increasing IOP (212).

CYPIBI defects cause angle abnormalities involving TM
and Schlemm's canal (213). CYP1B1 mutations lower activity
or stability of the enzyme in the mitochondria (214,215) and
reduce expression levels of ECM proteins in TM (215). These
may impact the development or filtering function of TM. In
addition, abnormal mitochondria caused by CYP1B1 muta-
tions [the same case as with MYOC mutations (161)] may cause
dysregulation of calcium channels resulting in mitochondrial
depolarization in TM, consequent TM contraction, reduction
of AH outflow and an increase in IOP.

Recent advances in treatment. Based on previous studies on
the potential pathogenic mechanism of MYOC mutation, at
present, there have been three novel approaches to treatment
for MYOC-associated POAG: i) Using chemical chaperones
(based on molecular mechanisms) to decrease misfolding or
unfolding of proteins and increase MYOC secretion (216);
ii) given the gain-of-function nature of MYOC mutations,
another novel approach is targeting MYOC mRNA or the
myocilin protein (216); and iii) targeting MYOC by gene
editing with clustered regularly interspaced short palindromic
repeats-Cas9 technology to reduce ER stress and lower
I0P (216).

According to previous studies on potential pathogenic
mechanisms of CYP1BI mutation, researchers developed two
novel therapies: One is the approach based on the gene, directly
attempting to correct or replace abnormal CYPIBI (217); the
more novel approach differentiates into a specific lineage and
transfers stem cells containing wild-type CYP1BI to stimulate
the normal development of TM cells (217).

9. Conclusion and prospects

As mentioned, the pathogenic mechanism of MYOC- or
CYPIBl-associated glaucoma is associated with aberrant
ECM proteins in TM. The accumulation of deposits of ECM
proteins may lead to ER stress as described, resulting in the
misfolding or unfolding of MYOC proteins. If ER stress is
too severe or if UPR (an adaptive response to ER stress) fails
to compensate for the ER stress, dysfunction and apoptosis
occurs (218-221), which may cause increased IOP. At present,
the novel protein-remodeling factors as potential therapeutics
are highly promising to correct the misfolding or unfolding
of proteins in neurodegenerative diseases or disorders (221).
Therefore, as glaucoma is a neurodegenerative disease, the
highly promising protein-remodeling factors (including engi-
neered Hspl04 mutations) may be useful in the development
of novel glaucoma therapies, and to better understand the
glaucomatous mechanism.

Additionally, combined with the prospect for glaucoma
healthcare, certain important problems require addressing in
future studies. More in vivo animal models (monkey, pig and
cow, whose eyes are similar to human), with stem cell-based
studies on glaucoma-associated genes, including MYOC and
CYPIBI, are required. In addition, using autologous stem
cells, including bone marrow derived stem cells (217), that
have been genetically modified to serve an important role in
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the pathogenic mechanism of glaucoma may be a promising
future therapy for MYOC- or CYP1Bl-associated glaucoma.

In conclusion, strong evidence indicates that genes are
significantly associated with the pathogenesis of glaucoma, and
additionally provides a stimulus for the identification of these
pathogenic genes. Further efforts to research clinical trials on
potential feasible therapeutic targets are necessary, which may
construct future therapeutic paradigms for glaucoma. Presently,
although a number of genes have been identified to be associated
with glaucoma, their pathogenic mechanisms remain unclear,
with the exception of MYOC and CYPIBI. Furthermore,
certain studies are controversial, even contradictory. Therefore,
further research is required to better comprehend the associa-
tion between pathogenic genes and glaucoma.
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