
fphys-11-00096 February 14, 2020 Time: 17:2 # 1

REVIEW
published: 14 February 2020

doi: 10.3389/fphys.2020.00096

Edited by:
Amadou K. S. Camara,

Medical College of Wisconsin,
United States

Reviewed by:
Jin O-Uchi,

University of Minnesota Twin Cities,
United States

Miguel A. Aon,
National Institute on Aging (NIA),

United States
Andre Heinen,

Heinrich Heine University Düsseldorf,
Germany

Jonathan Lippiat,
University of Leeds, United Kingdom

*Correspondence:
Harpreet Singh

harpreet.singh@osumc.edu

Specialty section:
This article was submitted to

Mitochondrial Research,
a section of the journal
Frontiers in Physiology

Received: 02 October 2019
Accepted: 27 January 2020

Published: 14 February 2020

Citation:
Gururaja Rao S, Patel NJ and

Singh H (2020) Intracellular Chloride
Channels: Novel Biomarkers

in Diseases. Front. Physiol. 11:96.
doi: 10.3389/fphys.2020.00096

Intracellular Chloride Channels:
Novel Biomarkers in Diseases
Shubha Gururaja Rao1, Neel J. Patel2 and Harpreet Singh1*

1 Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH,
United States, 2 Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States

Ion channels are integral membrane proteins present on the plasma membrane as
well as intracellular membranes. In the human genome, there are more than 400
known genes encoding ion channel proteins. Ion channels are known to regulate
several cellular, organellar, and physiological processes. Any mutation or disruption
in their function can result in pathological disorders, both common or rare. Ion
channels present on the plasma membrane are widely acknowledged for their role in
various biological processes, but in recent years, several studies have pointed out the
importance of ion channels located in intracellular organelles. However, ion channels
located in intracellular organelles are not well-understood in the context of physiological
conditions, such as the generation of cellular excitability and ionic homeostasis. Due
to the lack of information regarding their molecular identity and technical limitations of
studying them, intracellular organelle ion channels have thus far been overlooked as
potential therapeutic targets. In this review, we focus on a novel class of intracellular
organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented
for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single
transmembrane domain, and in cells, they exist in cytosolic as well as membranous
forms. They are predominantly present in intracellular organelles and have recently
been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In
fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be
identified on the molecular level in the inner mitochondrial membrane, while another
member, CLIC4, is located predominantly in the outer mitochondrial membrane. In
this review, we discuss this unique class of intracellular chloride channels, their role
in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and
the recent developments concerning their usage as theraputic targets.

Keywords: mitochondria, chloride intracellular channel, cancer, physiology, cell signaling, autosomal recessive
nonsyndromic hearing impairment, pulmonary hyperetnsion, chloride channel

INTRODUCTION

Ion fluxes and cellular physiology associated with them have been established much before
the discovery of the proteins involved in their transportation. It had been long thought that
transmembrane ion fluxes depend on conduction pathways located within a specific group of
proteins given that the lipid bilayer was characterized as impermeable to water-soluble ions. It
was not until the 1980s that a convergence of state-of-the-art biophysical and molecular biological
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techniques allowed in-depth characterization and identification
of specific proteins responsible for ion fluxes. The major
breakthroughs of the coupling of this technology included
the determination of the ionic basis of action potential by
Hodgkin and Huxley, the discovery of Na+ pump by Skou,
and characterization of synaptic transmission by Kuffler, Katz,
Miledi, Neher, Sakmann, Stefani, and Eccles (Hodgkin and
Huxley, 1945, 1952, 1990; Skou, 1957; Eccles, 1964; Katz and
Miledi, 1969; Elul et al., 1970; Bezanilla and Stefani, 1994,
1998; Stefani and Bezanilla, 1998). After the 1980s, with the
advent of new technologies (Sakmann and Neher, 1984; Singh
et al., 2009; Rodríguez et al., 2012), ion channels and the genes
encoding them were further characterized and were found to be
associated with several physiological and pathological conditions
(Bezanilla and Stefani, 1994, 1998; Stefani and Bezanilla, 1998;
Hille et al., 1999; Jentsch et al., 2004; Gronich et al., 2010;
Maffeo et al., 2012; Feske et al., 2015). Ion channels have
long been targets for pharmacologic agents in several fields,
including neurological and cardiovascular therapy (Hille et al.,
1999). In recent years, both cation (Toro et al., 2014) and anion
channels (Ponnalagu and Singh, 2016; Gururaja Rao et al., 2018)
have emerged as major molecules with aberrant expression,
activity, and localization in various pathological conditions such
as cardiovascular dysfunction, neurological disorders, metabolic
diseases, and cancers (Cuddapah and Sontheimer, 2011). The
main class of anion channels associated with various pathological
disorders are chloride channels.

The role and significance of ion transport in physiology and
pathology, such as the onset and development of tumors, were
recognized around 100 years ago (Herl, 1924). It is well known
that cells, while undergoing apoptosis, present with changes in
cell volume, inter-nucleosomal DNA fragmentation or division,
and apoptotic body formation. The change in cell volume during
apoptosis is usually caused by alterations in intracellular ionic
concentration. One of the major ions involved in cell volume
regulation is chloride (Cl−). The role of Cl− in cell proliferation
was characterized as early as the 1900s (Lathrop and Loeb,
1916; Herl, 1924). On incubation of tumor cells with Locke’s
(in mM, NaCl 154, KCl 5.6, CaCl2 2.2 and NaHCO3 2.4)
or Ringer’s (in mM, NaCl 123, KCl 5.0, CaCl2 1.5) solution
containing higher Cl− levels, but not physiological levels present
in normal saline solution (15 mM NaCl), cells seldom gave rise
to tumors upon transplantation into rats (Lathrop and Loeb,
1916; Herl, 1924). Cl−flux has also been implicated in apoptosis,
specifically by modulating intrinsic and not extrinsic pathways
(Heimlich and Cidlowski, 2006). Although the role of Cl− in cell
proliferation and apoptosis had been established over a century
ago, there are still no known therapeutic targets involving Cl−
channels or transporters for cancer treatment due to lack of
understanding of the complex cellular and molecular signaling
involved in this process.

Cl− channels play a vital role in cellular physiology including
stabilization of cell membrane potential, transepithelial transport,
maintenance of intracellular pH, cell proliferation, fluid secretion
and regulation of cell volume. Anionic currents are characterized
and recorded from several healthy and diseased (such as
cancerous) cells (Heimlich and Cidlowski, 2006). However, the

lack of information on the identity of Cl− channels is the major
reason for them not to be presented as targets for restoring
apoptosis in tumor cells or other pathological conditions. In
addition, majority of the focus on Cl− channels has been on
channels located at the plasma membrane, and many of those
proteins are transporters [such as Chloride channels (ClCs)]
and not just ion channels (Duran et al., 2010; Jentsch and
Pusch, 2018). Cellular ionic concentration can modulate cell
volume, and it is the intracellular ionic environment, where
intracellular anion/chloride channels could play an active role,
that regulates apoptosis.

All the known Cl− channels can be classified as members of
the voltage-sensitive ClC subfamily, transmitter-gated GABAA,
and glycine receptors, calcium-activated Cl− channels such as
TMEM16A (Crottes and Jan, 2019), high (maxi) conductance
Cl− channels, the cystic fibrosis transmembrane conductance
regulator (CFTR), and volume-regulated channels (Ashley,
2003). Chloride intracellular channel (CLIC) proteins are the
most recent Cl− channels to be discovered and are classified
separately from other Cl− channels; there are six members in
the CLIC family (CLIC1-6) (Ashley, 2003; Littler et al., 2010;
Singh, 2010; Peretti et al., 2014; Ponnalagu and Singh, 2017).
CLICs are not related to the ClC family and are encoded by six
different genes (clic1-6). Though they are highly conserved from
prokaryotes to eukaryotes, including higher mammals (Gururaja
Rao et al., 2017), they are not yet explored for their physiological
roles. CLICs, originally named as p64, were isolated from
microsomal membranes from bovine kidney and trachea (Landry
et al., 1989; Redhead et al., 1992). On reconstitution in planar
bilayers they presented consistent Cl−-selective channel activity
which was sensitive to R(+)-[(6,7-Dichloro-2-cyclopentyl-2,3-
dihydro-2-methyl-1-oxo-1H-inden-5-yl)-oxy] acetic acid (IAA-
94) (Tonini et al., 2000; Valenzuela et al., 2000; Warton et al.,
2002; Littler et al., 2004; Novarino et al., 2004; Singh and Ashley,
2006, 2007; Singh et al., 2007; Milton et al., 2008; Gururaja
Rao et al., 2017; Ponnalagu and Singh, 2017; Ponnalagu et al.,
2019). The fact that CLICs possess a single transmembrane
domain and form a functional channel, which is extensively
characterized using a planar bilayer system from bacterial to
mammalian proteins, indicates that the pore is a primitive
structure (Ponnalagu and Singh, 2017; Gururaja Rao et al., 2018).
To form a functional channel, a minimum of four subunits are
required. Occasionally individual subunits of functional units
assemble to form a mega Cl− channel. FRET studies involving
CLIC1 indicate that CLIC1 oligomers comprise of 6–8 subunits
upon oxidation in the presence of the membranes (Goodchild
et al., 2009, 2010, 2011).

CLICs are known to form redox and pH-sensitive ion channels
in planar bilayers (Warton et al., 2002; Singh and Ashley, 2006;
Milton et al., 2008; Ponnalagu and Singh, 2017). Single-channel
conductance of CLIC proteins ranges from∼6–120 pS for CLIC1,
∼1–86 pS for CLIC4 and ∼3–400 pS for CLIC5 (Singh, 2010).
So far, activity of specific CLIC proteins has not been recorded
in their native environment. Structure-function carried out by
Prof. Mazzanti’s group indicates that neither Arg29 nor Lys37
of CLIC1 affects the ion channel selectivity, but they report
small differences in the reversal potentials in the single-channel
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currents and the whole-cell currents of transfected HEK cells.
Our structure-function work with Cys 24 of CLIC1 did implicate
the residue in redox-regulation of the channel; however, the
single-channel conductance was significantly reduced. Recently,
CLIC-like IAA-94 sensitive channels were recorded in the inner
membrane of mitochondria which presented a single-channel
conductance of ∼100 pS (Ponnalagu et al., 2019). Thus far,
the only CLIC proteins known to be present in mitochondrial
membranes are CLIC4 and CLIC5 (Ponnalagu et al., 2016b;
Ponnalagu and Singh, 2017). CLIC5 is predominantly located
in the inner mitochondrial membrane; therefore, the IAA-94
channel in mitoplast could be CLIC5. Due to variability in
recording conditions, redox environment, pH and membrane
composition, CLICs could be present with variable conductance
(Singh, 2010; Ponnalagu and Singh, 2017). Similar to single-
channel conductance, the majority of the information on their
selectivity is also obtained from an artificial bilayer system.
Additionally, most of the CLICs do not possess high intra
anionic selectivity (Singh, 2010). Therefore, to attribute specific
biophysical characteristics to individual CLICs, their activity
should be recorded in their native environment, possibly with
null mutants as controls.

One of the unique features, which distinguishes CLICs from
other ion channels, is their dimorphic existence. They exist
in membranous as well as cytosolic or soluble forms (Singh,
2010; Gururaja Rao et al., 2018) and as such, could easily
be predicted to play differential physiological roles. In the
cytosol, they interact with cytoskeletal filaments and other
cytosolic proteins (Figure 1). These interactions with cytoskeletal
filaments could be responsible for their functional outcome
as well as transportation and translocation (Suginta et al.,
2001; Singh et al., 2007; Argenzio et al., 2014; Argenzio and
Moolenaar, 2016). Moreover, the cytosolic soluble version of
CLIC proteins have recently been shown to possess enzymatic
activity in the case of CLIC1 (Al Khamici et al., 2015). CLIC1
has a conserved active site with a glutaredoxin monothiol
motif, similar to that of Glutathione S transferases. This site
is shown to carry out glutathione-dependent oxidoreductase
activity. Hence apart from the widely reported channel activity,
these proteins also have a role as enzymes while they are
present in their soluble form in the cytoplasm. It is also
worth noting that CLICs can be regulated by post-translational
modifications, such as phosphorylation (Guo et al., 2018),
wherein cyclin-dependent kinase 5 mediated phosphorylation of
a serine on CLIC4 increases its stability and regulates apoptosis.
This places CLICs in the class of ‘moonlighting proteins’
(Piatigorsky and Wistow, 1989; Jeffery, 1999) where they can
perform different, and perhaps, interdependent functions at the
membrane and the cytoplasm.

Cytosolic form structure of most of the CLIC proteins
is known and is identical to the glutathione S-transferase
superfamily (Cromer et al., 2002). They all possess omega-
superfold in the C-terminus of the protein (Cromer et al., 2002;
Argenzio and Moolenaar, 2016) and cytosolic CLIC1 also shows
glutaredoxin-like enzyme activity (Al Khamici et al., 2015).
Crystal structure of membrane form is not yet elucidated, but
structure-function experiments show that CLICs possess a

transmembrane domain in the N-terminus region (Averaimo
et al., 2013; Gururaja Rao et al., 2018). The major outstanding
question in the field is how a soluble protein unfolds and inserts
into the membrane to form a functional ion channel. The key
factors involved in this transition are still being investigated
(Fanucchi et al., 2008; Stoychev et al., 2009; Legg-E’silva et al.,
2012; Argenzio et al., 2014; Peter et al., 2014; Hare et al., 2016).
CLIC proteins are known to interact with several cytoskeletal
filaments and intracellular proteins that can regulate their
function or vice versa. Several members of the CLIC family,
CLIC1 to CLIC6, located in various organelles of the cells
(Figure 1) are implicated in physiological roles and pathological
conditions, such as cancer initiation and progression in
multiple studies (Peretti et al., 2014; Flores-Tellez et al., 2015;
Hernandez-Fernaud et al., 2017), pulmonary hypertension
(Wojciak-Stothard et al., 2014), hearing (Gagnon et al., 2006;
Seco et al., 2015), Alzheimer’s disease (Novarino et al., 2004;
Milton et al., 2008) and cardiac dysfunction (Takano et al., 2012).
CLICs are extensively studied in cancer and tumor growth, and
display differential expression and localization in cancer cells
during metastasis (Suh and Yuspa, 2005; Peretti et al., 2014). In
this review, we have focused on the information available on each
member of the CLIC family with respect to their physiological
and pathological roles, with emphasis on how they are modified
in human tumor scenarios. For the role of VDAC (the other
intracellular chloride channel) in cancer, please refer to the
recent reviews (Mazure, 2017; Shoshan-Barmatz et al., 2017),
and for ion channels in general, please refer (Hille et al., 1999;
Jentsch et al., 2004; Amin et al., 2010; Roelfsema et al., 2012;
Feske et al., 2015; Prindle et al., 2015; Bates, 2015; Sabirov et al.,
2016; Jentsch, 2016; Prevarskaya et al., 2018).

CLICS IN CARDIOVASCULAR AND
PULMONARY FUNCTION

The expression of CLIC proteins in the cardiovascular system
is heterogeneous. All of the CLICs are found in the majority
of cell types, but the precise localization and distribution of
CLICs are not yet established in all cell types. CLICs were
originally affinity-purified by using IAA-94. IAA-94 is used in
several cardiovascular studies and has been shown to impact
the myogenic response of cerebral arteries in the presence of
potassium ions (Nelson et al., 1997). However, concentrations
used (200 µM) rendered non-specific effects and also blocked
L-type Ca2+ channels (Doughty et al., 1998). These results were
not conclusive for the role of any of the CLICs in vascular
function. Recently, CLIC2 was found in endothelial cells in blood
vessels, but not lymphatic vessels, in non-cancerous tissues, and
its expression is significantly lower when compared to endothelial
cells of blood vessels in cancerous tissues. Ablation of CLIC2 in
human umbilical vein endothelial cells (HUVECs) compromised
the integrity of the vessels and allowed human cancer cells to
transmigrate through a HUVEC monolayer (Ueno et al., 2019).
In addition to CLIC2, CLIC1, and CLIC4 are also known to be
present in endothelial cells (Suh et al., 2005b; Money et al., 2007;
Tung and Kitajewski, 2010; Wegner et al., 2010), and CLIC5
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FIGURE 1 | Localization of CLIC proteins. Depiction of the presence of CLICs in intracellular organelles. Except for CLIC1 which goes to the plasma membrane on
overexpression, all other CLIC proteins predominantly localize to intracellular organelles.

is present in placental as well as glomerular endothelial cells
(Money et al., 2007; Wegner et al., 2010).

The role of CLICs in tubulogenesis and angiogenesis is
well established. In Caenorhabditis elegans, a CLIC homolog
(Exc-4) was shown to localize to the luminal membrane of
excretory tubes and is required for tubule formation and
its maintenance (Berry et al., 2003). In mammals, CLIC4 is
localized to vesicles in HUVECs (Bohman et al., 2005) and
large vacuoles in mouse heart endothelial cells (Ulmasov et al.,
2009). Removal of CLIC4 in mice revealed stunted vascular
development when challenged by oxygen toxicity (Ulmasov
et al., 2009). CLIC4 was found to be present in midbody and
centrosome of cultured bovine aortic endothelial cells as well
as at the cell-cell junction, implicating it in establishing or
maintaining cell polarization (Berryman and Goldenring, 2003).
In in vitro studies, CLIC4 was shown to promote endothelial
cell proliferation and regulate endothelial morphogenesis (Tung
et al., 2009) possibly by acidification of vacuoles (Ulmasov
et al., 2009). In line with worm Exc-4 and mammalian CLIC4,
CLIC3 mRNA and protein expression has been showed to be
significantly increased in preeclampsia patients (Enquobahrie
et al., 2008; Murthi et al., 2012). Preeclampsia is a pregnancy-
related condition characterized by endothelial dysfunction in
the placenta. To clearly understand the role of CLICs in the
vascular system, comprehensive studies need to be performed in
null mutant mice.

One of the most significant pathological roles discovered
for CLICs was their involvement in pulmonary hypertension

(PH). PH is characterized by a loss of vasodilator influences
in the pulmonary circulation, which results in pathogenic
vasoconstriction, and remodeling of small intrapulmonary
arteries, leading to eventual right heart failure (Umar et al.,
2012). CLIC4 was found to be highly expressed in the pulmonary
vascular endothelium of PH patients (Wojciak-Stothard et al.,
2014). Surprisingly, ablation of CLIC4 rendered protection to
the null mutant mice and these animals did not develop PH
when exposed to hypoxia (Wojciak-Stothard et al., 2014). Later,
Arf6 was shown as a novel effector of CLIC4 and proposed
as a new therapeutic target in PH (Abdul-Salam et al., 2019).
The discovery of the involvement of CLIC4 in PH is highly
significant and implicates a role for CLIC4 in lung remodeling.
However, it is not clear whether other CLICs can compensate
for the loss or overexpression of CLIC4 in PH. For example,
patients treated with pirfenidone for idiopathic pulmonary
fibrosis presented changes in contrasting expression of CLIC3
and CLIC6 (Kwapiszewska et al., 2018).

In the heart, CLICs are extensively expressed in several
types of cells (Gururaja Rao et al., 2018). CLIC1, CLIC4, and
CLIC5 were localized in adult cardiomyocytes, and further
CLIC4 and CLIC5 were localized to mitochondrial membranes
(Ponnalagu et al., 2016a,b). In fact, CLIC5 is the first chloride
channel to be identified up to the molecular level in the inner
membrane of cardiac mitochondria (Ponnalagu et al., 2016b).
The first member of the CLIC family to directly implicate them
in cardiac dysfunction was CLIC2. Using exome analysis and
deep sequencing of genes on the X-chromosome, a mutation in
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CLIC2 (c.303C>G, p.H101Q) was discovered, which was found
to be associated with X-linked intellectual disability (ID), atrial
fibrillation, cardiomegaly, congestive heart failure (CHF), and
seizures. CLIC2 is known to interact with ryanodine receptor
(RyR) proteins and inhibit its activity. However, the CLIC2
H101Q variant stimulated, rather than inhibited, the action
of RyR channels. In blood cells, CLIC1 is known to promote
platelet function, promote adhesive functions in platelets as
well as endothelial cells, and is critical for vascular repair and
angiogenesis (Knowles et al., 2018).

One of the major causes of morbidity and mortality in
myocardial infarction is due to ischemia-reperfusion (IR) injury
(Hausenloy and Yellon, 2013). Using the known CLIC-blocker,
IAA-94, several groups have shown that CLICs could possibly
be involved in protecting the heart from IR injury. IAA-94
increased cell death in vitro as well as size of myocardial infarction
in vivo models, respectively. Cyclosporine A, which is known
to protect the heart, was rendered ineffective in the presence of
IAA-94 (Diaz et al., 1999, 2013; Batthish et al., 2002). We have
recently discovered that IAA-94 reduces the calcium retention
capacity of mitochondria, and cyclosporine A cannot reverse
or prevent the deleterious effect of IAA-94 (Ponnalagu et al.,
2019). The absence of CLIC4 also increases mitochondrial ROS,
which has been shown to be associated with IR injury as well
(Ponnalagu and Singh, 2016; Ponnalagu et al., 2016b). However,
these pharmacological studies are to be extended to include
genetic models, rapid in vivo approaches (Kohut et al., 2016; Patel
et al., 2018), and comprehensive studies involving other CLIC
proteins to assign a definitive role to CLICs in protecting the heart
from IR injury and heart function.

CLICS IN HEARING IMPAIRMENT

One of the major physiological roles of CLIC5 is implicated
in hearing impairment. In a consanguineous Turkish family
diagnosed with autosomal recessive non-syndromic hearing
impairment (arNSHI), a homozygous nonsense mutation
c.96T>A [p.(Cys32Ter)] was observed (Seco et al., 2015) in
CLIC5 locus. The mutation in CLIC5 is projected to result in
nonsense-mediated mRNA decay, since it creates a premature
stop codon [p.(Cys32X)] 54 bp upstream of the 3′-most intron.
The initial hearing loss in the group of patients was mild, mainly
affecting the mid and high frequencies, but later progressed
to severe-to-profound hearing loss. However, the mutations
were not the common cause of arNSHI in the Netherland and
Spanish patient population. Analysis of expression of CLIC5 in
the human fetal inner ear with other adult and fetal-stage human
tissues revealed that the expression of CLIC5 in the fetal inner
ear was 26-fold higher than in fetal liver in which the expression
level was the lowest. These findings mark the importance of
CLIC5 in hearing impairment in a specific population.

Sharing the hearing loss and complete vestibular dysfunction,
mice with jitterbug (jbg) mutation also resemble the human
hearing impairment phenotype. In wild type mice, CLIC5 is
present in stereocilia of both cochlear and vestibular hair
cells as well as the apical surface of Kolliker’s organ during

cochlear development. In jbg mice, CLIC5 is completely absent,
accompanied by dysmorphic stereocilia and progressive hair
cell degeneration. In younger mice (1–5 months old), auditory-
evoked brainstem responses were present in clic5−/− mouse
but were 40–50 dB higher than wild type mice (Gagnon et al.,
2006). However, with the progression of age at around 7 months
(∼38 years for humans) clic5−/− mouse presented complete
deafness due to progressive hair bundle degeneration and a
reduced density of spiral ganglion cells (Gagnon et al., 2006).
The vestibular hair cells of jbg mice also showed a progressive
degeneration, but there were no significant changes observed
in wild type mice between 5 and 7 months of age (Gagnon
et al., 2006). In the crista ampullaris of jbg mice, the number
of vestibular hair cells was lower than the wild type, whereas
hair cells were nearly absent at 12 months (Gagnon et al., 2006).
At molecular levels, CLIC5 is shown to work with cytoskeletal
elements such as radixin, protein tyrosine phosphatase receptor
Q, taperin, and myosin VI. These interactions are essential to
stabilize membrane-cytoskeletal attachments at the base of the
hair bundle (Salles et al., 2014). Absence of CLIC5 compromises
the stability of hair bundles either by disrupting cytoskeletal
filaments or by disrupting Cl− transport (Singh et al., 2007) in
hair cells, resulting in the progressive loss of integrity of these
vital structures.

CLICS IN NEUROPHYSIOLOGY

Chloride Intracellular Ion Channel proteins are known to be
present in neurons and astrocytes (Berryman and Bretscher,
2000; Novarino et al., 2004; Milton et al., 2008). At the functional
level, CLIC1 is characterized for its role in Alzheimer’s disease
(AD) where it is present in activated microglia. The expression
of CLIC1 is dramatically increased (60%) in the hippocampus
of mild/moderate AD patients. In experimental settings, Aβ

stimulation of either primary rat microglia or the microglial
cell line BV2 enhances expression of the CLIC1 protein and
strengthens anion permeability with an increase in conductance
mediated by CLIC1 (Novarino et al., 2004; Milton et al., 2008;
Paradisi et al., 2008). In patch-clamp, Aβ directly increases the
open probability and mean open time of CLIC1 (Milton et al.,
2008). Addition of blockers or siRNAs for CLIC1 reduces the
neurotoxicity by downregulating the TNFα and ROS. Even in a
mouse model of AD, CLIC1 localizes to the plasma membrane of
activated microglia. CLIC1 migration to the plasma membrane
causes an increase in Cl− permeability across the cell membrane
and results in the Aβ-mediated cytotoxic effect. It is still not
clear how CLIC1 mediates these cytotoxic effects, but it is a
possibility that CLIC1 could interact with other ion channels or
form a channel itself.

Apart from CLIC1, CLIC2 is also implicated in
neurophysiology. In a large-scale next-generation sequencing
of X-chromosome genes, a mutation in CLIC2 was identified
on Xq28 in a male with X-linked intellectual disability (XLID)
(Witham et al., 2011). There are several non-synonymous SNPs
reported for CLIC2 in healthy individuals which do not affect its
function. However, p.H101Q lessens the flexibility of the joint
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loop and reduces the possibility of the large conformational
change which is expected to occur when CLIC2 changes from
its cytosolic form to membranous form. Further, the H101Q
mutation is known to stimulate rather than inhibit the activity of
RyR channels (Takano et al., 2012) which could explain seizures
in patients with XLID.

In ischemia-induced neuronal apoptosis, expression of CLIC4
was shown to be increased. Furthermore, activated cyclin-
dependent kinase 5 (CDK5) is shown to phosphorylate serine
108 of CLIC4 which increases the stability and accumulation
of CLIC4 (Guo et al., 2018). In contrast, inhibition or
downregulation of CDK5 decreased CLIC4 levels in neurons
(Guo et al., 2018); overexpression of CLIC4 caused H2O2-
induced neuronal apoptosis. These findings suggest that
overexpression of CLIC4 could be determinantal for cell survival,
which could, again, be due to change in Cl− concentration in
cellular compartments.

CLICS IN CANCER

One of the major pathophysiological roles assigned to CLICs
is in cell growth and apoptosis. Unregulated cell growth can
result in tumor development and cancer. Given the ubiquitous
expression of CLICs in all cells, they are also found in most
tumors. In this section, we have categorized individual CLICs
with respect to their roles in different types of cancers and
performed analysis with their expression with respect to patient
survival in human cancers.

CLIC1
CLIC1 is overexpressed in several cancers including liver cancer,
gall bladder cancer, pancreatic ductal adenocarcinoma, glioma,
breast cancer, nasopharyngeal carcinoma, and gastric cancer to
name a few (Wulfkuhle et al., 2002; Petrova et al., 2008; Chang
et al., 2009; Wang et al., 2009, 2018; Tang et al., 2012; Wei et al.,
2015; Jia et al., 2016; Qu et al., 2016). It is known to play a role
in cell viability, possibly by modulating mitochondrial function.
CLIC1 is a biomarker for ovarian cancers (Ye et al., 2015) holding
prognostic value (Yu W. et al., 2018). Along with CLIC4, CLIC1
is a promising biomarker for epithelial ovarian cancer where its
expression predicts patient survival (Singha et al., 2018). CLIC1 is
shown to regulate the redox-sensitivity of ovarian cancer cells and
is predicted to be a potential marker for lymphoblastic leukemia
(Qu et al., 2016; Dehghan-Nayeri et al., 2017; Singha et al., 2018).
Modulation of CLIC1 expression by micro RNA, hsa-mir-372
predicts the poor prognosis of patients affected with gall bladder
cancers (Zhou et al., 2017) and is important for the migration
and invasion of gall bladder cancer cells (He et al., 2018). CLIC1,
along with CLIC4, contributes to the virus-mediated motility of
Merkel cell carcinoma (Stakaityte et al., 2018).

CLIC1 was also shown to be overexpressed in pancreatic
cancer tissues. Furthermore, siRNA targeting CLIC1 mRNA
with a subsequent decrease in CLIC1 expression lead to a
decrease in cell proliferation (Lu et al., 2015). This work
ascertains that CLIC1 expression is integral to the development
and progression of pancreatic cancer. Jia et al. (2016) showed

increased CLIC1 expression in pancreatic ductal adenocarcinoma
correlating higher expression with higher histological grade and
increased tumor size. Two independent groups have shown that
in hepatocellular carcinoma CLIC1 is overexpressed (Song et al.,
2010), and, surprisingly, down-regulation of CLIC1 enhanced the
proliferative activity and blocked apoptosis (Li et al., 2012). In
studies focused on cell cycle, IAA-94, a CLIC blocker (Valenzuela
et al., 2000) was shown to arrest cells at the G2-M phase linking
CLICs to the cell cycle. While the mechanism of how CLIC1 is
involved in the cell cycle is yet to be explored, these studies do
place CLIC1 as an important molecule for cell cycle progression.

CLIC1 is not only important for cell cycle progression in
cancer cells but also influences cell migration and metastatic
invasion. Blocking CLIC proteins with IAA-94 reduced reactive
oxygen species (ROS) generation (Ponnalagu and Singh, 2017)
and is hypothesized to block migration and invasion in colon
cancer and laryngeal cancer cells (Kim et al., 2016). Blocking
CLIC1 with RNAi also showed a similar effect proving that
CLIC1 indeed is important for metastasis (Wang et al., 2012,
2014). One of the hallmarks of malignancies is rapid and
often uncontrolled angiogenesis to provide blood supply to
tumor tissue. A consequence of this unregulated angiogenesis
is a constant hypoxia-reoxygenation state leading to increased
reactive oxygen species (ROS) production, providing a substrate
for further undifferentiation. CLIC1 has been shown to be
overexpressed in gaster cancer cells where it is associated
with increased production of ROS in a hypoxia-reoxygenation
induced state. Furthermore, functional inhibition of CLIC1
downregulates ROS production in gastric cancer cells and
decreases gastric cancer cell migration and invasion (Zhao et al.,
2015). It is intriguing that CLICs have a close association
with mitochondria and are involved in the regulation of ROS
(Suh et al., 2004; Ponnalagu et al., 2016a,b). In this context,
CLIC1 could be predicted to regulate ROS generation in tumor
cells. CLIC1 also modulates MAP kinase and AKT signaling to
promote gastric cancer (Li et al., 2018), which could implicate
CLIC1 in modulating signaling pathways through ROS.

Glioblastoma is an aggressive and common tumor type where
CLIC1 is highly expressed (Wang et al., 2012; Setti et al., 2013).
In these cells, CLIC1 suppression reduced both proliferation
and self-renewal properties. In glioblastoma, CLIC1-mediated
channel activity was recorded to distinguish cytosolic vs
membranous components (Setti et al., 2013). The currents
correlate with the tumor aggressiveness indicating a positive
correlation between membrane form of CLIC1 to glioblastoma,
and these results indicate that CLIC1 could be translocated
to the membranes in tumor environments. Similar to gastric
cancer cells, CLIC1 is shown to regulate ROS accumulation and
pH changes in human glioblastoma stem cells influencing their
proliferation as well as their motility, and therefore could be a
crucial therapeutic target (Gritti et al., 2014; Peretti et al., 2018).
CLIC1 was one among the nine genes identified in a screen
for ion channels strongly modified in solid tumors and vascular
malformations, especially in glioblastoma and bladder cancers
(Biasiotta et al., 2016). CLIC1 expression is also correlated with
the expression of drug resistance protein MRP1, whereas CLIC1
knockdown decreased its expression in human choriocarcinoma
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cell lines (Wu and Wang, 2017). Surprisingly, extracellular
vesicles were reported to transfer CLIC1 from glioblastoma cells
to microvascular epithelial cells (Thuringer et al., 2018), perhaps
contributing to metastasis in targeting cells.

In addition to IAA94, CLIC1 is shown to be inhibited by
metformin, a drug that effectively blocks cancer stem cell viability
(Gritti et al., 2014). Metformin was able to block IAA-94-
sensitive currents in tumor-derived stem cells but not normal
stem cells, thus opening an exciting possibility that CLIC1 could
be localized at the membranes only in tumor environments. In an
independent study, CLIC1 partially decreased the antineoplastic
effects of metformin and upregulation of CLIC1 increased drug
sensitivity (Liu et al., 2017); this again proves CLIC1 can be a
therapeutic target for various tumors. A recent study also showed
that several drugs of biguanidine class, including metformin, act
via CLIC1 (Barbieri et al., 2019). Metformin is presented as a
wonder drug in several pathological conditions such as diabetes,
and if CLIC1 directly interacts with metformin, it could possibly
provide the “elusive” mechanism of action for the drug.

While being the most studied member of the CLIC family in
the context of tumors, CLIC1 has the potential to be a diagnostic
marker for several cancers as well as being a potential target
for therapy. In ovarian cancer, expression of CLIC1 was shown
to be directly related to patient survival outcome (Singha et al.,
2018; Yu W. et al., 2018). We have performed in silico analysis of
expression of CLIC proteins and their relation to various cancer
related patient mortality and found strong correlations. As shown
in Figure 2A, Kaplan-Meier (K-M) (Nagy et al., 2018) analysis of
the data collected from several human cancers showing patient
survival as a function of the relative mRNA levels (high, red or
low, black) indicates CLIC1 high expression correlates to poor
patient survival in pancreatic, breast and liver cancers. Low or
high CLIC1 expression in the lung or ovarian cancers does not
influence patient survival. Surprisingly, gastric cancer patients
with higher expression of CLIC1 have a higher rate of survival.
These observations from patient samples indicate that not only
is CLIC1 important in cancer, but the level of its expression can
determine patient survival by specific cancer. This information
is helpful in targeting CLIC1 for cancer therapy as well as a
prognosis marker. Please refer to Table 1 for a complete list of
all six CLIC proteins high/low expression and patient survival
chance correlation.

CLIC2
Understanding of the involvement of CLIC2 in cancer cells or
tumorigenesis is limited. CLIC2 is not reported as a cancer gene
in the network of cancer genes’ (NCG 6.0) collection of sources
of known cancer genes and 273 cancer mutation screenings
(Repana et al., 2019). However, recently it was shown that CLIC2
is highly expressed in non-cancerous cells surrounding cancer
masses (Ueno et al., 2019). Expression of CLIC2 and other tight
junction proteins such as claudins 1 and 5, occludin and ZO-
1 were significantly higher in non-cancer cells as compared to
human hepatocellular carcinoma. These keys findings implicate
CLIC2 in the formation or maintenance of tight junctions which
the cancer cells lack. Increasing expression of CLIC2 in cancer or
surrounding cells could prevent the invasion of cancer cells, and

thus local progression and distant metastasis. In thymic epithelial
tumors, expression of CLIC2 along with ABCE1 was higher.
CLIC2 was also detected in type B1 and B2 thymomas (Zhao
et al., 2018). In human hepatocellular carcinoma and colorectal
cancer cells, CLIC2 was shown to be important in forming
tight junctions in the cancer vasculature and could be playing
a role in preventing metastasis (Ueno et al., 2019). However,
while there is a lack of extensive studies on CLIC2 in animal
models, it is differentially associated with patient survival in
various cancers as shown in K-M plots (Figure 2B). High levels of
CLIC2 are correlated with better survival in breast, lung, liver and
gastric cancers. Whereas, in pancreatic cancer, there is an inverse
relationship with lower survival associated with high expression
of CLIC2. Surprisingly high expressions of CLIC2 and CLIC5
have the same outcome on patient mortality at given time points.

CLIC3
CLIC3 has also been shown to be involved in malignancies.
Cancer-associated fibroblasts produce a drastic change in the
secretome surrounding cancer cells. CLIC3 was found in the
stroma surrounding fibroblasts associated with breast cancer,
which is known to be in part secreted by breast cancer-
associated fibroblasts (Hernandez-Fernaud et al., 2017). CLIC3
is implicated in promoting cell invasion, and increased CLIC3
levels in the stroma is associated with increased cell invasion
capabilities. It has also been demonstrated that CLIC3 is a
glutathione-dependent oxidoreductase, and its function has a
downstream reduction in transglutaminase-2 binding with its
cofactor leading to a decrease in transglutaminase-2 activity,
which is essential for physiologic function and regulation of
extracellular stroma (Hernandez-Fernaud et al., 2017). Recently,
CLIC3 was also proposed to be a prognostic marker for lung
cancer (Liu et al., 2019).

In salivary gland mucoepidermoid carcinoma, CLIC3 gene
expression was markedly elevated compared to normal tissue
(Wang et al., 2015). It was further demonstrated that CLIC3 has
a differential methylation profile in tumor samples compared
to normal samples and was subsequently correlated with the
increase in gene expression to increased protein expression in the
same tumor samples. However, mechanistic details of CLIC3 in
tumors remain to be studied in detail. Our analysis of CLIC3 as
shown by K-M plots in Figure 2C shows how levels of CLIC3
mRNA expression are correlated with patient survival in tumors.
Interestingly, high CLIC3 expression correlates with a lower
patient survival rate in all six cancers listed in Figure 2.

CLIC4
CLIC4 is the other well studied CLIC member in tumor
biology, along with CLIC1. CLIC4 was originally proposed as
a mitochondrial CLIC (mtCLIC) (Fernandez-Salas et al., 2002;
Arnould et al., 2003; Suh et al., 2004; Xu et al., 2013) and recently
was localized to the outer membrane of mitochondria (Ponnalagu
and Singh, 2016; Ponnalagu et al., 2016b). Yuspa and colleagues
in 2005 reported for the first time revealed that while CLIC4
expression is reduced in tumor cells, its expression was elevated
in stromal cells (Suh et al., 2005a,b, 2007a, 2012). Extensive
studies by Yuspa’s group have revealed CLIC4 to have a dual
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FIGURE 2 | Continued
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FIGURE 2 | Continued
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FIGURE 2 | Correlation of CLIC1 expression in various cancers and patient mortality. Kaplan-Meier plot of patients with breast, ovarian, lung, gastric, liver and
pancreatic cancers. Comprehensive and updated data were obtained from https://kmplot.com/analysis/ for CLIC1, 2, 3, 4, 5, and 6 and plotted. The K-M plotter
assesses the effect of 54k genes on survival during various cancer types. The K-M database includes gene chip and RNA-seq data and the sources for the
databases include GEO, EGA, and TCGA. The primary purpose of the tool is a meta-analysis based discovery and validation of survival biomarkers. The red and
black line represents high and low expression of CLIC1 (A, identification number 208659), CLIC2 (B, identification number 213415), CLIC3 (C, identification number
219529), CLIC4 (D, identification number 201559), CLIC5 (E, identification number 213317), and CLIC6 (F, identification number 227742), respectively. The number
of patients at each time point is given in black (low expression) and red (high expression).
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TABLE 1 | Correlation of CLIC expression with patient mortality in different cancers.

Mortality-CLIC expression correlation Breast Ovarian Lung Gastric Liver Pancreatic

CLIC1 High Low Not changed Low High High

CLIC2 Low High Low Low Low High

CLIC3 High High High High High High

CLIC4 High High High High High High

CLIC5 Low High Low Low Low High

CLIC6 Low Low Low Low High Low

role in tumor environment where its expression is lost early in
tumor cells while it is increased in stromal cells. The loss of
CLIC4 has also been demonstrated in the tumor environments of
squamous tumors of the esophagus (Suh et al., 2007a). Replacing
the tumor expression of CLIC4 is shown to repress tumor growth
as shown by in vitro studies in tumor cell culture as well as
orthografts in in vivo models (Suh et al., 2012). Mechanistically,
CLIC4 is hypothesized to be acting through the TGF-β signaling
pathway (Shukla et al., 2009, 2013, 2016; Shukla and Yuspa, 2010).
CLIC4 enhances TGF-β responsiveness by dephosphorylating
Smad in association with Schnurri-2 (Shukla et al., 2009) and by
amplifying the expression of Smad71, a splice variant of Smad
(Shukla et al., 2016).

CLIC4 was also shown to be upregulated in stromal
cells of breast cancer patients as a response to TGF-β
treatment (Ronnov-Jessen et al., 2002). It is anticipated to
be involved in the acidification of vacuoles in stromal cells
contributing to angiogenesis in the process of endothelial
tube formation (Ulmasov et al., 2009). Given the association
with TGF-β pathway, CLIC4 could be directly involved in
ROS mediated mechanisms for tumor growth (Yao et al.,
2009). CLIC4 expression is shown to be elevated in human
oral squamous carcinoma compared to normal controls (Xue
et al., 2016). This study demonstrated that knockdown of
CLIC4 expression by siRNA leads to increased apoptosis,
mediated by enhanced ATP and thapsigargin induced calcium
release from endoplasmic reticulum calcium stores (Xue et al.,
2016). It would be interesting to investigate how endoplasmic
reticulum/mitochondrial localization of CLIC4 could possibly be
affecting tumor metabolism. CLIC4 is shown to exhibit varied
expression and activity in several tumor types including ovarian,
colon, bladder cancers, glioma, melanoma and even present in the
exosomes ejected from human ovarian cancer cell lines. CLIC4
expression is positively correlated with tumor grade, lymph node
metastasis, tumor invasion and poor overall survival in ductal
adenocarcinoma of the pancreas (Bae et al., 2004; Dyrskjot et al.,
2004; Alonso et al., 2007; Liang et al., 2013; Zou et al., 2016).
Curiously, knockdown of CLIC4 in mouse liver cancer cells
promotes apoptosis (Yu Q.Y. et al., 2018).

The dual existence of CLIC4 as a membrane and cytosolic
protein as well as localization to various intracellular organelles
within the cytoplasm makes it a challenging structure to
study. CLIC4 is shown to be present in the mitochondria
of keratinocytes and cardiomyocytes (Fernandez-Salas et al.,
2002; Ponnalagu et al., 2016a,b), and is also shown to regulate
mitochondrial function. Additionally, CLIC4 is known to

translocate to the nucleus under cellular stress (Suh et al., 2004). It
is not clearly established how relevant the nuclear translocation is
in cancer and whether this translocation interferes with cell cycle
or transcription signaling process. The status of CLIC4 in tumor
vs. normal scenarios in terms of a membrane protein acting as
a channel or cytoplasmic protein performing other functions for
the cell is yet to be elucidated. However, the numerous evidences
for altered CLIC4 function and tumor graft studies that show a
reduction in tumor formation upon altering CLIC4 expression
provide enough basis to study CLIC4 as a target in cancer therapy.
Our K-M plot analysis of human tumor mRNA data shows the
CLIC4 high expression correlating with poor patient survival in
all the six cancers analyzed (Figure 2D). CLIC4 follows the same
pattern as CLIC3 and our analysis is in agreement with an earlier
report on ovarian cancer (Singha et al., 2018).

CLIC5 and CLIC6
Amongst CLICs, CLIC 1-4 are the more investigated proteins
of the family in relation to cancer. However, there have been
reports of changes in the expression of the last two members
of the CLIC family. Microarray studies have identified changes
in CLIC5 and CLIC6 expression in breast cancer tissues along
with CLIC1 and CLIC4 (Ko et al., 2013). Studies also show
that CLIC5 undergoes differential methylation in neuroblastoma
(Olsson et al., 2016). CLIC5 is the first Cl− channel identified
to the molecular level in the inner membrane of mitochondria
(Ponnalagu et al., 2016b). CLIC5 is also expressed along with
Ezrin and Podocalyxin in hepatocellular carcinoma participating
in the invasion and migration of tumors (Flores-Tellez et al.,
2015). CLIC5 is overexpressed in childhood acute lymphoblastic
leukemia, following the loss of ETV6 (Neveu et al., 2016). Similar
to CLIC4, CLIC5 was also reported in mitochondria where it
plays a role in modulation of ROS, which could also contribute
to tumor signaling. Further in-depth studies regarding the roles
in the tumor process are required for CLIC5 and CLIC6.

Recently, hypermethylation islands are discovered in the
promoter regions of CLIC6 in a study that identified epigenetic
CpG island methylation in adenoid cystic carcinoma (Bell et al.,
2011), suggesting CLIC6 being involved in the development of
this tumor and may serve as a diagnostic marker. Figure 2E
containing K-M plots shows that high CLIC5 expression is
related to poor patient survival in ovarian and pancreatic cancers
while the low expression correlates with poor patient survival
in breast, gastric, liver and lung cancers. On the other hand,
CLIC6 high expression indicates better survival in all cancers
except liver cancer. This analysis of human data shows that
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differential expression of CLIC1-6 has varied consequences for
patient survival in various human cancers (Figure 2F).

CONCLUDING REMARKS

Given their ubiquitous presence, it is not implausible to
imagine that dimorphic CLICs will reveal themselves to be
of diagnostic, prognostic, and therapeutic applications for a
multitude of human physiological and pathological conditions.
As discussed above, CLICs play a key role in cardiovascular,
pulmonary, neurological, and auditory function, as well as
various malignancies. Levels and expression of CLICs can be
used as diagnostic and prognostic markers for these diseases.
For example, the direct correlation between CLIC expression and
patient mortality illustrated (Figure 2) in this review, present
them as promising targets in cancer therapy. In addition, a
comprehensive understanding of the exact molecular basis and
interactors of the complex signaling networks activated by CLIC
proteins in specific disease conditions involved is required,
whether they are up or down-regulated.

One of the key organelles where CLICs are known to be
localized in is the mitochondria (Ponnalagu and Singh, 2016;
Ponnalagu et al., 2016a,b, 2019). CLICs are known to modulate
mitochondrial physiology by affecting ROS generation and
calcium capacity (Ponnalagu and Singh, 2016; Gururaja Rao
et al., 2018). It is possible that CLICs located in mitochondria
are the important targets for cell proliferation, and modulating
their channel activity will be an effective measure to regulate cell
physiology. Mitochondria play a crucial role in cell physiology
and survival, and recently several lines of research have
drawn links to how mitochondrial energetics, dynamics, and
metabolism contributes to diseases (De Vivo and DiMauro,
1990; Wallace, 2005; Balaban, 2006; Schieke and Finkel, 2006;
Di Lisa et al., 2007; Brown and O’Rourke, 2010; Kaasik et al.,
2010; Nagaraj et al., 2012; Katsetos et al., 2013; Szabo and
Zoratti, 2014; Lightowlers et al., 2016; Murphy et al., 2016;
Vyas et al., 2016; Gururaja Rao, 2017; Porporato et al., 2018).
Hence, it would be intriguing to unravel how the presence
of CLICs in mitochondria could contribute to its function in
several pathophysiological conditions. Furthermore, the role of
CLICs as ion channels or regulators of ion channels needs
to be elucidated.

A caveat that needs to be addressed in this context is the
functional and spatial correlation of CLICs in pathophysiology.
Perhaps the most intriguing layer of complexity with CLICs is
that they exist in dimorphic forms where they are present in the
soluble cytoplasm form as well as in the ion channel form in
various intracellular organelles and the plasma membrane (Singh
and Ashley, 2006, 2007; Singh et al., 2007; Singh, 2010; Ponnalagu
et al., 2016b; Gururaja Rao et al., 2017, 2018; Ponnalagu
and Singh, 2017). Several studies cited in this review have
not addressed the outstanding question whether the observed
role of the protein in diseases is related to its presence in
membranes vs. cytosol. Some of the CLICs, such as CLIC1,
are exclusively present in small vesicles, such as lysosomes,
where they could be playing a role in acidification (Jiang et al.,

2012; Salao et al., 2016); however, the same channel when
present in the nucleus could be involved in the regulation of
cell cycle (Qian et al., 1999; Domingo-Fernandez et al., 2017).
Similarly, CLIC2 interacts directly with ryanodine receptors
and modulates their activity but does not conduct any ions by
themselves (Board et al., 2004), but a missense mutation in CLIC2
causes intellectual disability and cardiomegaly (Witham et al.,
2011; Takano et al., 2012). CLIC4 is present in mitochondrial
membranes (Fernandez-Salas et al., 2002; Zhong et al., 2012;
Ponnalagu et al., 2016b) where they could play functional
channels, but in the cytosol, they interact with dynamin I, and
14-3-3-γ (Duncan et al., 1997; Suginta et al., 2001; Ashley, 2003).
CLIC5 is best described for its interaction with cytoskeletal
filaments and specifically in hair cells where they play a role
in hearing (Berryman and Bretscher, 2000; Shanks et al., 2002;
Gagnon et al., 2006; Wegner et al., 2010; Salles et al., 2014;
Flores-Tellez et al., 2015). In cardiomyocytes, CLIC5 is present
in the inner membrane of mitochondria where it modulates
reactive oxygen species (Ponnalagu et al., 2016a,b). Hence,
future studies need to focus on these details pertaining to the
relation between their localization and function, which would
be crucial in completely understanding the scope of CLICs as
therapeutic targets. So far, there is no data available to attribute an
exclusive role of CLIC protein or CLIC-related ion conductions
in pathophysiological functions.

One of the prominent channels, BKCa, is present in the plasma
membrane of excitable cells where they play a role in cellular
excitability, but the same channel is present in mitochondria
of adult cardiomyocytes (Singh et al., 2012b, 2013; Toro et al.,
2014). In adult cardiomyocytes, BKCa results in cardioprotection
from ischemia-reperfusion injury. The major reason attributed
to this differential distribution of BKCa is splice variation (Shanks
et al., 2002; Friedli et al., 2003; Wegner et al., 2010; Shukla et al.,
2016), but the role of these variations in differential localization
and function is not yet deciphered. Here, we postulate that
splice variation of CLICs (Shanks et al., 2002), their differential
localization, and possible ion channel formation in response
to various stimuli, such as lower pH or redox, could result in
their multiple physiological roles. Our hypothesis is partially
substantiated by recent studies showing the splice variation of
CLICs (Shanks et al., 2002; Friedli et al., 2003; Seco et al., 2015),
their regulation by pH (Warton et al., 2002; Goodchild et al.,
2010; Legg-E’silva et al., 2012; Gurski et al., 2015; Zhao et al.,
2015; Hare et al., 2016; Peretti et al., 2018) and redox (Littler
et al., 2004, 2010; Singh and Ashley, 2006, 2007; Milton et al.,
2008; Goodchild et al., 2009; Averaimo et al., 2010; Valenzuela
et al., 2013; Al Khamici et al., 2015, 2016), their formation of
multi-protein complexes (Berryman and Bretscher, 2000; Suginta
et al., 2001; Berryman and Goldenring, 2003; Bohman et al., 2005;
Singh et al., 2007; Suh et al., 2007a,b; Ponsioen et al., 2009; Shukla
et al., 2013; Patel et al., 2015; Tavasoli et al., 2016; Guo et al.,
2018; Abdul-Salam et al., 2019) and their localization to specific
membranes (lipid rafts) (Duncan et al., 1997; Ashley, 2003) and
cellular organelles (Fernandez-Salas et al., 2002; Arnould et al.,
2003; Suh et al., 2004; Chalothorn et al., 2009; Ulmasov et al.,
2009; Gomes et al., 2011; Zhong et al., 2012; Ponnalagu et al.,
2016b; Tang et al., 2017).
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Another major cause for concern in targeting CLIC proteins
in a single pathological condition is the ubiquitous nature of
the proteins and their involvement in function and regulation
of the normal physiological state in cells of varied etiology.
Disease hallmarks commonly depend on dysregulation of several
channels and associated proteins, and unlike plasma membrane
counterparts, intracellular channels generally initiate secondary
signaling complexes triggered by cytosolic or extracellular
components. Recent advances in the CLICs field has generated
the availability of genetic models (Ponnalagu et al., 2016a,b)
and innovative techniques (Singh et al., 2009, 2012a; Lee et al.,
2016; Gururaja Rao, 2017; Lam et al., 2018) to study CLICs;
this will enable the researchers to better assign their roles
in pathophysiology including cancer, hearing impairment, AD
and vascular dysfunction with respect to individual CLICs
in future. This will also shed light on the role of chloride
ion in cell physiology, and possibly bring forward novel and

unconventional strategies for effective treatment of CLIC-
associated diseases.
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