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Prospects and Challenges into the Role of  
Gut Microbiome in Health and Disease

Introduction
In the intensive care unit (ICU), colonization of 
the gastrointestinal tract by potentially pathogenic 
bacteria is common and often precedes clinical 
infection. Though effective in the short term, tra-
ditional antibiotic-based decolonization methods 
may contribute to rising resistance in the long 
term. Novel therapies instead focus on restoring 
gut microbiome equilibrium to achieve pathogen 
colonization resistance. The purpose of this review 
is to summarize the existing data regarding micro-
biome-based approaches to gastrointestinal path-
ogen colonization in ICU patients with a focus on 
prebiotics, probiotics, and synbiotics.

Gastrointestinal pathogen colonization 
during critical illness

Routes of pathogen colonization in the ICU
Admission to the ICU is associated with a dra-
matic loss of phylogenetic diversity in the gastro-
intestinal microbiome.1 This change in gut 
microbial composition allows pathogenic organ-
isms, such as Clostridium difficile (more recently 
reclassified as Clostridioides difficile2), Pseudomonas 
aeruginosa, Candida species, vancomycin-resistant 

enterococci (VRE), and other multidrug resistant 
organisms (MDRO) to proliferate within and col-
onize the gut.1,3–6

Critical illness itself can facilitate gastrointestinal 
pathogen colonization. Sepsis, one of the most 
common conditions in the ICU, is characterized 
by a dysregulated host response to infection that 
appears to alter gut microbial composition for the 
worse.7,8 Sepsis disrupts gut integrity via endoge-
nous catecholamine production,9 gut hypoperfu-
sion,10 degradation of the intestinal mucus layer,11 
and decreased bile salt production.12 This in turn 
disrupts the intestinal microenvironment, allow-
ing pathogenic organisms to dominate and exist-
ing bacteria to become more virulent.1,6

Many of the interventions in the ICU also impact 
susceptibility to enteric colonization. Broad-
spectrum antibiotics are used in 70% of medical 
ICU patients13 and are an important risk factor 
for pathogen colonization.14–18 Antibiotic expo-
sure depletes the microbiome of many endoge-
nous species leaving the gut highly vulnerable to 
colonization by antibiotic-resistant pathogens.19 
Antibiotics can also facilitate the proliferation of 
resistant bacteria already present in the gut by 
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eliminating antibiotic-sensitive competitors 
within the same species. This increases the rela-
tive abundance of antibiotic-resistant bacteria in 
the gut and ultimately leads to increased dissemi-
nation of these strains into the ICU environ-
ment.20 Transmission of resistant bacteria 
between patients can then occur via contact with 
healthcare workers, adjacent patients, or contam-
inated objects.21 Antibiotics therefore impact col-
onization pressure at the ward level,22 increasing 
colonization and infection risk in patients who do 
not themselves receive antibiotics.23 Other com-
mon ICU interventions, such as proton pump 
inhibitors,24 immunosuppressive agents,25 and 
enteral feeding (or lack of feeding)26 also alter the 
gut microbiome and influence colonization of the 
digestive tract.

Implications of gastrointestinal pathogen 
colonization
Around 4–11% of all patients in the ICU have 
guts that are colonized with methicillin-resistant 
Staphylococcus aureus (MRSA), VRE, or MDR 
Gram-negative bacteria at the time of ICU admis-
sion;27–31 among patients who are free of MDROs 
on admission, an additional 12–14% become col-
onized during their ICU stay.32 Gastrointestinal 
colonization with MDROs increases risk for sub-
sequent clinical infection with the colonizing 
organisms as much as 10-fold.31,33–35 Subsequent 
mortality rates are high with MDR infection caus-
ing up to 9 deaths for every 100 patients admitted 
to the ICU.36

Colonization by Candida species is also very com-
mon and can occur in up to 80% of critically ill 
patients after 1 week in the ICU.37 Common spe-
cies include C. albicans, C. glabrata, C. parapsilo-
sis, C. krusei, and C. tropicalis.38 Colonization is a 
well-established risk factor for subsequent 
Candida infection,39,40 leading to the development 
of the Candida colonization index as an early 
warning tool for invasive candidiasis.38,41 Although 
the proportion of colonized ICU patients who 
later develop invasive candidiasis is low,42 associ-
ated mortality from invasive infection ranges from 
5% to 71%.43–46

Gastrointestinal colonization can also increase risk 
for extra-intestinal infections. When patients shed 
gastrointestinal bacteria into the ICU environment 
via feces, subsequent inoculation back into the 
patient via contaminated intravenous or urinary 

catheter insertion can occur.47 Other more direct 
routes of infection can also occur, such as aspira-
tion of gastric contents or bacterial translocation 
across edematous bowel. While it is unknown how 
frequently such events happen, an increasingly 
large number of studies support the idea that most 
new healthcare-associated infections do not come 
from other patients but instead from colonizing 
bacteria present within the patient’s own gut at the 
time of hospital admission.48,49

Interventions aimed at the prevention or eradica-
tion of gastrointestinal pathogens therefore have 
the potential to prevent clinical infection.

Traditional approach to pathogen 
colonization
Selective digestive decontamination (SDD) has 
shown effectiveness for gut decolonization since 
the 1980s.50 SDD relies on prophylactic adminis-
tration of oropharyngeal and enteral antimicrobi-
als throughout the ICU stay coupled with a 
parenteral antibiotic within 4 days of ICU admis-
sion.51 SDD antibiotics ideally target potential 
pathogens such as aerobic Gram-negative rods, 
Staphylococcus aureus, and yeasts while trying to 
minimize perturbation to endogenous, anaerobic 
flora. High-quality randomized trials show that 
SDD is effective in reducing ICU-acquired infec-
tions by pathogenic gut colonizers and may even 
provide mortality benefit,52–54 though some major 
studies have been negative.55 Long-term studies 
have shown reduction in the unit-level use of anti-
biotics, underlining the potential benefit of SDD 
in ICU settings.51

Despite relatively strong supporting evidence, 
SDD has faced concern that the selective pressure 
of antibiotics will lead to the emergence of new 
resistance. Rebound increases in resistant patho-
gens after SDD have been demonstrated in a 
handful of studies,56,57 yet there is surprisingly lit-
tle evidence that SDD leads to long-term MDRO 
colonization and infection, as one might fear it 
would.58 A 21-year longitudinal study on the 
long-term ecological effects of SDD found no sig-
nificant increase in the incidence rates of resistant 
microbes at the ICU level despite an overall 
increase in antimicrobial resistance at the hospital 
level.59 This study was conducted in a region with 
low rates of resistance, and SDD trials have been 
centered at a few large European institutions 
making their results less generalizable. Perhaps 
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the most candid assessment of SDD is that clini-
cians are reluctant to use antibiotics to combat a 
fundamentally antibiotic-related problem.

Pre-, pro-, and synbiotics for pathogen 
colonization
Given the lack of widespread adoption of SDD, 
alternative approaches to gastrointestinal coloni-
zation are needed for the ICU. Supplementation 
with probiotics, in tandem with or separately 
from a prebiotic, has been hypothesized as a safe, 
cost-effective approach to colonization resistance. 
We review in detail the current evidence regard-
ing the impact of prebiotics, probiotics, and syn-
biotics on gastrointestinal colonization and 
clinical outcomes in ICU patients.

Prebiotics
Prebiotics are non-digestible dietary components, 
such as oligosaccharides, fiber, and inulin, that 
selectively promote the proliferation of commen-
sal gut microbiota.60 In theory, prebiotic supple-
mentation could enhance the growth and 
protective effects of beneficial endogenous flora 
in critically ill patients and confer a transitive ben-
efit to the host through colonization resistance. 
This benefit could be because the modified flora 
directly competes with and crowds out patho-
gens, or because prebiotic fiber is metabolized 
into short-chain fatty acids (SCFAs) which have 
direct benefits, or from other mechanisms. There 
is also evidence in animal models that prebiotics 
can have microbiome-independent effects that 
modulate the host inflammatory response directly. 
A recent study found that exposure to prebiotics 
alters the response to pathogen-induced kinase 
activation in intestinal epithelial cells and damp-
ens the inflammatory response to lipopolysaccha-
ride in vivo without altering gut microbiota.61 
Other studies have shown that non-digestible oli-
gosaccharides influence B-cell responses and 
macrophage markers in mice with and without a 
microbiome.62,63

A handful of studies have investigated prebiotics 
in the ICU. O’Keefe et  al. examined the short-
term clinical tolerance and fecal SCFA concen-
trations in response to progressive fiber 
supplementation in 13 ICU patients.64 After fiber 
supplementation, there was a dramatic increase 
in Firmicutes and other SCFA producers and an 
increase in their metabolites, acetate, propionate, 

and butyrate.64 Our own retrospective study of 
129 ICU patients demonstrated a similar increase 
in SCFA producers with higher amounts of 
fiber.65 These findings, assuming SCFAs are 
indeed beneficial,66 support the value of fiber and 
other prebiotics in maintaining gut microbial 
homeostasis.64 However, other trials, including a 
study of oligofructose/inulin in ICU patients 
receiving enteral nutrition, have shown no impact 
on the microbiome.67

There is also no compelling evidence that prebi-
otics can impact clinical outcomes. A prospective, 
single-blind randomized trial with 237 ICU 
patients investigated the impact of a high-protein 
formula enriched with arginine, fiber, and anti-
oxidants on the rates of ICU-associated infection, 
length of stay, and mortality.68 While no signifi-
cant differences in mortality were observed, the 
incidence of catheter-related sepsis was signifi-
cantly lower in the intervention group (0.4 epi-
sodes/1000 ICU days versus control 5.5 
episodes/1000 ICU days).68 Another study (30 
patients) comparing early enteral nutrition with 
prebiotic fiber supplementation in ICU patients 
with severe pancreatitis versus standard enteral 
feeds found a reduction in hospital length of stay 
(10 days versus 15 days) and lower rates of com-
plications, including multiorgan failure, sepsis, 
and death.69

The impact of prebiotics on gastrointestinal path-
ogen colonization has been examined in a small 
number of studies in non-ICU patients. A recent 
study profiled the microbiome of 87 children 
treated with azithromycin with or without lactu-
lose. Patients in the azithromycin-only group had 
a statistically significant increase in the relative 
abundance of pathogenic bacteria such as 
Streptococcus that was not demonstrated in the 
prebiotic supplementation group. The prebiotic 
group also had higher fecal concentrations of pro-
tective Lactobacillus species.70

As these studies suggest, prebiotic trials have been 
heterogeneous both in terms of the interventions 
tested and in terms of trial outcomes. Overall, 
data supporting prebiotics for gastrointestinal 
pathogen colonization in ICU patients are sparse.

Probiotics
Probiotics are live, ingestible microorganisms that 
can confer health benefits on to their host.71 The 
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mechanisms by which these symbionts may deter 
pathogen colonization include competition, reduc-
tion of gut pH, enhancement of innate and adap-
tive immunity, and production of antimicrobial 
substances.71,72 Several systematic reviews and 
meta-analyses have evaluated the benefits of probi-
otics in critically ill patients.73–77 Probiotic admin-
istration has been associated with several favorable 
infection-related outcomes, including reduced 
incidence of overall infections,74 and in ICU-
acquired76 and ventilator-associated pneumonia.74

At least 5 randomized-controlled studies with 
48–208 patients have investigated the effects of 
Lactobacillus-based probiotics on gut colonization 
in adult ICU patients. The first study investigated 
the impact of a probiotic drink containing 5 × 107 
colony-forming units (CFU) per ml of Lactobacillus 
plantarum, on gastric colonization via nasogastric 
aspirate at days 1, 4, and 8 of ICU admission. 
The study enrolled 103 patients and also investi-
gated intestinal permeability, endotoxin expo-
sure, inflammatory marker levels, and overall 
sepsis morbidity and mortality. No difference was 
detected in pathogen colonization related to the 
intervention. The probiotic group did exhibit sig-
nificantly lower interleukin-6 levels at day 15 
compared with controls, however clinical out-
comes, i.e. sepsis complications and mortality, 
were unaffected.78

Another study investigated the effect of L. plan-
tarum 299v on Clostridioides difficile colonization 
in 48 ICU non-colonized patients.79 Around 19% 
of control patients had positive rectal swabs for  
C. difficile by ICU discharge compared with zero 
C. difficile-positive patients in the probiotic treat-
ment group. They concluded that probiotic sup-
plementation could reduce C. difficile colonization 
rates in the ICU but that interpretation of these 
results should be taken with caution given the 
study’s small sample size and premature termina-
tion due to loss of funding.79 A more recent study 
investigating the feasibility of a L. casei drink 
found a nonsignificant trend towards lower rates 
of antibiotic-associated diarrhea and C. difficile 
among ICU patients receiving antibiotics com-
pared with a contemporary control.80 The effi-
cacy of other probiotic strains for the treatment 
and prevention of C. difficile, including Saccromyces 
boulardii, has been reviewed elsewhere.81–84 
Systematic reviews and meta-analyses suggest 
(with moderate certainty) that probiotics are 
effective for preventing C. difficile-associated 

diarrhea, though few studies have specifically 
studied C. difficile prevention using probiotics in 
the ICU.84 In appropriately selected high-risk 
populations, probiotics probably do decrease C. 
difficile incidence, but the effect size is likely small 
and the optimal probiotic is unknown.

Three studies investigated the effects of probiot-
ics primarily containing L. rhamnosus. A study 
conducted in a single ICU randomized 208 adults 
with a unit stay longer than 48 h to either L. casei 
rhamnosus (109 CFU) or placebo via nasogastric 
tube from day 3 after admission until discharge or 
death. The primary outcome was time to 
Pseudomonas aeruginosa acquisition as measured 
in weekly gastric aspirates. Although there was no 
significant difference in median time before gas-
tric acquisition (16 days in the treatment group 
versus 30 days in placebo), the probiotic group 
was found to have a significant delay in respira-
tory colonization (50 days versus 11 days).85

Another study investigated the impact of a probi-
otic capsule containing primarily L. rhamnosus 
GG, L. casei, L acidophilus, and Bifidobacterium 
bifidum on mortality, infection, and nasal/gastro-
intestinal colonization in 167 ICU patients 
mechanically ventilated for longer than 48 h.86 No 
significant differences in mortality, colonization, 
or hospital-acquired infections were found. 
Catheter-related bloodstream infections were 
lower in the probiotic group compared with pla-
cebo (1.8% of catheter days in the treatment 
group versus 6.8% control). The authors also con-
ducted a preplanned subgroup analysis of 101 
patients who met the criteria for severe sepsis. 
Severely septic patients treated with probiotics 
had a threefold reduction in 28-day mortality 
compared with those in the placebo group. 
However, an almost equally increased risk for 
90-day death was found in non-severely septic 
patients receiving probiotics. Whether or why the 
physiology of sepsis might modify the effects of a 
Lactobacillus- and Bifidobacterium-containing pro-
biotic is unclear.86

A pilot study of 70 ICU patients tested L. rham-
nosus for prevention of colonization with carbap-
enem-resistant Enterobacteriaceae (CPE), VRE, 
extended spectrum β-lactamase producing 
Enterobacteriaceae (ESBL-E), Pseudomonas, or 
C. difficile. Colonization was defined as negative 
stool or rectal culture results at enrollment with 
subsequent positive culture results on day 3 and/
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or at study exit. No difference was found in the 
colonization rates between the probiotic and 
standard of care groups (10% of intervention 
group versus 15% standard of care), and none of 
the treatment group patients lost colonization 
with VRE, P. aeruginosa, or C. difficile by the spec-
ified time points.87

These probiotic studies have some promising 
results but do not demonstrate a consistent 
impact on gut pathogen colonization in the ICU. 
There are also several relevant non-ICU studies 
that have tested probiotics for the prevention of 
colonization. A small, single-center, double-blind 
randomized controlled trial (RCT) was con-
ducted to determine whether L. rhamnosus GG-
containing yogurt consumption could eradicate 
VRE carriage in renal ward patients with VRE-
positive swabs on admission. All treatment-group 
patients (n = 11) who completed the study had 
cleared VRE at the 4-week endpoint versus 1 out 
of 12 in the control group, and 8 out of 11 
remained VRE negative at 1 month after study 
completion. All remaining patients in the control 
group who had failed to clear VRE at the 4-week 
time point were then crossed over to receive the 
probiotic-containing yogurt and had cleared VRE 
by 8 weeks. Of note, there was a greater antibiotic 
usage in the probiotic group during the study 
(10/14 versus 5/13), and 2 patients in the probi-
otic group received linezolid (to which VRE is 
susceptible).88

A Swedish randomized trial of 80 patients using 
a mixture of 8 bacterial strains (primarily 
Lactobacillus and Bifidobacterium) found that the 
probiotic was not superior to placebo at eradica-
tion therapy in adult outpatients intestinally col-
onized with ESBL-E for at least 3 months. There 
was a nonsignificant trend towards successful 
decolonization in the probiotic group (13% in 
probiotic group, 5% in control), with limited 
power.89 Other non-ICU studies have failed to 
demonstrate a significant impact of probiotics 
on gastrointestinal colonization by highly resist-
ant organisms. A study of 530 elderly residents 
in a long-term care facility found no reduction in 
fecal norfloxacin-resistant Escherichia coli in 
patients treated with the probiotic product E. coli 
strain Nissle 1917 (Mutaflor).90 Similarly, probi-
otics did not reduce gastrointestinal carriage 
rates of ampicillin-resistant Enterococcus fae-
cium91 or VRE92 in patients admitted to non-ICU 

wards with a high prevalence of these resistant 
organisms.

Like the ICU studies, these outpatient studies 
have some positive results but do not provide suf-
ficient evidence to support probiotics as an effec-
tive method for preventing or eradicating 
gastrointestinal pathogen colonization. Ultimately 
the differences in methodology, especially in the 
composition of the probiotic and the operationali-
zation of colonization, make it hard to draw firm 
conclusions.

Synbiotics
Synbiotics are supplements which contain both 
probiotic organisms and their prebiotic nutri-
tional substrates as a method to facilitate their 
survival in the gastrointestinal tract. Such an 
approach seems logical, but the packaging and 
drug delivery issues are non-trivial. As a result, 
many synbiotic RCTs have been sponsored by 
the synbiotic manufacturer.

Jain et al. conducted a 1:1 RCT that compared 
the incidence and nature of gastric colonization in 
patients receiving a synbiotic supplement con-
taining Lactobacillus acidophilus, Bifidobacterium 
lactis, Streptococcus thermophiles, and L. bulgaricus 
with oligofructose to those receiving placebo.93 
Patients in the treatment group had significantly 
fewer gastric aspirates growing multiple strains of 
bacteria or fungi (9 patients synbiotic versus 18 
placebo) as well as a lower incidence of coloniza-
tion by prespecified potentially pathogenic organ-
isms such as E. coli and Enterococcus faecalis (10 
versus 18, respectively). Synbiotic supplementa-
tion was not associated with improved sepsis out-
comes although the study was small.93

Salomão et  al. studied the effect of a synbiotic 
containing L. bulgaricus and L. rhamnosus sus-
pended in a fructo-oligosaccharide prebiotic mix-
ture on the eradication of MDR Gram-negative 
bacilli colonization in adult patients. Although 
the authors considered a heterogeneous group of 
patients, 42% of patients in the experimental arm 
and 32% of patients in the control arm were in an 
ICU. No significant differences in decolonization 
were found between the 2 groups (11 placebo ver-
sus 8 synbiotic). Systemic antibiotics were used 
frequently in both groups, which may have influ-
enced both probiotic and pathogenic viability.94
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Studies investigating the effects of synbiotics have 
also been conducted in ICU subpopulations, 
including liver transplant recipients,95 trauma 
patients,96 patients with acute pancreatitis,97 and 
patients undergoing major abdominal surgery.98 
While these studies did not specifically evaluate 
outcomes related to gastrointestinal colonization, 
synbiotics were associated with lower incidence of 
pneumonia, postoperative infections,95,96,98 and 
sepsis complications during pancreatitis.97

Novel approaches to pathogen colonization

Antimicrobial peptides
There are several novel microbiome-based thera-
pies, not yet tested in clinical trials, that deserve 
mention. An interesting approach involves har-
nessing the ability of some bacteria to inhibit the 
growth of closely related organisms through the 
production of antimicrobial peptides called bac-
teriocins.99 Bacteriocins are primarily produced 
by members of the Firmicutes phylum, including 
Lactobacillus, Staphylococcus, Acetobacterium, and 
Streptococcus.100 These antimicrobials are active 
against a narrow spectrum of closely related com-
petitors,99 so they are an attractive, highly specific 
therapeutic target.

Several animal model studies have investigated 
the ability of bacteriocins to inhibit colonization 
of gastrointestinal pathogens. Enterococcus faecalis 
conjugated with a bacteriocin-expressing plasmid 
pPD1 effectively outcompetes strains without the 
plasmid and inhibits growth of multidrug-resist-
ant enterococci.101 Similar results have been 
found in the ability of bacteriocin-producing bac-
teria to inhibit various Streptococcus species,102 
Salmonella enteritidis,103 Listeria monocytogenes,104 
and Clostridioides difficile.105–107

A related approach was taken by Kim et al. who 
investigated the effectiveness of a four-strained 
consortium of commensal bacteria (Clostridium 
bolteae, Blautia producta, Bacteroides sartorii, and 
Parabacteroides distasonis) at providing resistance 
to VRE, a common ICU pathogen, in mice.108 
The strain of B. producta studied, BPscsk, was 
found to secrete a lanthionine-containing bacteri-
ocin, or lantibiotic, that inhibited VRE coloniza-
tion. The authors demonstrated that abundance 
of this lantibiotic in patient fecal samples was 
inversely proportional to the relative abundance 

of E. faecium.108 These results suggest that lantibi-
otics and other bacteriocins can improve coloni-
zation resistance, although all the current data 
come from studies performed in animals. Novel 
therapies could either selectively promote the 
growth of bacteriocin-producing bacteria or syn-
thetically reproduce the bacteriocins themselves. 
The idea of encouraging the growth of benign 
bacteriocin-producing bacteria has appeal, but a 
concern is that such organisms might themselves 
acquire pathogenic traits (e.g. by picking up plas-
mids containing antibiotic resistance).

Bacteriophage therapy
Bacteriophages are viruses that specifically infect 
bacteria.109 Their ability to lyse bacteria at the site 
of infection can be harnessed as a microbiome-
targeted alternative to antibiotics.110 One pro-
posed advantage of bacteriophage therapy is its 
specificity for a particular bacterial target, result-
ing in minimal disruptions to other organisms in 
the gut microbiome.110 The efficacy of bacterio-
phage therapy in targeting gastrointestinal patho-
gens has been investigated in a limited number of 
studies. Nale et al. demonstrated that delivery of 
optimized bacteriophage combinations signifi-
cantly reduced Clostridioides difficile colonization 
in vitro and in vivo.109 Sterile filtrates from donor 
stool have also been shown to improve symptoms 
in patients with C. difficile infection (CDI), sug-
gesting that bacteriophages and other nonbacte-
rial components of the microbiome can influence 
colonization.111

Several barriers preclude widespread use of bac-
teriophage therapy for gastrointestinal pathogen 
decolonization, including a limited understand-
ing of the cascading effects on other organisms in 
the microbiome and a lack of safety and efficacy 
data in humans.112 There are currently no high-
quality data supporting the use of bacteriophage 
therapy for gastrointestinal pathogen colonization 
in the ICU.

Competitive inhibition of pathogenic strains
Another interesting decolonization approach har-
nesses the use of nonpathogenic strains to out-
compete their pathogenic counterparts for space 
and nutrients in the gastrointestinal microbiome. 
This is best demonstrated in the Clostridioides dif-
ficile literature. A phase II RCT conducted in 44 
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centers across the USA, Canada, and Europe 
examined the safety, fecal colonization, recur-
rence rate, and optimal dosing schedule of non-
toxigenic C. difficile strain M3 (NTCD-M3) 
spores for prevention of recurrent CDI.113 
Patients who received NTCD-M3 spores experi-
enced significantly lower rates of CDI recurrence 
(11% in NTCD-M3 patients versus 30% of pla-
cebo patients); these rates were even lower in 
patients who were colonized with NTCD-M3.113 
Although this study demonstrated few safety con-
cerns among patients in the intervention arm,  
in vitro studies have shown that NTCD strains 
can acquire the toxin A and B pathogenicity locus 
from toxigenic strains.114 While this has not been 
demonstrated in vivo, phase III studies are neces-
sary to confirm safety and efficacy.

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) restores 
gut biodiversity by reintroducing normal gut flora 
from healthy donors.115 Among patients with 
recurrent CDIs, FMT has also been associated 
with a reduction of antimicrobial resistance genes 
in stool microbiota.116 The use of FMT for the 
treatment of refractory CDI is well established 
and has been incorporated into guidelines as a 
treatment option in recurrent CDI.117

The success of FMT for CDI led to investigation 
into its effects on other intestinal pathogens. The 
thinking is that if FMT, an intervention that 
comes as close as possible to ‘resetting’ the gut 
microbiome, does not effectively prevent patho-
gen colonization, then nothing will. Woodworth 
et al. recently reviewed 10 FMT studies and case 
reports with antibiotic-resistant organism decolo-
nization as a primary endpoint and 7 with decolo-
nization as a secondary endpoint. They concluded 
that while the evidence supports FMT as a method 
for eradicating colonization by various types of 
multidrug-resistant bacteria, these studies all have 
serious limitations including a lack of true controls 
and long-term safety data.118 More recently, 
Huttner et  al. randomized 39 adults colonized 
with extended ESBL-E and/or CPE to either no 
intervention or a 5-day course of antibiotics fol-
lowed by FMT. Although the intervention group 
experienced a slightly lower rate of ESBL-E/CPE 
colonization, the results did not achieve statistical 
significance and the conclusions were limited 
overall by the study’s small sample size.119

Only a small handful of cases have been reported 
detailing the use of FMT among ICU popula-
tions.120 Also, while FMT is reasonably safe, 
high-profile cases of bacteremia have been 
reported, in one case leading to death.121 
Currently, the jury is out on FMT in the ICU. 
Well-designed studies are needed but may be dif-
ficult to implement.

Nutrition in the ICU
Pre-, pro-, and synbiotic ICU data come from 
single-center studies usually with <100 patients 
whereas ICU nutrition trials have been multi-
center and powered with thousands of patients. 
Nutrition trials have not focused on MDRO colo-
nization or the microbiome but rather have inves-
tigated the optimal timing, route, and nutrient 
composition for feeding ICU patients. Early 
enteral feeding within 24–48 h of ICU admission 
has been the favored approach and is supported 
by guidelines.122 This recommendation is based 
on meta-analyses of smaller studies, and the larg-
est and highest-quality studies have failed to dem-
onstrate a clear clinical difference between early 
versus late feeding. Though enteral nutrition has 
been associated with a lower risk of infections 
compared with parenteral nutrition, benefits in 
mortality or other clinical outcomes have also not 
been consistently demonstrated.123,124 Finally, 
optimal caloric intake in critically ill patients has 
also been a subject of debate. While some studies 
have shown a mortality benefit among patients 
with a higher daily calorie intake,125 others have 
demonstrated no significant differences in clinical 
outcomes among patients permissively under-
fed126 or receiving smaller, trophic feeds compared 
with those receiving full feeding.127 Implementation 
of evidenced-based guidelines has been associated 
with earlier initiation128 and longer duration of 
nutrition,125 however the impact on clinical out-
comes has not been consistently demonstrated.

If ICU trials of nutrition have been null or (at 
best) unconvincing, does that imply pre- or probi-
otics will be unable to prevent MDRO coloniza-
tion in the ICU? None of the large ICU nutrition 
trials were designed to evaluate colonization spe-
cifically, so such a conclusion would be prema-
ture. The nutrition literature is a cautionary tale 
for those seeking to develop microbiome-based 
interventions, but does not mean such interven-
tions are hopeless.
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Conclusion
Gastrointestinal colonization by pathogenic,  
multidrug-resistant bacteria is common among 
ICU patients and is a precursor to life-threatening 
infections and multiorgan dysfunction. Micro-
biome-based therapies offer an attractive alterna-
tive to traditional, antibiotic-centric decontamination 
efforts by enhancing the proliferation of beneficial 
symbionts and (hopefully) restoring gut microbial 
equilibrium. The existing evidence for such thera-
pies is encouraging yet quite inconclusive as to 
whether pre-, pro-, or synbiotics can ameliorate 
pathogen colonization in the ICU (see summary 
Table 1). Future studies should state exactly what is 
being studied, and ideally, why. Such studies must 
predesignate the outcomes of interest. If MDRO 
pathogens are the targets, which organisms and 
precisely how will they be assessed? Is the interven-
tion being tested to eradicate gut colonization that 

was already present at the time of ICU admission, 
or to prevent the acquisition of new MDROs dur-
ing hospitalization? Culture remains the clinical 
gold standard for diagnosis of almost all important 
nosocomial pathogens; future studies may want to 
include culture for predesignated MDROs, as 
opposed to only sequencing results, as a way of 
assessing the effectiveness of interventions. To  
be convincing, studies of microbiome-based  
interventions will need to be relatively large, 
blinded, randomized, and appropriately controlled. 
Microbiome-based interventions have a bright 
future in the ICU but much work needs to be done 
before such interventions enter the clinical realm.
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Table 1. Prebiotics, probiotics, and synbiotics for MDRO colonization.

Intervention 
type

Common 
intervention 
components

Strengths Limitations RCTs with ⩾20 
patients discussed 
in the review

GRADE 
evidence 
for MDRO 
colonization

PREBIOTICS Fiber, inulin, 
oligosaccharides

•  No living bacteria 
and therefore 
likely safe

•  Ease of 
administration

• Inexpensive

•  May require dilution in 
relatively large volume 
of water to be given at 
high dose

•  May be ineffective 
if commensals are 
completely depleted 
prior to the intervention

Majid67$

Caparrós68*‡

Karakan69$

Weak

PROBIOTICS Lactobacillus 
rhamnosus, 
L. casei, L. 
plantarum, 
Bifidobacterium 
bifidum

•  Appear safe in the 
ICU

•  Fewer side effects 
and interactions 
than conventional 
pharmaceuticals

•  Enhance natural 
defenses

• Variable composition
•  Lack of standardized 

dosing
•  Susceptibility to 

antibiotics/lack of 
bacterial viability

•  Possibility of 
harm in select 
populations, including 
immunocompromised

McNaught78‡

Forestier85*‡

Klarin79*‡

Barraud86$

Kwon87

Weak

SYNBIOTICS Combinations 
of the prebiotics 
and probiotics 
above

•  Improved survival 
of probiotic 
bacteria

•  Packaging/drug delivery 
issues

•  Virtually all data to date 
are industry-sponsored

Jain93$

Salomão94$

Rayes95$

Spindler-Vesel96$

Oláh97$

Rayes98

Weak

*Industry sponsored.
$Double-blinded.
‡Single-blinded.
GRADE, Grading of Recommendations, Assessment, Development and Evaluations; ICU, intensive care unit; MDRO, multidrug resistant organisms; 
RCT, randomized control trial.
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