
sensors

Article

Particle Filters: A Hands-On Tutorial

Jos Elfring 1,2,* , Elena Torta 1 and René van de Molengraft 1

����������
�������

Citation: Elfring, J.; Torta, E.;

van de Molengraft, R. Particle Filters:

A Hands-On Tutorial. Sensors 2021,

21, 438. https://doi.org/10.3390/

s21020438

Received: 17 December 2020

Accepted: 5 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven,
The Netherlands; e.torta@tue.nl (E.T.); M.J.G.v.d.Molengraft@tue.nl (R.v.d.M.)

2 Product Unit Autonomous Driving, TomTom, 1011 AC Amsterdam, The Netherlands
* Correspondence: j.elfring@tue.nl

Abstract: The particle filter was popularized in the early 1990s and has been used for solving estima-
tion problems ever since. The standard algorithm can be understood and implemented with limited
effort due to the widespread availability of tutorial material and code examples. Extensive research
has advanced the standard particle filter algorithm to improve its performance and applicability
in various ways in the years after. As a result, selecting and implementing an advanced version of
the particle filter that goes beyond the standard algorithm and fits a specific estimation problem
requires either a thorough understanding or reviewing large amounts of the literature. The latter can
be heavily time consuming especially for those with limited hands-on experience. Lack of implemen-
tation details in theory-oriented papers complicates this task even further. The goal of this tutorial
is facilitating the reader to familiarize themselves with the key concepts of advanced particle filter
algorithms and to select and implement the right particle filter for the estimation problem at hand.
It acts as a single entry point that provides a theoretical overview of the filter, its assumptions and
solutions for various challenges encountered when applying particle filters. Besides that, it includes
a running example that demonstrates and implements many of the challenges and solutions.

Keywords: particle filter; auxiliary; adaptive; extended Kalman; tutorial

1. Introduction

This paper is a hands-on particle filter tutorial. Similar to the seminal work of [1],
the focus of this tutorial is on applying a particle filter for estimation problems. Applica-
tions that require estimating quantities occur in many domains:

• Estimating the position and orientation of a vehicle with respect to a map using
measurements of landmarks whose positions are known from that map [2].

• Estimating asset returns in econometrics [3].
• Building a map of a robot’s environment while navigating this environment [4].
• Fault detection by state estimation, e.g., in a chemical process [5].

In the context of particle filters, quantities that must be estimated are collected in a
‘state vector’. In the localization example above, the state vector contains the position and
orientation of a vehicle with respect to a map, whereas the econometrics example involves
a state vector that represents the value of an asset. Due to the dynamic nature of the state in
these examples, estimates are computed recursively over time: whenever new information
is available the estimates are updated based on this information. New information is
delivered by one or more sensors that measure quantities related to the state vector. For that
reason, this tutorial focuses on using a particle filter for recursively estimating dynamic
states using measurements, as demonstrated earlier by [1].

Quickly getting up to speed with a particle filter and at the same time exploiting
many of the advances made since the work of [1] requires a tremendous effort in terms of
both reviewing relevant work and implementing the algorithms. Tutorials available in the
scientific literature, such as [6,7], describe mathematical aspects much more thoroughly

Sensors 2021, 21, 438. https://doi.org/10.3390/s21020438 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7277-9904
https://doi.org/10.3390/s21020438
https://doi.org/10.3390/s21020438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020438
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/438?type=check_update&version=3

Sensors 2021, 21, 438 2 of 28

than practical challenges that appear when applying particle filters for real-world prob-
lems. At the same time, such tutorials favor a detailed description of some methods over
a broad overview that mainly explains the details needed to solve challenges at hand.
Public repositories [8,9] on the other hand often contain code examples that can easily
be executed, which is advantageous for those interested in applying a particle filter to
practical problems. However, often a single version of the algorithm is implemented and
background information or a structured overview of possible shortcomings of methods
and how to overcome them is missing. The goal of this tutorial is bridging this gap between
theory and implementation.

This work is meant as a single entry-point that speeds up development in estimation
problems for which particle filters are considered. It combines a broad overview of the
scientific literature with code that implements both the standard particle filter and many of
the successful advances proposed in the last decades. Five challenges relevant to anyone
adopting a particle filter for a real-world problem are identified. Each of the challenges
is explained and various options for solving it are presented. Theoretical and practical
aspects of solutions are described together with references for further reading. In order to
enable a better understanding of the concepts and challenges, a running example is used
throughout the manuscript. The code related to the running example is available in a public
repository [10] and reveals implementation details that may be difficult to grasp based
on mathematical descriptions or pseudo code only. Readers are encouraged to download
the code and run the algorithms. It allows for experimenting with different particle filter
variants and settings.

2. Related Work

This section reviews tutorial and overview papers that have a focus on theoretical or
practical aspects of particle filters. For textbooks with elaborate sections on particle filters
the reader is referred to [11–13].

The first group of works are more extensive in multiple ways [6,7,14–17].

• Their focus is broader, e.g., nonlinear filtering in general, instead of just particle filters.
• Mathematical details and derivations are described in a more elaborate way.

This work only explains the mathematics needed to understand the concepts and
focuses on particle filters exclusively. This way, room has been made for explaining aspects
that are not included in the above mentioned works.

• A list of challenges encountered when applying particle filters and an extensive
overview of advanced particle filters that can be used to address these challenges.

• A running example (and code), such that differences of advanced particle filters can
be illustrated.

The work of [14] presents an elaborate textbook style overview of estimation algorithms.
Its focus is more theory-oriented and it is a recommended read for people looking for a
broad overview. It does not include a running example, and is less elaborate on advanced
particle filters. It is much less elaborate in terms of particle filter specific code examples.

Both [6,7] are more extensive in terms of mathematical derivations and proofs. These
works are recommended for readers looking for mathematical background information.
Furthermore, a comparison between particle filters and other popular estimation algo-
rithms, such as Kalman filters, is included in [6]. Practical challenges and advanced
particle filter solutions to these problems are treated in a less elaborate manner and only
pseudo-code is given.

The work of [15] spans both a broader range of algorithms and problems. Besides
recursive estimation of dynamic states it includes, e.g., estimation of static states and
smoothing. The work is less elaborate on different types of advanced particle filters and
how these can be used to handle specific challenges and does not include code.

Finally, [16,17] are much more compact on particle filters, challenges and implementa-
tion and broader in terms of focus, i.e., (nonlinear) filtering in general.

Sensors 2021, 21, 438 3 of 28

The second group of papers applies particle filter theory to problems in a specific
application domain. The particle filter specific part is compact compared to this work and
more room is given to application related challenges and solutions [5,18–23]. The work
of [18] focuses on the passive synthetic aperture problem in an uncertain ocean environment.
The work of [19] demonstrates how particle filters can be used for resolving problems in
wireless communication and [20] presents recent advances in the context of multitarget
tracking. Mobile robot localization aspects and models are explained in [21], whereas [5]
presents particle filters in the context of fault detection and diagnosis of hybrid systems.
An elaborate tutorial on particle filters in the context of psychology can be found in [22].
Finally, [23] benchmarks particle filters settings for vehicle localization using data from
lidar sensors.

The third group of works surveys one particular aspect of the particle filter [24–30].
This tutorial addresses each of these aspects, albeit less extensively. References to these
works will be repeated in later sections explaining the aspect at hand. The work of [24]
explains how graphical processing units can be used to speed up the computation of particle
filters. Resampling algorithms (what is meant with resampling and why it is needed will be
explained in Section 5.1) are classified and explained in [25], whereas [26,27] compare some
of the most popular resampling schemes. The work of [30] reviews ways to fight sample
degeneracy and impoverishment (the sample degeneracy and impoverishment problems
will be explained in Sections 4.2.1 and 4.2.2). In [28], it is explained how roughening
methods can be used to prevent sample impoverishment. Methods for changing the
number of particles on the fly are surveyed in [29].

In summary, this tutorial differs from the three groups of related works in differ-
ent ways.

1. The focus is on particle filters only which allows for an in-depth description without
focusing on one specific aspect of the filter.

2. Theory and implementation are described equally thorough.
3. The description is domain independent.

The source code accompanying the paper includes a simulation that will be used
as running example throughout the entire manuscript. It is meant to ease further under-
standing of both theory and implementation. The running example is separated from the
main text such that it can easily be skipped if preferred: whenever we switch from main
text to running example the start and end are indicated by EXAMPLE and � respectively.
References to code that can be used to reproduce the results will be given as well.

The paper continues with the problem statement in Section 3. Then, Section 4 intro-
duces the particle filter and identifies five important challenges that should be considered
when using particle filters for real world problems. Section 5 explains ways to solve the
challenges and conclusions are drawn in Section 6.

3. Problem Statement
3.1. Conceptual Problem Statement

This tutorial assumes the reader wants to solve a recursive state estimation problem
by using a particle filter. The goal is to estimate a state vector x. More specifically, the goal
is to track the hidden state sequence {xk} of a dynamical system, where k ∈ N is a discrete
time step and N is the set of natural numbers: 1, 2, 3, The word hidden emphasizes
that no direct state measurements are available. For estimating the state, two sources of
information are required.

1. A process model that encodes prior knowledge on how the state xk is expected to
evolve over time.

2. A measurement model that relates measurements to the state xk.

Sensors 2021, 21, 438 4 of 28

These two sources of information are formalized by mathematical models that can
be nonlinear. The process model reflects how the state changes over time given noise and
optional inputs:

xk = fk(xk−1, uk, vk−1), (1)

where fk is a function that uniquely associates the state at time step k− 1 with a state at time
step k. The process model noise sequence vk−1 is independent and identically distributed.
It represents uncertainties related to the process model, e.g., as a result of model related
simplifications. Depending on the application, a deterministic control input uk can be
present.

The second source of information is the measurement model:

zk = hk(xk, uk, nk), (2)

where hk is a function that associates the state with an expected measurement. Here nk
is an independent and identically distributed noise sequence representing the measure-
ment noise. In case multiple sensors are present, each sensor can be associated with its
own measurement model.

In the remainder of this tutorial the Bayesian perspective is adopted for explaining
the particle filter. The state vector is represented by a random variable and a probability
distribution over that variable, sometimes referred to as belief, represents the uncertainty
of the estimate. Bayes’ theorem will be used to refine the belief based on a prior estimate
and newly received measurements. This tutorial is meant to be understandable without
prior knowledge on Bayesian statistics. The interested reader is referred to [31] for a more
elaborate introduction of Bayesian statistics or probability theory in general.

The popularity of the particle filter arises from the fact that, contrary to other state
estimation techniques, such as Kalman filter [6], both linear and nonlinear process and
measurement models can be used. In addition, the filter enables representing state estimates
with arbitrarily shaped probability distributions as will be explained in Section 4.1.

Example 1. The running example used throughout this manuscript is a robot localization problem.
The robot moves around in a 2D world and uses a map to localize itself with respect to the map origin
(lower left corner). The state vector x contains the 2D pose of the robot, i.e., its 2D position in an
x–y coordinate frame (expressed in meters) and its orientation with respect to this frame (expressed
in radians). The orientation will also be referred to as heading or heading angle. A figure showing
the simulated robot (red sphere) in a simulated world containing four landmarks (blue rectangles) is
shown in Figure 1.

Figure 1. Simulation environment. The red circle represents the 2D robot position, the red line within
the circle represents the robot’s heading, the blue rectangles represent the landmarks that are detected
by the robot.

In the running example [10], the robot’s forward displacement u f wd is measured in meters and
its change in rotation uang is measured in radians. For formulating a process model, it is assumed

Sensors 2021, 21, 438 5 of 28

that the robot first moves forward u f wd m in the direction of its heading and then rotates uang rad,
as is shown in Figure 2a. The resulting process model therefore is:xr

yr
θr

k︸ ︷︷ ︸

xk

=

xr
yr
θr

k−1︸ ︷︷ ︸

xk−1

+

cos(θr,k−1) 0
sin(θr,k−1) 0

0 1

︸ ︷︷ ︸

Bk

[
u f wd
uang

]
︸ ︷︷ ︸

uk

, (3)

where the matrix Bk describes how the control input affects the state at time k and the uk represents
the measured displacement and rotation.

In order to refine its position estimate, the robot measures Euclidean distance and relative angle
to each of the four landmarks with known positions in the map, see Figure 2b. For a landmark with
position (xlm, ylm), the measurement model therefore is:

[
zdist
zang

]
k
=

√
(xr,k − xlm)2 + (yr,k − ylm)2

arctan
(

yr,k − ylm

xr,k − xlm

) . (4)

Notice that for reasons of simplicity, the robot’s heading is not considered in the simulated
measurement, i.e., both zdist and zang are independent of the robot’s heading θr.

(a) (b)

Figure 2. Visualizations of the process and measurement models used in the running example.
The robot pose is denoted by the red circle, the landmarks are denoted by blue rectangles. (a) Process
model used in the running example: the robot at time k− 1 on the left, predicted robot pose at time k
on the right. (b) Measurement model used in the running example. Measurement zang is defined
with respect to the x-axis of the map coordinate frame. As a result, measurements are independent of
the robot’s heading.

3.2. Mathematical Problem Statement

From now on we move to a probabilistic notation, describing the state estimation
problem addressed by the particle filter as a Bayesian estimation problem. A probability
density function (pdf) over a random variable a will be denoted p(a), the conditional
probability density function of a random variable a given b will be denoted p(a | b).

The state estimate is represented by a pdf that quantifies both the estimated state and
the uncertainty associated with the estimated value. The state of interest is referred to as
the posterior state: the estimate of the state at time k given all measurements and inputs up
to time k and is denoted by the conditional pdf:

p(xk | u1:k, z1:k). (5)

In (5) u1:k = {ui; i = 1, . . . , k} denotes the sequence of known control inputs and
z1:k = {zi; i = 1, . . . , k} denotes the measurement sequence. In the remainder, control
inputs will be left out for ease of notation. The posterior state is the state that will be
estimated at each time step.

Sensors 2021, 21, 438 6 of 28

The state sequence is modelled by a Markov chain. This means the past is assumed
to be adequately summarized by only the state at the previous time step. Mathematically
this implies:

p(xk | x1:k−1, z1:k−1) = p(xk | xk−1), p(zk | x1:k) = p(zk | xk). (6)

In words, when modeling how the state is expected to change from time k− 1 to time
k, it is assumed that state xk−1 implicitly includes all information needed. Older states
x1, . . . , xk−2 and previous measurements z1, . . . , zk−1 will therefore be discarded after being
processed. Similarly, only control input uk is used for problems including a control input.
For measurements a similar reasoning applies, as shown in (6).

The particle filter is a Bayesian filter. This means, estimation is performed using
Bayesian theory. Bayesian inference allows for estimating a state by combining a statistical
model for a measurement (likelihood) with a prior probability using Bayes’ theorem.
Mathematically, Bayes’ theorem can be written as: p(A | B) = P(B | A)P(A)/P(B).
In words, Bayes’ theorem can be written as:

posterior =
likelihood · prior

marginal_likelihood
. (7)

The marginal likelihood acts as normalization term and only depends on measure-
ments. Tracking problems can be solved by recursively applying the predict–update cycle
that is common in Bayesian filtering [6]. Step 1 is computing the prior using a process
model, step 2 is refining the estimate using Bayes’ theorem.

1. The process model is used to compute the state that is expected at time k given all
measurements up to time k− 1.

2. A measurement zk at time k is used to refine the expected state estimate using Bayes’
theorem, leading to the posterior. The prior is computed in step 1 and the likelihood is
related to zk, as will be explained later. Typically, knowledge on the sensor character-
istics of the sensor that generated the measurement is used to compute the likelihood.
A more elaborate explanation of Bayes’ theorem can be found in [31].

Mathematically these steps can be written as follows. The posterior distribution at the
previous time step, p(xk−1 | z1:k−1), is combined with the process model that describes how
the state evolves over time in the prediction step. The result is referred to as the prior state:

p(xk | z1:k−1) =
∫

p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1. (8)

The prior represents the best guess at time k given measurements up to time k− 1.
It can be interpreted as the predicted state at time k.

During the update step, the measurement zk at time k is used to compute the posterior
using Bayes’ theorem:

p(xk | z1:k) =
p(zk | xk)p(xk | z1:k−1)

p(zk | z1:k−1)
. (9)

The likelihood p(zk | xk) represents the conditional probability of a measurement
given the predicted state, p(xk | z1:k−1) is the prior computed using (8) and the normalizing
constant represents the probability of the measurement. It can be computed using:

p(zk | z1:k−1) =
∫

p(zk | xk)p(xk | z1:k−1)dxk. (10)

Bayesian filters combine prior knowledge on how the state is expected to evolve over
time with measurements that include information related to the current state. More elabo-
rate mathematical derivations can be found in [6,11]. In geophysics often the term ‘data
assimilation’ is used instead of filtering [17].

Sensors 2021, 21, 438 7 of 28

Contrary to least squares minimization, where a batch of measurements is processed
by finding a parameterized function that best fits that data, Bayesian filters refine the state
estimate each time a new measurement is received. Both methods are introduced and
compared elaborately in [31].

3.3. Joint State Estimation and Model Selection

In some applications, different models must be defined and accurate state estimation
requires to jointly estimate the state and the most suitable model. Consider for example
a state that represents the position of a person and different process models are defined
for describing the person’s next position: one for the person being in a car and one for the
person walking. Model selection is excluded from the problem statement in this tutorial.
More information can be found in [32,33].

4. Particle Filter

This section introduces the particle filter as a method to solve state estimation problems.
The idea underlying the filter will be presented together with its generic formulation in
Section 4.1. Then, Section 4.2 explains five challenges that should be considered when
using particle filters.

4.1. Basic Idea

The integrals in (8) and (9) can only be solved analytically under strong assumptions,
e.g., for finite dimensional discrete state variables or linear models and Gaussian pdfs.
Rather than restricting the models, the particle filter approximates the pdf representing the
posterior by a discrete pdf such that there are minimal restrictions on the models involved.
The optimal Bayesian solution is approximated by a sum of weighted samples:

p(x0:k | z1:k) ≈
Ns

∑
i=1

wi
kδ(x0:k − xi

0:k). (11)

Here
{

wi
k, xi

0:k
}Ns

i=1 is a set containing Ns samples and weights. Each sample xi
0:k

represents a possible realization of the state sequence. A weight wi
k represents the relative

importance of each of the Ns samples xi
0:k and ∑Ns

i=1 wi
k = 1. Samples associated with high

weights are believed to be closer to the true state sequence than samples associated with
low weights. δ(·) denotes the Dirac delta function. The Dirac delta function δ(a) is zero
everywhere except for a, its integral is equal to one.

The discrete approximation of a continuous pdf turns intractable integrals into sum-
mations over Ns samples. The samples are usually referred to as particles hence the name
particle filter. The advantages of representing the posterior by a set of weighted particles
include (i) the ability to represent arbitrarily shaped pdfs (assuming enough samples) and
(ii) minimal restrictions on the process and measurement models. This combination of
advantages is one of the main reasons for the popularity of the particle filter. The most
obvious drawbacks are (i) the lack of expressiveness in case the number of particles is too
low and (ii) the increased computational costs (more on that in Section 4.2).

The sample-based approximation comes with an obvious challenge. The posterior
pdf that must be estimated is unknown hence sampling from it is impossible. Samples
must therefore be drawn from another distribution instead. This distribution, referred to as
importance density (sometimes called proposal density) will be denoted q. The weights
compensate for the fact that samples are drawn from the importance density q rather than
the posterior pdf. Any function that is positive where the posterior is positive can be used
as importance density.

Example 2. Figure 3 shows an example in which weighted samples from one distribution are used
to approximate another distribution. In this example, a zero mean 2D Gaussian distribution must be
estimated by a set of samples, i.e., the Gaussian distribution plays the role of posterior pdf. Samples

Sensors 2021, 21, 438 8 of 28

are drawn from a 2D uniform distribution that plays the role of importance density q. Obviously,
the samples from the uniform distribution are an inaccurate reflection of the Gaussian distribution.
For that reason, weights are used to compensate for the difference between ‘importance density’ and
‘posterior distribution’. With the right weights, the weighted samples provide a reasonable estimate
of the to be estimated Gaussian distribution, as is shown in Figure 3.

Figure 3. Set of 500 weighted samples (clue circles) estimating a 2D zero mean Gaussian distribution.
The radius of a sample is proportional to its weight.

The next question is: given the importance density q and without knowing the poste-
rior, how can the weights be computed? It can be shown [6,12,14] that the correct way of
computing the weights is:

wi
k ∝

p(xi
0:k | z1:k)

q(xi
0:k | z1:k)

. (12)

Here the symbol ∝ means proportional to and the term on the right-hand side is the
ratio between posterior and importance density for an individual particle with index i.

In recursive filtering, typically the state at time step k, p(xk | z1:k), is of interest, rather
than the full state sequence p(x0:k | z1:k) up to time k. As a result, (12) can be rewritten:

wi
k ∝ wi

k−1
p(zk | xi

k)p(xi
k | xi

k−1)

q(xi
k | xi

k−1, zk)
, (13)

where wi
k−1 represents the weight at the previous time step for particle i. Without further

derivations we present the resulting posterior:

p(xk | z1:k) ≈
Ns

∑
i=1

wi
kδ(xk − xi

k). (14)

By increasing the number of particles, this estimate can be shown to converge to
the exact solution [6,12,14]. The same references give mathematical derivations of the
equations given above.

In summary, when running the algorithm described so far, the sequential importance
sampling (SIS) algorithm is obtained. SIS is described by the pseudo code of Algorithm 1.

Sensors 2021, 21, 438 9 of 28

Algorithm 1: Sequential Importance Sampling

Input: {xi
k−1, wi

k−1}
Ns
i=1, zk

Output: {xi
k, wi

k}
Ns
i=1

for i = 1, . . . , Ns do
/* Step 1: propagate particle */
draw sample xi

k ∼ q(xi
k | xi

k−1, zk)
/* Step 2: update weight */
assign weight wi

k using (13)
end

Example 3. For the robot localization example, both the process and measurement noise are assumed
to be zero mean Gaussian distributions with diagonal covariance matrices Q and R respectively.
The fact that covariance matrices are diagonal represents uncorrelated noise in each dimension.
The prediction and update steps can be explained as follows.

The most common choice for the importance density is p(xi
k | xi

k−1) hence this importance
density will be used for the running example as well. As a result:

xi
k ∼ N

(
xi

k−1 + Bkuk, Q
)

, (15)

In words: during the prediction step the particle state is obtained by drawing a sample from a
Gaussian distribution with mean vector xi

k−1 + Bkuk and covariance matrix Q. The mean of the
Gaussian distribution is computed by applying the process model (3) to particle i at time k− 1.
The covariance Q of the Gaussian distribution is the 3× 3 covariance matrix of the additive zero
mean process model noise v. The fact that a sample is drawn means this step is stochastic.

The second step is updating the weights. Since the importance density is selected to be
p(xi

k | xi
k−1), (13) simplifies to [6]:

wi
k ∝ wi

k−1 p(zk | xi
k), (16)

where weight wi
k−1 is known from the previous time step. The expected measurements assuming xi

k
and using the measurement model (4) are denoted:[

ẑi
dist

ẑi
ang

]j

k
,

where j = 1, 2, 3, 4 denotes the landmark index, k the discrete time step and i the particle index.
The measurement noise nk is assumed to be additive zero mean Gaussian noise with a 2 × 2
covariance matrix R and the likelihood is computed using (assuming four independent landmark
measurements):

p(zk | xi
k) =

4

∏
j=1
N
([

ẑi
dist

ẑi
ang

]j

k
;
[

zdist
zang

]j

k
, R

)
, (17)

where the second and third term in N (·; ·, ·) represent the mean vector and covariance matrix of
a Gaussian distribution. The first term represents the point at which this Gaussian distribution
must be evaluated. In words: a 2D Gaussian distribution with its mean vector equal to the actual
measurement and a covariance matrix equal to the measurement noise covariance will be evaluated
at the location of the expected measurement. The highest weight possible is obtained in case the
expected measurement coincides with the actual measurement. The larger the difference between
expected and actual measurement, the lower the likelihood (17) that will be used to update the
particle weight in (16). Weights will be normalized to ensure that all weights sum up to one.
Particle states xi

k are not changed during this step and the computation of weights is deterministic.
This completes the explanation of the implementation of the basic particle filter as it is used in

the running example. The script demo_running_example.py demonstrates how the particle filter

Sensors 2021, 21, 438 10 of 28

performs for this simulation setup. The two steps above are implemented in the update function of
particle_filter_sir.py.

Example 4. One of reasons for the popularity of particle filters is their ability to represent posterior
distributions of arbitrary shape. In order to demonstrate this, the running example is slightly
modified. Only the distance to landmarks is measured and the number of landmarks and their
positions is varied. As a result the particles form complicated, non-Gaussian posterior distributions:
a donut-like shape and a bimodal distribution, see Figure 4. These posterior distributions can be
reproduced by changing the settings in demo_range_only.py. Real world applications adopting a
particle filter for robot localization in a similar setup include [34,35].

(a) (b)

Figure 4. Simulation environments with different numbers of landmarks (blue rectangles). The range
only measurements do not provide sufficient information for uniquely finding the true robot
pose (red). The particles (green dots) converge to a more complicated posterior distributions. (a) One
landmark: donut-like shaped posterior. (b) Two landmarks: bimodal distribution.

4.2. Particle Filter Challenges

This section explains five challenges that must be addressed before designing and
implementing a particle filter.

4.2.1. Challenge I: Degeneracy Problem

After a few iterations one particle weight will be very close to one and all other
particle weights will be almost zero in case Algorithm 1 is used. This problem is known
as degeneracy problem and it cannot be avoided [36]. An example of the maximum
normalized particle weight for a simulation with our running example is provided in
Figure 5a. After the first update step (time index zero in the plot) roughly half of the
total weight originates from a single particle. From time step five onward, the maximum
weight is one and the remaining 499 particles have a negligible contribution. This figure
is generated by running challenge1_degeneracy.py. The precise shape of the curve will
change for each run due to the stochastic nature of the particle filter and the simulated
robot motions and measurements.

Sensors 2021, 21, 438 11 of 28

(a) (b)

(c) (d)

Figure 5. Visualizations of four out of the five challenges identified for particle filters. (a) Challenge I:
degeneracy. (b) Challenge II: sample impoverishment. Red: robot trajectory, blue: landmarks, green:
particles at different time steps. (c) Challenge III: particle filter divergence. Red: robot trajectory, blue:
landmarks, green: particles at different time steps. (d) Challenge IV: selecting the importance density.

The consequences of the degeneracy problem are (i) almost all computational effort
will be put into computations related to particles that have negligible or no contribution to
the overall estimate and (ii) the number of effective particles is only one. The latter greatly
limits the performance and expressiveness of the filter. The expressiveness is limited since
a single particle can only represent one point in the state space rather than pdfs of arbitrary
shapes. Performance is poor since the particle filter will diverge. Divergence occurs in
case state estimation errors increase over time and are unacceptably large. Once diverged,
the filter fails to ‘follow’ the true state or reduce estimation errors to acceptable values.
An example of a diverging estimate can be found in Figure 5c.

The solution to this problem is resampling. Resampling is performed directly after the
update step. In the resampling step, new particles are randomly selected, with replacement,
from the set of weighted particles. The probability of selecting a particle is proportional
to its weight and the number of particles remains unchanged. Particles with higher
weights are likely to be duplicated, whereas low weight particles are likely to be removed.
After resampling the weights are typically reset to 1/Ns.

Example 5. Resampling is schematically visualized in Figure 6. The weighted particles for a 1D
state are shown on the left, where the size reflects the weight. During resampling, some particles

Sensors 2021, 21, 438 12 of 28

are selected multiple times whereas other particles are not selected at all as is indicated by the ‘x’.
Notice the resampling step is stochastic: if this step is repeated multiple times with the same set of
weighted particles, the results will be similar but different.

Figure 6. Example of how resampling changes a set of 10 weighted particles (left) into a new set
of 10 uniformly weighted particles (right). Some particles are duplicated, some particles are never
selected and disappear (represented by the ’x’).

Different resampling schemes (when to perform resampling), and resampling algorithms
(how to resample) will be thoroughly explained and demonstrated in Section 5.1.

4.2.2. Challenge II: Sample Impoverishment

Solving the degeneracy problem by resampling leads to multiple instances of the same
particle, as can be seen in Figure 6. If we assume the most popular choice for the importance
density, p(xi

k | xi
k−1), the prediction step contains a deterministic and a stochastic part

(we draw a sample from a pdf). As a result, particles with the same state will diversify
during the prediction step. If the process model noise variance is very low, samples will
hardly diversify and after a few iterations all particles will collapse into a single point in
the state space. Then, all Ns particles will represent the same state and again the filter
effectively only has one particle. This problem is referred to as sample impoverishment.
Like with particle degeneracy, the filter will lose performance, expressiveness and will
likely diverge.

Figure 5b demonstrates the problem of sample impoverishment for our running ex-
ample. The red circles represent the robot trajectory to be estimated, the blue rectangles
are landmarks used for positioning the robot and the green dots represent all Ns particles
at each of the time steps. The dotted appearance of the particles is the result of sample
impoverishment. All 500 particles at each time step are very close to each other and appear
as a single ‘dot’ in the plot. Due to limited noise in the propagation step, the cloud does not
diversify and effectively the number of particles becomes close to one. This figure can be
reproduced by executing challenge2_impoverishment.py. Again, the precise appearance
may change due to the stochastic nature of both filter and simulation.

In general, a sufficient amount of process model noise prevents sample impoverish-
ment, however, many works have further investigated sample impoverishment. Later sec-
tions will thoroughly investigate and demonstrate the most popular solutions.

4.2.3. Challenge III: Particle Filter Divergence

When employing a particle filter for a real-world problem, the risk of particle filter
divergence must always be considered. A diverged filter is not able to provide accurate
estimates and therefore is problematic for the application at hand. Reasons for divergence
can range from poor tuning of the filter or incorrect modeling assumptions to inconsistent
measurement data or hardware failures. Examples include incorrect or inaccurate mea-
surement noise assumptions while computing likelihoods, inaccurate process models or
latency in the transmission of a measurement to the particle filter algorithm. Figure 5c
shows a clear example of particle filter divergence: all particle have unacceptably large

Sensors 2021, 21, 438 13 of 28

estimation errors and the errors increase over time. This figure is generated using by
running challenge3_divergence.py.

Particle divergence monitoring is an inevitable part of any particle filter that is ex-
pected to deliver estimates for real world problems in real time.

4.2.4. Challenge IV: Selecting the Importance Density

In Section 4.1, the role of the importance density was explained. This function is at the
core of the particle filter algorithm and for that reason selecting a proper function q is one
of the most important steps in the design of a particle filter. In [37], it is stated that ‘when
designing a particle filter for a particular application, it is the choice of importance density
that is critical’. In practice, the number of candidates is limited, as will be explained in
Section 5.4.

Figure 5d illustrates the role of the importance density. The posterior that must be
estimated is a zero mean Gaussian distribution and the importance density is a uniform
distribution. This choice of importance density is valid but not very informative. Con-
sequence is that a relatively high number of particles is required to capture the shape
of the underlying distribution: with 500 weighted samples the Gaussian distribution is
represented reasonably well (blue circles). With 50 weighted samples, only a few samples
are within the relevant part of the state space (red samples). Although Figure 5d does
not exactly mimic the particle filter setting, it should help in understanding how a poor
importance density greatly complicates getting good state estimation performance using a
particle filter.

4.2.5. Challenge V: Real Time Execution

A particle filter can only work if the number of particles is sufficient to represent the
distributions that are being estimated. As a result, the dimension of the state space has a big
impact on the number of particles needed. At the same time the number of particles directly
affects the computational costs of the filter. The fifth challenge that will be elaborated on
are aspects related to real time execution of the particle filter algorithm.

5. Solutions to the Particle Filter Challenges

This work aims at providing a complete picture of all five challenges introduced in
Section 4, as a practitioner interested in getting familiar and implementing the particle
filter is likely to encounter all of them. The goal of this section is enabling the selection of
a suitable method for a specific estimation problem the reader needs to tackle. The code
accompanying the paper implements at least one of the solutions for each of the challenges
and references to the code are given when applicable. Experimenting with both the
challenge and solution is highly encouraged since this helps understanding the problem
and getting acquainted with the solution. To complement the topics we provide further
references for the readers interested in details specific to each challenge.

5.1. Challenge I: Degeneracy Problem

In this section resampling algorithms will be presented in more detail. As explained
in Section 4, resampling prevents the degeneracy problem and is therefore crucial in any
particle filter. Throughout this work, algorithms that determine when to resample are
referred to as ‘resampling schemes’. Algorithms doing the actual resampling are referred
to as ‘resampling algorithms’.

5.1.1. Resampling Schemes

The simplest resampling scheme possible is resampling at every time step, as is
explained in Algorithm 2.

Sensors 2021, 21, 438 14 of 28

Algorithm 2: Particle filter with resampling

Input: {xi
k−1, wi

k−1}
Ns
i=1, zk

Output: {xi
k, wi

k}
Ns
i=1

wsum = 0
for i = 1, . . . , Ns do

/* Step 1: propagate particle */
draw sample xi

k ∼ q(xi
k | xi

k−1, zk)
/* Step 2: update weight */
assign weight wi

k using (13)
/* Step 3: cumulative weight */
wsum = wsum + wi

k
end
/* Normalize weights */
for i = 1, . . . , Ns do

wi
k = wi

k/wsum
end
/* Resample */
Resample Ns particles with replacement
/* Reset weights */
for i = 1, . . . , Ns do

wi
k = 1/Ns

end

This strategy avoids the degeneracy problem and is among the most popular solutions.
One aspect to keep in mind when adopting this solution is computational cost. Resampling
is costly in terms of computation and resampling at every time step is a conservative way to
avoid particle degeneracy. In other words: particle degeneracy could as well be prevented
by resampling less frequently. Furthermore resampling at every time step usually reduces
the diversity in the particle set which may increase the risk of sample impoverishment
(challenge II).

It would suffice to resample whenever the particle weights indicate some form of
particle degeneracy. The most common way to assess particle degeneracy is by evaluating
the effective sample size, introduced in [38]. It can be approximated by (see [39] for
more details):

N̂e f f =
1

∑Ns
i=1

(
wi

k
)2 . (18)

Algorithm 3 summarizes the particle filter algorithm with resampling based on N̂e f f
in pseudo code. Loosely formulated this means that resampling happens whenever the
summed weights of a relatively small (compared to Ns) subset of particles is responsible
for a large part of the total weight.

Most particle filters use one of the two resampling schemes presented above, es-
pecially for lower dimensional states. However, many other measures can be used
to quantify the effective number of samples. One could for example decide to mea-
sure the effective sample size by 1/ maxi

(
wi

k
)

and resample if this number drops be-
low a user defined threshold. This would only require changing line 8 in Algorithm 3.
An elaborate overview and comparison of effective sample size measures can be found
in [40]. The code accompanying this paper implements the three options explained in
this section: ’every time step‘-resampling is implemented in particle_filter_sir.py,
resampling based on the approximate number of effective particles is implemented in
particle_filter_nepr.py, resampling based on the maximum particle weight criterion
is implemented in particle_filter_max_weight_resampling.py.

Sensors 2021, 21, 438 15 of 28

Algorithm 3: Particle filter with resampling threshold

Input: {xi
k−1, wi

k−1}
Ns
i=1, zk

Output: {xi
k, wi

k}
Ns
i=1

wsum = 0
for i = 1, . . . , Ns do

/* Step 1: propagate particle */
draw sample xi

k ∼ q(xi
k | xi

k−1, zk)
/* Step 2: update weight */
assign weight wi

k using (13)
/* Step 3: cumulative weight */
wsum = wsum + wi

k
end
/* Normalize weights */
for i = 1, . . . , Ns do

wi
k = wi

k/wsum
end
if N̂e f f < Nthreshold then

/* Resample if needed */
Resample Ns particles with replacement
/* Reset weights */
for i = 1, . . . , Ns do

wi
k = 1/Ns

end
end

In case none of the solutions above is sufficient, less common resampling schemes
can be adopted. Consider for example [41], where the resampling scheme and algorithm
are combined. Resampling is based on some criterion, e.g., only those particles that
have weights below a predefined value. Furthermore, sampling with replacement is
replaced by regenerating particles in specific regions of the state space (defined based on
domain specific expert knowledge). Another approach is deterministic resampling [42].
With deterministic resampling both the weight and the state of a particle are considered
when resampling, thereby avoiding ‘uncensored discarding of low weighted particles’.
Regularized particle filters resample from a continuous approximation of the posterior
rather than using (11) [6]. This typically is done by replacing the Dirac delta function by a
kernel density. A kernel is a symmetric pdf and is a function of the particle state. In [6],
the optimal kernel is given in the special case wi = 1/NS for all particles.

Example 6. The running example is used to compare three resampling schemes:

1. Resample every time step (Algorithm 2).
2. Resample if N̂e f f < Ns/4.0 (Algorithm 3).
3. Resample if 1/ maxi

(
wi

k
)
< 1/0.005.

The simulation has 50 time steps and is repeated 100 times. The mean and standard deviation of the
2-norm of the error vector over all 100*50 time steps are computed. The results are summarized in
Table 1. The script associated with these simulations is challenge1_compare_resampling_
schemes.py

Sensors 2021, 21, 438 16 of 28

Table 1. Simulation results for 100 simulations with 50 time steps each and three different resampling
schemes. Errors are computed by taking the 2-norm of the error (true robot pose vs estimated robot
pose). Presented are average error (mean), standard deviation (std. dev.) and the number of times a
resampling step has been performed.

Scheme Mean Std. Dev. # Resampling Steps

Every time step 3.73 2.97 5000

N̂e f f 3.81 2.98 1281

1/ maxi
(
wi

k
)

3.68 3.03 1806

The thresholds are selected without much tuning and therefore, the results are indicative and
will mainly be used for showing typical differences. In fact, the results will change if this simulation
would be repeated, due to the stochastic nature of the algorithm. The resampling scheme has some
effect on the mean errors for this simulation (order of a few percent) whereas the standard deviations
are very similar. The advantage of using a more advanced resampling scheme becomes evident in
the last column. The number of resampling steps is 3.9 times lower for the resampling scheme that
uses the approximate estimated number of effective particles and 2.8 times lower for the resampling
scheme that monitors the maximum particle weight.

5.1.2. Resampling Algorithms

Resampling is a stochastic step that turns a set of Ns weighted particles into a new set
of Ns (usually uniformly) weighted particles. Methods that change the number of particles
on the fly will be presented in Section 5.5, here it is assumed that the number of particles
is constant.

Although the number of existing resampling algorithms is large, most particle fil-
ters use one of the following algorithms: multinomial resampling, residual resampling,
systematic resampling or stratified resampling. The code accompanying this paper imple-
ments all four algorithms and can be used to investigate practical differences among them
(see resampler.py). Pseudo code or detailed explanations of the algorithms itself can be
found in the overview paper [25]. Refs. [25,43] also compare some relevant properties such
as computational complexity and the variance in the number of times particles are selected.

In [26], an effort is made to determine which of the four algorithms performs best.
Based on reasoning, residual and stratified sampling are said to outperform multinomial re-
sampling. Similarly, it is argued that systematic resampling cannot be shown to consistently
outperform multinomial resampling. Contrary to the results in [26], systematic resam-
pling is concluded to be favorable both in terms of resampling quality and computational
complexity in [27].

In general, there is no best resampling algorithm: different papers draw conflicting
conclusions as explained above. In case one must decide which one of these algorithms
to use it is recommended to at least be aware of the difference in ‘predictability’: when
running one resampling algorithm multiple times on the same set of weighted particles,
the variance in the number of times each particle is selected by the resampling algorithms
varies greatly. Furthermore, some methods may lead to biased results, as is explained and
demonstrated in [43].

Example 7. To give an idea about the differences in outcome when using one of the four resampling
algorithms a random set of five weighted particles has been generated. The weights were 0.366,
0.354, 0.119, 0.058, 0.102, and each resampling algorithm has been run 100,000 times. The number
of times each particle has been selected is counted for each of these runs. Tables 2 and 3 show (i) the
mean number of times each particle has been selected and (ii) the standard deviation in the number
of times each particle has been selected. The goal of this example is to illustrate differences between
the algorithms, not to determine which method performs best.

Sensors 2021, 21, 438 17 of 28

The probability of selecting a particle is proportional to its weight and as a result the average
number of times each particle is selected is the same for all resampling strategies. The standard
deviation measures the variation in the number of times each particle has been selected. This is
one of the aspects on which the resampling algorithms differ significantly as can be seen in Table 3.
Readers that would like to understand where these differences come from are recommended to
study the algorithmic differences reported in [25]. The script associated with this simulation is
challenge1_compare_resampling_algorithm.py

Table 2. Average number of times each of the samples is selected in a test containing 100,000 trials
(weights 0.366, 0.354, 0.119, 0.058, 0.102).

Resampling Alg. Means

Multinomial 1.83 1.77 0.60 0.29 0.51

Systematic 1.83 1.77 0.60 0.29 0.51

Stratified 1.83 1.77 0.60 0.29 0.51

Residual 1.83 1.77 0.59 0.29 0.50

Table 3. Standard deviation of the number of times each of the samples is selected in a test containing
100,000 trials (weights 0.366, 0.354, 0.119, 0.058, 0.102).

Resampling Alg. Standard Deviations

Multinomial 1.08 1.07 0.72 0.52 0.68

Systematic 0.77 0.76 0.69 0.51 0.65

Stratified 0.38 0.62 0.63 0.45 0.50

Residual 0.38 0.42 0.49 0.46 0.50

5.2. Challenge II: Sample Impoverishment

There are various ways to handle the risk of sample impoverishment. This section
explains various options that vary in complexity and together represent the vast majority
of solutions found in practice. More options can be found in [14,44].

5.2.1. Roughening

The first solution that could come into mind when thinking of ways to avoid sample
impoverishment is artificially increasing the process model noise to a level that prevents
impoverishment [1]. The work of [28] explains two pragmatic methods that do so and are
referred to as ‘roughening methods’.

1. Adding artificial noise after resampling.
2. Adding jitter to the process model used in the propagation step (‘direct-roughening’).

Furthermore, it explores different choices related to when applying roughening and
to which element of the algorithm: (i) apply at all or some time steps, (ii) apply to all or
some particles, (iii) apply to full vector of some parts of it. When to apply roughening,
how much noise must be added and to which dimensions is difficult to state in general [28].
It is, however, good to keep the following in mind.

• Whenever sample impoverishment plays a role for a specific problem, roughening
can be an effective measure.

• Roughening is more useful in case the number of particles is relatively low.
• The complexity of roughening methods can be varied depending on the needs, this is

typically part of the particle filter tuning process.

Example 8. Due to the amount of noise in the process model associated with the running example,
sample impoverishment does not play a role. In fact, for generating Figure 5b, the process noise

Sensors 2021, 21, 438 18 of 28

was artificially lowered by roughly a factor twenty. For this reason and due to the simplicity of
implementing the concept it is not part of the code examples.

Roughening can usually be added by adding a single line to Algorithms 1–3.

5.2.2. Auxiliary Particle Filters

The auxiliary particle filter was introduced in [45]. More details on auxiliary particle
filters and derivations can be found in [6] or [14]. Here, the resulting algorithm and the
underlying ideas will be explained.

In the standard particle filter (Algorithm 2), step one (prediction) is to randomly
draw samples and step two is updating weights using a measurement and the predicted
particle states from step one (see Algorithm 2). The rational of auxiliary particle filters
is to, in the prediction step, favor particles that are likely to get high likelihoods after
incorporating the measurement in the update step. In order to do so, the availability of the
latest measurement is exploited in the prediction step, rather than blindly drawing samples
from the prior [45]. It uses ‘resampling on predicted particles to select which particles to
use in the prediction and measurement update’ [46]. For implementation details, the reader
is referred to the code: auxiliary_particle_filter.py. The steps below summarize the
auxiliary particle filter algorithm.

1. Compute Ns point estimates that are used to characterize p(xk | xi
k−1): µi

k ∼ p(xk |
xi

k−1). Different characterizations are possible leading to different modifications
of the particle filter. The code accompanying the paper implements the version
explained here, see [6,45,46] for more information. Then compute weights for these
characterizations: wi

k ∝ p(zk | µi
k)w

i
k−1. Afterwards, normalize the weights.

2. Use weights wi
k from step 1 in a resampling step. During resampling, store the

indices ij of the particles that would have been selected but do not perform the actual
resampling, i.e., do not duplicate or delete particles. Each index ij refers to a particle
at time k− 1 and the set of indices represents the set of particles that are expected to
get high likelihoods.
Ns indices ij are stored during this resampling step. Some particle indices appear
multiple times whereas others are not selected at all.

3. Perform a prediction step for each of the Ns particle indices ij from step 2.
4. Compute the weights for the propagated particles from step three using:

wj
k =

p(zk | xj
k)

p(zk | µij

k)
, (19)

where the denominator is the likelihood of the characterization computed in step 1 and
the nominator is the likelihood of the propagated particle from step 3. The likelihoods
p(zk | xj

k) are expected to be high due to steps 1 and 2.
Normalize afterwards.

In the algorithm described above the characterizations are used to predict whether a
particle is expected to get a high likelihood given the measurement. Whenever two charac-
terizations of the same state may differ significantly, the likelihoods after incorporating
the measurement may also differ significantly and the particle filter may perform worse
than the original particle filter. Typically, this is the case for process models with large
amounts of noise. In such cases, a single point is not sufficient to characterize the density
p(xk | xi

k−1) and an auxiliary particle filter performs worse than a standard particle filter.
In general, the auxiliary particle filter outperforms the standard particle filter [6], however,
the number of likelihoods that must be computed is Ns for the standard particle filter and
2Ns for the auxiliary particle filter. This may complicate real time execution with many
particles, especially if computing likelihoods is computationally expensive.

Sensors 2021, 21, 438 19 of 28

Example 9. This example aims at showing the effect of favoring particles that are likely to get high
likelihoods, as is done in auxiliary particle filtering. In order to do so, both the standard particle filter
(Algorithm 2) and the auxiliary particle filter are simulated 100 time steps with 1000 particles. Next,
we plot the distribution of the 100*1000 likelihoods p(zk | xj

k) for both filters. The relation between
likelihood and particle weight has been shown in (13) and (19). Figure 7 shows the likelihoods and
confirms that the auxiliary particle filter indeed leads to higher likelihoods.

Figure 7. Distribution for the likelihoods of the auxiliary particle filter and the standard particle filter.

5.2.3. Resample Move Step

A more refined way of preventing impoverishment is implementing a resample
move step. Here, the Metropolis–Hastings (MH) step will be explained, but different
variants exist [44]. The MH step is added after resampling and increases the variety in
particles by either keeping a resampled particle, or replacing it by a new particle that is
obtained by repeating the predict and update steps as explained in Algorithm 4.

Algorithm 4: Metropolis–Hastings step

Input: {xi
k−1}

Ns
i=1, resampled particles {xi

k}
Ns
i=1, zk

Output: {xi
k}

Ns
i=1

for i = 1, . . . , Ns do
/* Step 1: sample a threshold from a uniform distribution */
draw sample ui ∼ U(0, 1)
/* Step 2: propagate particle previous time step */

draw sample x∗,ik ∼ p(xk | xi
k−1)

/* Step 3: likelihood for propagated particle step 2 */

compute l1 = p(zk | x∗,ik)
/* Step 4: likelihood resampled particle (input to HM step) */
compute l2 = p(zk | xi

k)
/* Step 5: determine whether or not to keep move */
if ui ≤ min(1, l1/l2) then

accept move, replace xi
k by x∗,ik

else
reject move, keep xi

k, discard x∗,ik
end

end

5.2.4. Further Ways to Minimize Particle Degeneracy and Impoverishment

A more recent approach that aims for keeping particles in regions of high likelihood
includes [47], where a deep belief network and particle swarm optimization are combined
in what is referred to as deep-belief-network-based particle filter. A more elaborate review
of different methods, including the auxiliary particle filter explained in Section 5.2.2,
the regularized particle filter explained in Section 5.1.1 and data-driven and artificial
intelligence-based methods can be found in [30].

Sensors 2021, 21, 438 20 of 28

5.3. Challenge III: Particle Filter Divergence

Whenever state estimation is performed recursively, the estimates may diverge. A par-
ticle filter has diverged whenever the particles no longer reflect the true state. Without
an explicit mechanism to handle particle filter divergence it is not possible to ensure re-
liable estimates in an online setting. A list of major causes of particle filter divergence is
given below.

• A process model that only covers a subset of all possible state transitions. In case
the true state dynamics are not part of the process model none of the particles get
propagated into the part of the state space that most accurately describes the true state.

• Measurement noise is modeled much lower than the actual noise level. Measurements
that are realistic given the high amount of measurement noise get very low likelihoods:
the measurement model judges such amounts of noise as highly unlikely and the
associated particles will be removed during the resampling step.

• The usage of incorrect measurements, e.g., unwanted reflections caught by a radar,
outliers; it leads to fusing incorrect information in the estimates.

The easiest way to recover from divergence is reinitializing the particle filter. Obvi-
ous prerequisite is a way to detect particle filter divergence. Although the literature on this
topic is rare, some approaches are available.

One way to monitor particle filter divergence is by computing the approximate number
of effective particles using (18). The most popular approach uses unnormalized likelihoods
instead [14]. Whenever all likelihoods are low, the predictions fail to represent the mea-
surement. Both standard hypothesis tests and predefined values can be used for testing
whether reinitialization of the filter is needed. Although simple, this method often is
sufficiently effective for recovering from particle filter divergence.

The Kullback–Leibler divergence, also known as relative entropy, is a measure of
how one probability distribution differs from another. It can be used to determine the
similarity between measurement and estimate [31]. Whenever the dissimilarity is too large,
the particle filter is reinitialized. A way to compute the Kullback–Leibler divergence for
particle filters and the definition of a threshold used to determine whether reinitialization
is needed are both explained in [48].

In [49], the difference between the expected and the actual measurement is estimated
together with the variance associated with this difference. This difference is fed to a change
detection algorithm that performs divergence detection using a sequential test.

Approaches to mitigate particle filter divergence that are tailored to a specific appli-
cation include [50] for indoor localization using an inertial measurement unit or [51] for
pedestrian tracking using inertial navigation system and ultra-wideband technology.

Example 10. In the simulation set-up accompanying this paper, the sum of all particle weights
is computed before normalization. In case this sum is close to zero a warning is printed (see
particle_filter_base.py). The easiest way to explore particle filter divergence is by run-
ning challenge3_divergence.py. This script was used to generate Figure 5c. Adding the
reinitialization step should be straightforward and is left as an exercise.

5.4. Challenge IV: Importance Densities

In Section 4.2.4, it was already explained that the choice for an importance density
is crucial when designing a particle filter. The prior p(xk | xi

k) is adopted as importance
density in our running example, all particle filters presented so far and the pioneering
work of [1]. In fact, the prior is by far the most popular importance density in the literature
and is expected to be a suitable choice in most applications [14].

Whenever the predicted particle state contains more information about the next state
then the likelihood, using the prior as importance density is a natural choice. This is
the case for the overwhelming majority of applications found in the literature. The most
popular alternative is to sample from an importance density that is related to the likeli-
hood. Instead of sampling from the prior and then weighting according to the likelihood,

Sensors 2021, 21, 438 21 of 28

samples can be drawn from the likelihood and weights are assigned based on the process
model [6]. From the perspective of the challenges explained so far, not much changes
within the particle filter. Various likelihood-based importance densities including mathe-
matical derivations and the equation that must be used to compute weights in that case can
be found in [6] or [14]. A practical example along this line of thought is explored in [52]
Section 3.

The remainder of this section explains two alternative approaches.

5.4.1. Extended Kalman Particle Filter

The Kalman filter is a Bayesian filter that provides the optimal solution for estimation
problems where the posterior is a Gaussian distribution, the models involved are linear and
the noise in those models is Gaussian with known parameters [6]. In this linear/Gaussian
case, the Kalman filter delivers the optimal solution. For non-linear process and/or
measurement models approximate Kalman filter solution exists. The first one relies on
estimating the nonlinear models by a local linearization, i.e., first order Taylor expansions
around the estimated state. This solution is referred to as the extended Kalman filter (EKF).

The EKF can be combined with a particle filter in an effort to construct improved
importance densities. In the extended Kalman particle filter, each particle represents an
EKF rather than a possible value of the state. The Gaussian posterior distribution of this
EKF is adopted as importance density, i.e., a sample will be drawn from the Gaussian
distribution. The rational is to approximate the optimal importance density by ‘incor-
porating the most current observation with the optimal Gaussian approximation of the
state’ [44,53]. By changing the importance density, (13) can no longer be simplified to (16).
Incorporating EKFs into particles increases the computational costs and poses limitations
on the models involved.

The main differences between the extended Kalman particle filter and the standard
particle filter, explained in Algorithm 2, are summarized in the list below.

• Each particle is associated with a Gaussian distribution (mean vector and covariance
matrix), rather than only a possible value of the state.

• For each particle, an EKF prediction and update step [6] are performed. Result is an
updated Gaussian distribution in which the most recent measurement is incorporated.
Therefore, the prior is moved towards the likelihood.

• The new particle state vector is sampled from the EKF posterior.

The only way to find out whether or not turning a particle filter into an extended Kalman
particle filter leads to superior performance is experimentation. Guaranteeing an improved
estimation accuracy is not possible. In fact, it depends on the accuracy of ‘the Gaussian
assumption on the form of the posterior’ (which in general is not Gaussian) and the inac-
curacies introduced by the linearization [44]. An example in which the extended Kalman
particle filter has been successfully combined with the resample-move step explained in
Section 5.2.3 is presented in [54].

For the running example, the standard particle filter diverged with 100 particles,
whereas the extended Kalman particle filter is able to estimate the location of the robot with
this number of particles, see demo_running_example_extended_Kalman_particle_filter.py.
Readers interested in the details of the filter are encouraged to study [53] or the code
associated with this example.

5.4.2. Unscented Particle Filter

The unscented Kalman filter (UKF) is a second approximate Kalman filter solution
that facilitates using Kalman filters for estimation problems with nonlinear models. Com-
pared the EKF, it is able to deliver more accurate and robust estimates [44]. This is the
result of using the unscented transform rather than a first order Taylor approximation of
the nonlinear models. More details on UKFs and the difference with EKFs can be found
in [6].

Sensors 2021, 21, 438 22 of 28

The unscented particle filter can be implemented by replacing the EKFs in the extended
Kalman particle filter by UKFs and has been shown to outperform the extended Kalman
particle filter in various simulation examples in [44]. Like with the extended Kalman
particle filter, there is no guarantee that the unscented particle filter outperforms the
standard particle filter.

5.5. Challenge V: Real Time Execution

This section explains ways to handle two important aspects that require consideration
when applying particle filters in real time. The first one relates to computational costs of
the particle filter, the second one to the order in which measurements are received by the
particle filter.

The number of particles needed to approximate a state depends on the dimension of
the state space. In fact, populating the state space for a state with dimension n requires
the number of particles to grow exponentially with n [4]. Real time execution of particle
filters limits the allowable computational costs and therefore the number of particles.
Handling this ‘curse of dimensionality’ can be done in various ways as will be explained in
this section.

Real time execution of particle filter may be complicated by out-of-sequence measure-
ments (OOSMs). OOSMs are measurements whose order of measuring is different from the
order in which measurements are processed by the particle filter. This typically happens
in setups with multiple sensors where transmission times or sensor data acquisition and
processing times vary. Ways to handle OOSMs are explained in this section as well.

5.5.1. Rao–Blackwellized Particle Filter

One way to handle the curse of dimensionality is by adopting a Rao–Blackwellized
particle filter. Imagine the state sequence x1:k gets partitioned into two smaller parts:
x1

1:k and x2
1:k. Now the posterior p(x1:k | z1:k) = p(x1

1:k, x2
1:k | z1:k) can be factorized as

follows [31]:
p(x1

1:k, x2
1:k | z1:k) = p(x1

1:k | z1:k) · p(x2
1:k | x1

1:k, z1:k). (20)

In Rao–Blackwellization, a structure of conditional independencies that is present
in many estimation problems is exploited for lowering computational costs of the filter.
In other words, once the first term on the right-hand side of (20) is known, it is easier to
compute the second term. It could for example be that the second term on the right-hand
side of (20) conditionally has linear models and Gaussian distributions, in which case the
integrals involved can be computed analytically [36]. In that case, usually a Kalman filter is
adopted for estimating p(x2

1:k | x1
1:k, z1:k) whereas the particle filter estimates p(x1

1:k | z1:k).
Therefore, in a Rao–Blackwellized particle filter, each particle estimates x1 and has a Kalman
filter that estimates x2 assuming the particle’s value for x1. A visual example of a non-
Gaussian pdf over two variables x1 and x2, that is Gaussian in case x1 is given, is shown in
Figure 8.

Figure 8. A non-Gaussian pdf that is conditionally Gaussian. More specifically, when knowing x1, x2

can be approximated by a Gaussian pdf. Notice x1 can be a bi-modal, non-Gaussian distribution if x2

is given, e.g., for x2 = 0.

Sensors 2021, 21, 438 23 of 28

The Rao–Blackwellized particle filter differs from the Kalman particle filters explained
in Section 5.4, where each particle was represented by a Kalman filter that estimates the
entire state x and no partitioning occurs.

This principle of the factorization in (20) can be generalized for states that are par-
titioned into more than two parts and for other estimators then the Kalman filter. Rao–
Blackwellized particle filter aim at only using particles where needed. For more mathemat-
ical backgrounds, the reader is referred to [36]. For an application-oriented explanation,
the reader is referred to [55]. Successful applications of Rao–Blackwellized particle filters
can be found in, e.g., [56] or [57].

5.5.2. Adaptive Particle Filter

Another way to handle the curse of dimensionality is to vary the number of particles
on the fly. Although varying the number of particles does not improve scalability, it is a
way to ensure the number of particles is kept as low as possible. The number of particles
directly affects the computational costs of the algorithm. The most popular way to do so is
proposed by [58]. The idea is to use a small number of particles in case the particles are
concentrated on a small part of the state space and an increased number of particles in
case the particle filter uncertainty increases. The number of particles is updated such that
with predefined probability the error between the true posterior and the sampled-based
approximation at every time step is less than ε. To avoid the need for more mathematical
details, an explanation in words is preferred over pseudo code. For implementation details,
the reader is referred to the code (adaptive_particle_filter_kld.py).

1. Sample a particle index proportional to its weight at time k− 1.
2. Propagate the particle sampled in step 1 using the process model.
3. Update the number of required particles. This is done by discretization of the state

space into bins and counting the number of bins that include at least one particle.
More bins containing particles means particles cover a larger part of the state space,
hence, whenever the propagated particle from step 2 falls in an empty cell, the number
of required particles is increased as described in [58].
While resampling, the first particles will most likely fall into empty bins hence
initially the number of required particles increases each time a particle is added.
Later, more and more propagated particles fall into bins that already contain particles
and the number of required particles will get updated less and less.

4. If the number of particles equals the number of required particles (or the maximum
number of particles), stop sampling new particles.

For details, the reader is referred to [58]. A computationally attractive alternative for
discretizing the entire state space in equally sized bins is the use of data structures that
partition the state space more efficiently, e.g., KD trees [59]. In general, the number of
particles will be increased in case the particles spread more and the number of particles
will be descreased in case the particles are closer together. Inspired by [28,58] introduces
an approach that is shown to be more efficient and simpler to implement.

1. Sample a particle index proportional to its weight using, e.g., multinomial resampling.
2. If the particle comes from a non-resampled bin, update the number of resampled bins,

set the bin to being resampled and updated the required number of particles similar
to [58].

3. If the number of particles equals the number of required particles (or the maximum
number of particles), stop sampling new particles.

A modified version of the adaptive particle filter explained above can be found in [60].
A simpler approach is changing the number of particles in a way that ensures the sum of
all particle likelihoods is fixed. This approach was taken in [61]. A survey that explains
various less popular alternatives is given in [29,43] compares some methods that vary
the number of particles on the fly. The works of [62,63] explain more recent variations of
adaptive particle filters inspired by [28,58].

Sensors 2021, 21, 438 24 of 28

Example 11. The running example includes an adaptive particle filter as proposed by [58]. In order
to investigate how the number of particles changes over time one simulation is done in which both
the standard and adaptive particle filter get the same measurements and initial set of particles for
estimating the robot pose over time.

Figure 9 shows the error in the x-position and the number of particles for both filters. The errors
are roughly the same, however, the adaptive particle filter after initialization has approximately
100 to 300 particles, whereas the standard particle filter has a constant number of 750 particles.
For reasons of completeness, the running example implements the adaptive particle filter proposed
in [61] as well as the one proposed by [58] that was evaluated in Figure 9. Figure 9 is generated by
running challenge5_adaptive_particle_filter.py

Figure 9. Example of how the adaptive particle filter achieves similar estimation accuracies (top) with
a much lower number of particles (bottom). Black: standard particle filter, red: adaptive particle filter.

5.5.3. Other Ways to Manage Computational Costs

Many other ways exist to handle the computational costs of the particle filter. This sec-
tion gives hints on further readings without going into details.

Depending on the type of particle filter, various parts of the computation can be done
in parallel. Implementation on graphics processing units enables reducing computation
time significantly, as is demonstrated in [24]. Parallel or distributed particle filters distribute
particles among different processing units. How to distribute (route) particles and how
much is gained for various routing policies is investigated in [64]. The work of [65]
investigates using multiple local particle filters, that are correlated and low dimensional,
in high dimensional problems using the phenomenon referred to as ’decay of correlations‘.
The result is referred to as block particle filter.

Besides centralized resampling, where particle generation and weight computation
can be done in parallel but resampling happens sequentially in a centralized computational
unit, resampling algorithms and architectures for distributed particle filters are proposed
in [66]. Here, the state space is partitioned into disjoint areas. The number of particles for
each area is being computed and resampling happens in parallel in each of the areas.

For applications involving sensors networks, a central fusion center that runs an indi-
vidual particle filter is not desirable for robustness, scalability and flexibility reasons [67].
For these problems, distributed particle filters are required, not only as a way to handle
computational costs. Computing likelihoods while limiting communication in sensor
networks requires likelihood consensus algorithms such as [68].

5.5.4. Out-Of-Sequence Measurements (OOSMs)

In all of the above, the implicit assumption was that measurements z1, z2, . . . , zk arrive
in the order in which they were recorded. In practice, however, this does not have to be
the case.

In case the last particle filter update step has been performed at some time t1, it is
complicated to incorporate ‘older’ measurements recorded at time t < t1. How to handle
OOSMs depends on many problem specific characteristics, such as: how often are OOSMs
expected? Is it acceptable to discard part of the measurement data? How much computation

Sensors 2021, 21, 438 25 of 28

time and effort can be put in handling OOSMs? Did the last update step include resampling?
Does the problem have characteristics that may help processing OOSM (more on that later)?

Example 12. Imagine the measurements in our running example are received from two different
sensors on the robot: a 2D laser range finder and a camera. The data acquisition and processing of 2D
laser data could be fast (e.g., few milliseconds) compared to the acquisition and processing of camera
images that can be orders of magnitude larger in terms of data size (e.g., tens of milliseconds). As a
result, a laser range finder measurement recorded a few milliseconds after a camera measurement
may arrive at the particle filter algorithm before the camera-based measurement arrives. The result
is an OOSM from the camera.

The simplest way of handling OOSMs would be to check timestamps of incoming mea-
surements and discard measurements older than the most recently processed measurement.
This solution is acceptable in case OOSMs are rare and the effect of discarding OOSMs on
the estimation accuracy is acceptable for the problem at hand. Due to its simplicity, this is
the most popular way of handling OOSMs for practical problems.

The brute force approach would be storing historic states and measurements and
redoing the estimation whenever an OOSM is received. This leads to increased and unpre-
dictable computational costs and increased memory requirements. As a result, this solution
is hardly ever used.

A pragmatic way to handle OOSMs could be to run the particle filter ‘in the past’:

1. Store all incoming measurements in a buffer, sorted on measurement acquisition time
2. Periodically check the measurement buffer, if a measurement is ε seconds old: process

the measurement. Incoming measurements older than ε seconds are discarded.
3. The most recent particle filter posterior will be at least ε seconds old, use the process

model to compute the estimate at the desired time whenever a more recent estimate
is required.

The parameter ε can be defined based on typical sensor processing and acquisition
times. This solution is simple and effective in case the process model is capable of delivering
accurate predictions ε s ahead.

Whenever no resampling has happened, various alternative solutions are available
for incorporating OOSMs. The approach of [69] proposes a way to deliver the optimal
solution obtained from in-sequence processing without storing measurements. Main draw-
back is the increased computational complexity to O(N3

s) or O(N2
s), depending on the

number of measurements received after the OOSM. In fact, real time execution of this
solution is realistic for lower dimensional problems with a limited number of particles.
Other, more heuristic based methods, like [70], can both lead to better or worse results then
the simple approach described above.

Computational complexity of algorithms handling OOSMs can often be reduced at the
expense of additional assumptions. The work of [71] offers a more efficient alternative to the
optimal solution of [64] by assuming a Gaussian posterior. In [72], mixed linear/nonlinear
state-space models are assumed such that Rao–Blackwellization can be used. Whether such
assumptions are realistic depends on the specific problem at hand. In general, it is rec-
ommended to start with one of the simpler approaches to handle OOSMs and increase
complexity of the solution whenever this is proven to be insufficient. The works of [69,72]
and [71] and the references therein are recommended in that case.

6. Conclusions

The particle filter is among the most popular state estimation algorithms since its
successful introduction in the early nineties [1]. Although the basics are well documented
and available in many implementation examples, understanding and implementing the
advancements made ever since is time consuming and non-trivial.

In an effort to present a single-entry point to those interested in applying particle
filters to real-world problems while exploiting many of the advancements made in the

Sensors 2021, 21, 438 26 of 28

last decades, this paper presented a hands-on tutorial. The code implementing the run-
ning example and many of the algorithms explained throughout this tutorial is publicly
available [10]. This combination of properties distinguishes this work from other scientific
works and open source repositories.

Author Contributions: J.E. wrote the manuscript and code, E.T. and R.v.d.M. reviewed the work
and contributed via discussions. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE proceedings

F (radar and signal processing). IET 1993, 140, 107–113.
2. Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P.J. Particle filters for positioning,

navigation, and tracking. IEEE Trans. Signal Process. 2002, 50, 425–437. [CrossRef]
3. Lopes, H.F.; Tsay, R.S. Particle filters and Bayesian inference in financial econometrics. J. Forecas. 2011, 30, 168–209. [CrossRef]
4. Thrun, S. Particle filters in robotics. In Proceedings of the Eighteenth on Uncertainty in Artificial Intelligence, Edmonton, AB,

Canada, 1–4 August 2002; pp. 511–518.
5. Pazilat Mahmut, J.L.; Fu, L. A Tutorial on Particle Filters for Fault Detection and Diagnosis of Hybrid Systems. Int. J. Control

Autom. 2017, 10, 109–120. [CrossRef]
6. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]
7. Doucet, A.; Johansen, A.M. A tutorial on particle filtering and smoothing: Fifteen years later. In Handbook of Nonlinear Filtering;

Oxford University Press: Oxford, UK, 2009.
8. Available online: https://github.com/orocos/orocos-bayesian-filtering (accessed on 17 December 2020) .
9. Available online: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python (accessed on 17 December 2020).
10. Available online: https://github.com/jelfring/particle-filter-tutorial (accessed on 17 December 2020).
11. Lundquist, C.; Sjanic, Z.; Gustafsson, F. Statistical Sensor Fusion: Exercises; Studentlitteratur AB: Lund, Sweden, 2015.
12. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); The MIT Press: Cambridge, MA,

USA, 2005.
13. Ristic, B.; Arulampalm, S.; Gordon, N. Beyond the Kalman Filter : Particle Filters for Tracking Applications; Artech House Boston:

Norwood, MA, USA; London, UK, 2004.
14. Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 53–82.

[CrossRef]
15. Cappé, O.; Godsill, S.J.; Moulines, E. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE

2007, 95, 899–924. [CrossRef]
16. Daum, F. Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 57–69. [CrossRef]
17. Fearnhead, P.; Künsch, H.R. Particle Filters and Data Assimilation. Annu. Rev. Statist. Appl. 2018, 5, 421–449. [CrossRef]
18. Candy, J.V. Bootstrap particle filtering. IEEE Signal Process. Mag. 2007, 24, 73–85. [CrossRef]
19. Djuric, P.M.; Kotecha, J.H.; Zhang, J.; Huang, Y.; Ghirmai, T.; Bugallo, M.F.; Miguez, J. Particle filtering. IEEE Signal Process. Mag.

2003, 20, 19–38. [CrossRef]
20. Wang, X.; Li, T.; Sun, S.; Corchado, J. A survey of recent advances in particle filters and remaining challenges for multitarget tracking.

Sensors 2017, 17, 2707. [CrossRef] [PubMed]
21. Rekleitis, I. A Particle Filter Tutorial for Mobile Robot Localization; Technical Report TR-CIM-04-02; H3A 2A7; Centre for Intelligent

Machines, McGill University: Montreal, QB, Canada, 2004.
22. Speekenbrink, M. A tutorial on particle filters. J. Math. Psychol. 2016, 73, 140–152. [CrossRef]
23. Blanco-Claraco, J.L.; Mañas-Alvarez, F.; Torres-Moreno, J.L.; Rodriguez, F.; Gimenez-Fernandez, A. Benchmarking Particle Filter

Algorithms for Efficient Velodyne-Based Vehicle Localization. Sensors 2019, 19, 3155. [CrossRef] [PubMed]
24. Hendeby, G.; Karlsson, R.; Gustafsson, F. Particle filtering: the need for speed. EURASIP J. Adv. Signal Process. 2010, 2010, 22.

[CrossRef]
25. Li, T.; Bolic, M.; Djuric, P.M. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal

Process. Mag. 2015, 32, 70–86. [CrossRef]

http://doi.org/10.1109/78.978396
http://dx.doi.org/10.1002/for.1195
http://dx.doi.org/10.14257/ijca.2017.10.4.10
http://dx.doi.org/10.1109/78.978374
 https://github.com/orocos/orocos-bayesian-filtering
 https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
 https://github.com/jelfring/particle-filter-tutorial
http://dx.doi.org/10.1109/MAES.2010.5546308
http://dx.doi.org/10.1109/JPROC.2007.893250
http://dx.doi.org/10.1109/MAES.2005.1499276
http://dx.doi.org/10.1146/annurev-statistics-031017-100232
http://dx.doi.org/10.1109/MSP.2007.4286566
http://dx.doi.org/10.1109/MSP.2003.1236770
http://dx.doi.org/10.3390/s17122707
http://www.ncbi.nlm.nih.gov/pubmed/29168772
http://dx.doi.org/10.1016/j.jmp.2016.05.006
http://dx.doi.org/10.3390/s19143155
http://www.ncbi.nlm.nih.gov/pubmed/31319632
http://dx.doi.org/10.1155/2010/181403
http://dx.doi.org/10.1109/MSP.2014.2330626

Sensors 2021, 21, 438 27 of 28

26. Douc, R.; Cappé, O. Comparison of resampling schemes for particle filtering. In Proceedings of the IEEE ISPA 4th International
Symposium on Image and Signal Processing and Analysis, Nanjing, China, 2–5 November 2005; pp. 64–69.

27. Hol, J.D.; Schon, T.B.; Gustafsson, F. On resampling algorithms for particle filters. In Proceedings of the IEEE Nonlinear Statistical
Signal Processing Workshop, Cambridge, UK, 13–15 September 2006; pp. 79–82.

28. Li, T.; Sattar, T.P.; Han, Q.; Sun, S. Roughening methods to prevent sample impoverishment in the particle PHD filter. In Proceed-
ings of the IEEE 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 17–22.

29. Straka, O.; Ŝimandl, M. A survey of sample size adaptation techniques for particle filters. IFAC Proc. Vol. 2009, 42, 1358–1363.
[CrossRef]

30. Li, T.; Sun, S.; Sattar, T.P.; Corchado, J.M. Fight sample degeneracy and impoverishment in particle filters: A review of
intelligent approaches. Exp. Syst. Appl. 2014. [CrossRef]

31. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin, Heidelberg, 2006.
32. Andrieu, C.; Doucet, A.; Holenstein, R. Particle Markov chain Monte Carlo methods. J. R. Stat. Soci. Ser. B Stat. Methodol. 2010,

72, 269–342. [CrossRef]
33. Martino, L.; Read, J.; Elvira, V.; Louzada, F. Cooperative Parallel Particle Filters for online model selection and applications to

Urban Mobility. Digit. Signal Process. A Rev. J. 2016, 60, 172–185. [CrossRef]
34. Yang, P. Efficient particle filter algorithm for ultrasonic sensor-based 2D range-only simultaneous localisation and mapping

application. IET Wirel. Sen. Syst. 2012, 2, 394–401. [CrossRef]
35. González, J.; Blanco, J.L.; Galindo, C.; Ortiz-de Galisteo, A.; Fernández-Madrigal, J.A.; Moreno, F.A.; Martínez, J.L. Mobile robot

localization based on Ultra-Wide-Band ranging: A particle filter approach. Robot. Auton. Syst. 2009, 57, 496–507. [CrossRef]
36. Doucet, A.; Godsill, S.; Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 2000,

10, 197–208. [CrossRef]
37. Maskell, S.; Gordon, N. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal

Process. 2002, 50, 174–188. [CrossRef]
38. Kong, A.; Liu, J.S.; Wong, W.H. Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 1994, 89, 278–288.

[CrossRef]
39. Bergman, N. Recursive Bayesian estimation: Navigation and tracking applications. Ph.D. Thesis, Linköping University,

Linköping, Sweden, 1999.
40. Martino, L.; Elvira, V.; Louzada, F. Effective sample size for importance sampling based on discrepancy measures. Signal Process.

2017, 131, 386–401. [CrossRef]
41. Nasir, A.A.; Durrani, S.; Kennedy, R.A. Particle filters for joint timing and carrier estimation: Improved resampling guidelines

and weighted bayesian cramer-rao bounds. IEEE Trans. Commun. 2012, 60, 1407–1419. [CrossRef]
42. Li, T.; Sattar, T.P.; Sun, S. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters.

Signal Process. 2012, 92, 1637–1645. [CrossRef]
43. Li, T.C.; Villarrubia, G.; Sun, S.D.; Corchado, J.M.; Bajo, J. Resampling methods for particle filtering: Identical distribution, a new

method, and comparable study. Front. Inf. Technol. Electron. Eng. 2015, 16, 969–984. [CrossRef]
44. Van Der Merwe, R.; Doucet, A.; De Freitas, N.; Wan, E. The Unscented Particle Filter; Technical Report; Cambridge University

Engineering Department: Cambridge, UK, 2000.
45. Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 1999, 94, 590–599. [CrossRef]
46. Karlsson, R.; Bergman, N. Auxiliary particle filters for tracking a maneuvering target. In Proceedings of the 39th IEEE Conference

on Decision and Control, Sydney, NSW, Australia, 12–15 December 2000; Volume 4, pp. 3891–3895. [CrossRef]
47. Zeng, N.; Wang, Z.; Zhang, H.; Kim, K.E.; Li, Y.; Liu, X. An Improved Particle Filter with a Novel Hybrid Proposal Distribution

for Quantitative Analysis of Gold Immunochromatographic Strips. IEEE Trans. Nanotechnol. 2019, 18, 819–829. [CrossRef]
48. Turgut, B.; Martin, R.P. Restarting Particle Filters: An Approach to Improve the Performance of Dynamic Indoor Localization.

In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–
4 December 2009; pp. 1–7. [CrossRef]

49. Murangira, A.; Musso, C.; Nikiforov, I. Particle filter divergence monitoring with application to terrain navigation. In Proceedings
of the 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 794–801.

50. MacLachlan, R.A.; Dubrawski, A. Applied Indoor Localization: Map-based, Infrastructure-free, with Divergence Mitigation and
Smoothing. Inf. Fusion 2010, 794, 801.

51. Tian, Q.; Wang, K.I.; Salcic, Z. A resetting approach for INS and UWB sensor fusion using Particle Filter for pedestrian tracking.
IEEE Trans. Instrum. Meas. 2019, 1, [CrossRef]

52. Fox, D.; Thrun, S.; Burgard, W.; Dellaert, F. Particle filters for mobile robot localization. In Sequential Monte Carlo Methods
in Practice; Springer: Berlin, Germany, 2001; pp. 401–428.

53. Van Der Merwe, R.; Doucet, A.; De Freitas, N.; Wan, E. The unscented particle filter. In Proceedings of the 2001 Neural
Information Processing Systems (NIPS) Conference, Vancouver, BC, Canada, 3–8 December 2001; pp. 563–569.

54. Zeng, N.; Wang, Z.; Li, Y.; Du, M.; Liu, X. Identification of nonlinear lateral flow immunoassay state-space models via particle
filter approach. IEEE Trans. Nanotechnol. 2012, 11, 321–327. [CrossRef]

55. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao–Blackwellized Particle Filters.
IEEE Trans. Robotics 2007, 23, 34–46. [CrossRef]

http://dx.doi.org/10.3182/20090706-3-FR-2004.00226
http://dx.doi.org/10.1016/j.eswa.2013.12.031
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1016/j.dsp.2016.09.011
http://dx.doi.org/10.1049/iet-wss.2011.0129
http://dx.doi.org/10.1016/j.robot.2008.10.022
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1049/ic:20010246
http://dx.doi.org/10.1080/01621459.1994.10476469
http://dx.doi.org/10.1016/j.sigpro.2016.08.025
http://dx.doi.org/10.1109/TCOMM.2012.022912.100559
http://dx.doi.org/10.1016/j.sigpro.2011.12.019
http://dx.doi.org/10.1631/FITEE.1500199
http://dx.doi.org/10.1080/01621459.1999.10474153
http://dx.doi.org/10.1109/CDC.2000.912320
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/GLOCOM.2009.5426067
http://dx.doi.org/10.1109/TIM.2019.2958471
http://dx.doi.org/10.1109/TNANO.2011.2171193
http://dx.doi.org/10.1109/TRO.2006.889486

Sensors 2021, 21, 438 28 of 28

56. Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM A factored solution to the simultaneous localization and mapping
problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Pittsburgh, PA, USA, 9–13 July 2005;
pp. 593–598 .

57. Elfring, J.; Appeldoorn, R.; Kwakkernaat, M. Multisensor simultaneous vehicle tracking and shape estimation. In Proceedings of
the IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2016; pp. 630–635.

58. Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Robotics Res. 2003, 22, 985–1003. [CrossRef]
59. Moore, A.W. An iNtoductory Tutorial on Kd-Trees; Technical Report 209; Carnegie Mellon University: Pittsburgh, PA, USA, 1991.

[CrossRef]
60. Soto, A. Self Adaptive Particle Filter. In Proceedings of the IJCAI’05 19th International Joint Conference on Artificial Intelligence,

Edinburgh, Scotland, 30 July–5 August 2005; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005; pp. 1398–1403.
61. Koller, D.; Fratkina, R. Using Learning for Approximation in Stochastic Processes. In Proceedings of the International Conference

on Machine Learning ICML, Madison, WI, USA, 24–27 July 1998; pp. 287–295.
62. Ly-Tu, N.; Le-Tien, T.; Mai, L. A new resampling parameter algorithm for Kullback-Leibler distance with adjusted variance and

gradient data based on particle filter. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST; Springer: Berlin, Germany, 2018; Volume 221, pp. 347–358. [CrossRef]

63. Dihua, S.; Hao, Q.; Min, Z.; Senlin, C.; Liangyi, Y. Adaptive KLD sampling based Monte Carlo localization. In Proceedings of the
30th Chinese Control and Decision Conference , CCDC, Shenyang, China, 9–11 June 2018; pp. 4154–4159. [CrossRef]

64. Zhang, X.; Mohamed, A.; Nguyen, L.; Gu, F. Performance analysis of parallel/distributed particle filters. In Proceedings of the
4th ACM International Conference of Computing for Engineering and Sciences, Kuala Lumpur, Malaysia, 6–8 July 2018; p. 5.

65. Rebeschini, P.; Van Handel, R. Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab. 2015, 25, 2809–2866.
[CrossRef]

66. Bolić, M.; Djurić, P.M.; Hong, S. Resampling algorithms and architectures for distributed particle filters. IEEE Trans. Signal Process.
2005, 53, 2442–2450. [CrossRef]

67. Hlinka, O.; Slučiak, O.; Hlawatsch, F.; Djurić, P.M.; Rupp, M. Likelihood consensus: Principles and application to distributed
particle filtering. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
7–10 November 2010; pp. 349–353. [CrossRef]

68. Hlinka, O.; Slučiak, O.; Hlawatsch, F.; Djurić, P.M.; Rupp, M. Distributed Gaussian particle filtering using likelihood consensus.
In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic,
22–27 May 2011; pp. 3756–3759. [CrossRef]

69. Zhang, S.; Bar-Shalom, Y. Out-of-Sequence Measurement Processing for Particle Filter: Exact Bayesian Solution. IEEE Trans.
Aerosp. Electro. Syst. 2012, 48, 2818–2831. [CrossRef]

70. Orton, M.; Marrs, A. Particle filters for tracking with out-of-sequence measurements. IEEE Trans. Aerosp. Electro. Syst. 2005,
41, 693–702. [CrossRef]

71. Li, M.; Yi, W.; Yang, Q.; Kong, L. An Efficient Particle Filter for the OOSM Problem in Nonlinear Dynamic Systems. In Proceedings
of the 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1890–1895. [CrossRef]

72. Berntorp, K.; Robertsson, A.; Arzen, K.-E. Rao–Blackwellized particle filters with out-of-sequence measurement processing.
IEEE Trans. Signal Process. 2014, 62, 6454–6467. [CrossRef]

http://dx.doi.org/10.1177/0278364903022012001
http://dx.doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/10.1007/978-3-319-74176-5_30
http://dx.doi.org/10.1109/CCDC.2018.8407846
http://dx.doi.org/10.1214/14-AAP1061
http://dx.doi.org/10.1109/TSP.2005.849185
http://dx.doi.org/10.1109/ACSSC.2010.5757533
http://dx.doi.org/10.1109/ICASSP.2011.5947168
http://dx.doi.org/10.1109/TAES.2012.6324663
http://dx.doi.org/10.1109/TAES.2005.1468758
http://dx.doi.org/10.23919/ICIF.2018.8455401
http://dx.doi.org/10.1109/TSP.2014.2365763

	Introduction
	Related Work
	Problem Statement
	Conceptual Problem Statement
	Mathematical Problem Statement
	Joint State Estimation and Model Selection

	Particle Filter
	Basic Idea
	Particle Filter Challenges
	Challenge I: Degeneracy Problem
	Challenge II: Sample Impoverishment
	Challenge III: Particle Filter Divergence
	Challenge IV: Selecting the Importance Density
	Challenge V: Real Time Execution

	Solutions to the Particle Filter Challenges
	Challenge I: Degeneracy Problem
	Resampling Schemes
	Resampling Algorithms

	Challenge II: Sample Impoverishment
	Roughening
	Auxiliary Particle Filters
	Resample Move Step
	Further Ways to Minimize Particle Degeneracy and Impoverishment

	Challenge III: Particle Filter Divergence
	Challenge IV: Importance Densities
	Extended Kalman Particle Filter
	Unscented Particle Filter

	Challenge V: Real Time Execution
	Rao–Blackwellized Particle Filter
	Adaptive Particle Filter
	Other Ways to Manage Computational Costs
	Out-Of-Sequence Measurements (OOSMs)

	Conclusions
	References

