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The glymphatic pathway in the optic nerve: did astronauts
already reveal signs of its existence?
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The recent study by Rohr et al.' that was published in npj
Microgravity aimed to provide a quantitative analysis of optic nerve
and optic nerve sheath (ONS) cross-sectional areas, and optic nerve
deviation, an indication of tortuosity, before and after long-
duration spaceflight (LDSF). High-resolution, T1-weighted sagittal,
and T2-weighted coronal magnetic resonance imaging (MRI) scans
were collected from ten astronauts undergoing ~6-month
missions on the International Space Station (ISS). Each astronaut
underwent MRI scanning before flying to the ISS and at five
recovery time points after return to Earth (approximately 3, 30, 90,
180, and 360 days after landing). On average, optic nerve cross-
sectional areas tended to decrease in their cohort immediately
post flight. However, only the 30 days postflight time point showed
a statistical difference from preflight, with an average reduction in
optic nerve cross-sectional area of —0.89 mm?. The exact reason for
this optic nerve area reduction is unclear. As noted by the authors,
although increased cerebrospinal fluid (CSF) pressure surrounding
the optic nerve can lead to axoplasmic flow stasis and resultant
optic disc edema, it is unclear how these changes may specifically
impact the optic nerve morphology during and after LDSF. They
also documented no significant increase in the ONS diameter
following LDSF except in one astronaut with unilateral grade 1
optic disc edema. This suggests that, in nine of the ten astronauts,
intracranial pressure was not pathologically elevated immediately
after spaceflight. The authors appropriately mention that the ONS
in astronauts may demonstrate hysteresis such that exposure to
ONS pressure beyond a certain point may result in failure of the
sheath to regress to normal following spaceflight and change its
response to subsequent pressure changes. It would be interesting
to know how many of the ten astronauts they report had previous
spaceflights prior to their MRI study that might have impacted
their ONS response to repeat extended microgravity exposure.

The authors suggest that a possible explanation for the
decrease in optic nerve cross-sectional area could be the role of
changes in the optic nerve vasculature'. They discuss a retro-
spective MR study by Kramer et al. published in 2012% In that
study, the authors observed a central area of T2 hyperintensity in
the optic nerve in 26 of the 27 astronauts (96%) with a history of
microgravity exposure®. As discussed below, we propose that this
T2 hyperintensity in the optic nerve reflects a glymphatic pathway
and that altered dynamics of the optic nerve glymphatic
circulation may contribute to the reduction in the optic nerve
cross-sectional area observed after spaceflight.

We raise the question of whether the previously reported T2
hyperintensity in the optic nerve of astronauts’ already
reflected signs of the existence of glymphatic flow of CSF into
the optic nerve. The “glymphatic system” is a recently

discovered brain-wide clearance system in which CSF enters
the brain via periarterial channels and exchanges with inter-
stitial fluid®. This fluid is then removed from the brain along
perivenous pathways and eventually cleared via the cervical
lymphatic vasculature®. CSF within the subarachnoid space
(SAS) is gradually forced into the Virchow-Robin spaces by the
combined effects of arterial pulsatility, respiration, slow
vasomotion, and CSF pressure gradients*®. Thereafter, CSF
passes into the dense brain parenchyma via perivascular
astrocytic aquaporin-4 (AQP4) water channels®.

The optic nerve, a white matter tract of the CNS consisting of
afferent axons of the retinal ganglion cells, is also surrounded by
CSF within the orbital SAS®. Recently, Mathieu et al.° provided
evidence to support the existence of a glymphatic pathway in the
optic nerve following tracer injection into the CSF of live mice.
Their findings indicated that CSF enters the optic nerve via spaces
surrounding blood vessels, bordered by AQP4-positive astrocytic
endfeet. We recently hypothesized that the forcing of perioptic
CSF into the perivascular spaces surrounding the central retinal
artery, as a result of long-standing microgravity fluid shifts, may
partly explain the optic disc edema observed in astronauts during
LDSF’. It is important to note that individual variations in ONS
anatomy and compliance may impact the end result of this
process’. The MR study of astronauts by Kramer et al.? seems to
support the possibility that the optic nerve communicates directly
with its SAS. In cases with an ONS kink, the authors documented a
significant increase in the diameter of the central area of T2
hyperintensity in the mid optic nerve. They also noted that the
kink produced an increase in ONS diameter suggestive of a
localized rise in CSF pressure. The authors hypothesized that a
kink may distort the complex system of arachnoid trabeculae,
pillars, and septa within the perineural SAS?. This ONS deformation
could lead to a restriction of anterograde CSF flow and a resultant
pressure gradient®. Furthermore, this process could result in the
proximal congestion of the perivascular space of the optic nerve
via communication with the perineural SAS?. In another study by
Riascos et al.® of 21 astronauts, MR examination documented a
central T2 hypointensity in the epicenter of the previously
described T2 hyperintensity in the optic nerve in all those
examined, including the two astronauts not yet exposed to
microgravity, suggesting the T2 hypointensity may have been
created by a central retinal vessel flow void artifact.

Considering the above, we believe that the reduction in optic
nerve cross-sectional area observed after spaceflight may result, at
least partly, from altered dynamics of the optic nerve glymphatic
circulation. Indeed, while prolonged exposure to microgravity may
predispose to an overload in the periarterial inflow of CSF into the
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optic nerve’, we hypothesize that in those astronauts without
pathologically elevated postflight CSF pressures within the ONS,
the rapid fluid redistribution upon return to Earth, which
consequently may lead to reduced CSF volume and pressure
within the ONS, may decrease CSF inflow along the optic nerve
periarterial glymphatic spaces. As a result, after landing on Earth,
these periarterial spaces may dramatically reduce and even
disappear, at least partly contributing to the observed decrease
in optic nerve cross-sectional area. In order to further explore and
validate this hypothesis, it would be interesting to measure
changes in the diameter of the central area of T2 hyperintensity in
the optic nerve before, as soon as possible after, and at several
more recovery time points following spaceflight.
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