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Extended transit compartment 
model to describe tumor delay 
using Coxian distribution
Jong Hyuk Byun1, In‑Soo Yoon2, Song Yi Lee3, Hyun‑Jong Cho3 & Il Hyo Jung1*

The measured response of cell population is often delayed relative to drug injection, and individuals 
in a population have a specific age distribution. Common approaches for describing the delay are to 
apply transit compartment models (TCMs). This model reflects that all damaged cells caused by drugs 
suffer transition processes, resulting in death. In this study, we present an extended TCM using Coxian 
distribution, one of the phase‑type distributions. The cell population attacked by a drug is described 
via age‑structured models. The mortality rate of the damaged cells is expressed by a convolution of 
drug rate and age density. Then applying to Erlang and Coxian distribution, we derive Erlang TCM, 
representing the existing model, and Coxian TCMs, reflecting sudden death at all ages. From published 
data of drug and tumor, delays are compared after parameter estimations in both models. We 
investigate the dynamical changes according to the number of the compartments. Model robustness 
and equilibrium analysis are also performed for model validation. Coxian TCM is an extended model 
considering a realistic case and captures more diverse delays.

Transit compartment models (TCMs) of perturbed tumor growth describe the delay process by which tumors 
are inhibited by drug  administration1–3. Apoptosis by drugs does not occur immediately but with a delay. The 
model consists of two parts, representing proliferating cells and damaged cell parts. Some proliferating cells 
enter transit processes that describe damaged cells’ delay by drug administration. The assumptions in TCMs 
are as follows. First, the mortality process is weakly considered before treatment. This indicates that proliferat-
ing cells are hardly eliminated without drug administration. To illustrate the cell proliferation process, logistic, 
exponential, and Gompertz models have been commonly used. Simeoni et al. proposed a new growth model that 
increases exponentially at the beginning and linearly increases after the  threshold2. The rate at which proliferat-
ing cells enter the damaged phases by the drug is formulated by first-order degradation or the method used in 
the indirect response  models4.

The other is that the nth discrete compartments express the transit processes damaged by drugs. TCMs have 
well described the delays such a tumor microenvironment (TME)-driven adaptive  mechanism5,6. Also, TCMs 
have been successfully applied to pharmacokinetics & pharmacodynamics (PKPD) to explain the change in 
dynamical behaviors caused by  drugs7–9. Existing TCMs account for each transit compartment with the same 
mean residence time (MRT)10,11. When the number of phases representing the damaged cells in the TCMs is n, 
the MRT of each phase is considered as 1/k1 , k1 representing MRT in each transit compartment (thus, total MRT 
n/k1 ). This phase is known as following Erlang  distribution12.

Our considerations are the development of the extended TCMs regarding dynamical flexibility of the delay 
process at the drug effect phase. For successful modeling, we considered an age-structured model for the prolif-
erating and damaged cells with the ages a depending on exposure by the drug. The model had explicit forms in 
place of age density using the Erlang and Coxian distributions among the phase-type  distributions13–15. One of 
these models is the existing model, called Erlang TCMs. The other is the extended model, called Coxian TCM. 
Erlang TCM describes the transit processes from one another compartment after drug administration. The latter 
demonstrates the transit processes and additionally involves a death process in each compartment, expressed 
by pi . Coxian TCM can reflect the realistic situation, such as different death of the cells of the same ages. This 
approach shows the flexible delays during treatment. Also, we investigate the heterogeneity of p, mean of pi’s, 
to describe delays in Coxian TCM compared to the number of the compartments. We expect Coxian TCM to 
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be applied to various areas such as pharmacology, infectious diseases, and viral and cell dynamics because the 
delayed effect of tumors can elaborately be reflected by drug administration.

For model comparison, we conduct an experiment study. Lapatinib is an orally bioavailable, small-molecule 
TKI approved for use in the treatment of breast cancer  patients16. This blocks the signal transduction of the 
PI3K and MAPK pathways, resulting in the induction of cell apoptosis and the inhibition of  proliferation17,18. A 
mathematical model for the anti-proliferative activity of lapatinib quantitatively analyzed its cell cycle-dependent 
cytostatic and cytotoxic effects in 2D-cultured HER2-overexpressing MCF10A  cells8. More recently, a PKPD 
model incorporating In vitro cellular growth dynamics in a 2D-cultured HER1-mutant glioblastoma cell line 
(SF268), pharmacokinetics, and in vivo glioblastoma growth was developed to optimize lapatinib dosing sched-
ules for the treatment of glioblastoma  patients9. However, there have been no studies on a PKPD model integrat-
ing In vitro cellular growth kinetics/dynamics in 3D-cultured breast cancer cell lines, in vivo systemic and local 
tissue pharmacokinetics, and in vivo breast cancer growth of lapatinib.

Our study aims to represent a delayed process in which damaged tumor cells are diminished by drugs. This 
model includes the transit process of cells and additionally considers a process reflecting the sudden death of 
the cells using Coxian distribution. Compared with the existing TCM model, this model enables the detailed 
expression of tumor fluctuations.

Results
Derivation of the existing TCM: Erlang TCM. The master equation for the perturbed tumor model 
shown in “Methods” section is as follows:

associated with u(0) = u0 , y(t) =
∫∞
0

φ(a, t)dt , and w(t) = u(t)+ y(t) . Herein, f is a density function, and u 
and y are proliferating and damaged cells, respectively. kin and kout represent the growth and mortality functions. 
From Eq. (1), if f is from the point distribution (Dirac delta function), that is, f (a) = δ(a− T) , then

which represents a delay differential equation (DDE). This equation represents that all individuals had the same 
residence time T. Next, we derive an explicit system of Ordinary differential equations (ODEs) using Erlang 
distribution on density function f. This resulting system of ODEs is called Erlang TCM that describes the transi-
tion process from one compartment to  another1,19. Systemically, once a drug is administered, some of tumor cells 
enter the damaged phases. If they cascade a multiple-step process with a chain of compartments, it demonstrates 
the delays motivated by the pathway of signal  transduction10. To induce this TCM from Eq. (1), we consider an 
age density of fn in place of f, and fn is given by

which is a density of Erlang distribution. Because fn is differentiable, we have the following relations:

If we define En as En(t) = (kin ∗ fn)(t)/k1 , n ≥ 2 , then by differentiating En we have the following system of 
ODEs as follows:

provided with Ei(0) = 0 , i = 1, 2, . . . , n . If yi is the damaged tumor cells with age i, then the total damaged cells 
y is considered by y = y1 + y2 + · · · + yn . Let yi = Ei . Then, the Erlang TCM was derived as

satisfying dy/dt = d(y1 + y2 + · · · + yn)/dt = kout(C, u)− k1En . The schematic diagram of the resulting Erlang 
TCM is shown in Fig. 1a.

(1)

{

du
dt = kin(u,w)− kout(C, u)
dy
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Derivation of Coxian TCM. Unlike Erlang TCM we derive above, TCM using Coxian distribution has the 
following systemic situation. Some of the damaged cells cascade multiple-step transitions with a chain of com-
partments and the others at age i are eliminated directly. This situation seems natural because all cells are not 
only systemically eliminated by the transition process, but also they happen sudden death by the change in the 
cell  cycle20. To formulate the processes, we consider a phase-type distribution, which is the distribution of time-
based on a continuous-time Markov process written in the form of a transition rate matrix, as follows:

where S is n× n matrix of a transition rate matrix. S0 = −S1 and 1 represent an n× 1 column vector, with 
every element being 1. Then, the distribution function of t is given by F(t) = 1− α · exp(St) and its density f as 
f (t) = α · exp(St)S0 , with probability row vector α21. As a direct consequence, we have

where f = (f1, f2, . . . , fn) . For example, if α = 1 and S = −� , then f becomes the density of the exponential dis-
tribution. In addition, if α = (1, 0, 0, . . . , 0) and S is an n× n matrix with diagonal entries −k1 and superdiagonal 
entries k1 with f1(0) = 1 , then we derived the Erlang distribution. The Coxian distribution is a generalization 
of the Erlang distribution, as follows: α = (1, 0, 0, . . . , 0) and S is an n× n matrix with diagonal entries −ki , 
i = 1, 2, . . . , n and superdiagonal entries piki , i = 1, 2, . . . , n− 1 , where f1(0) = 1 . Since a problem of modeling 
using Coxian distribution is no analytic form of the density function, the direct approach using differentiation 
is unavailable, unlike Erlang distribution. Instead, they satisfy the following relations above, and the model 
approach is as follows. Let fi , i = 1, 2, . . . , n be the ith component of the Coxian density. By the consideration 
above, we have

As shown in Eq. (1), we define the total damaged cells y and kout ∗ f  as y = y1 + y2 + · · · + yn and 
(kout ∗ f )(t) =

∑n
i=1(kout ∗ fi)(t) , respectively. Herein, yi ’s are the number of damaged cells at age i. 

We assume pn = 0 and (1− pn)kn = · · · = (1− pi−1)ki−1 = · · · = (1− p1)k1 . This assumption is nec-
essary for the convolution form kout ∗ fi to induce a similar relation between density functions. Let 
yi = (kout ∗ fi)/[(1− pi) · ki], i = 1, 2, . . . , n . Then the rate of change yi can be calculated and given by

These considerations give rise to the following system of ODEs:

In addition, this approach satisfies

Q =

(

0 0

S0 S

)

,

(3)
df

dt
= f · S,

df1

dt
= −k1f1,
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dt
= pi−1ki−1fi−1 − kifi , i = 2, . . . , n.

dyi
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Figure 1.  Schematic diagram of TCMs modeled by distributions. u and yi ’s represent the proliferating cell and 
damaged cell by drug administration. kin and kout represent the growth andmortality. (a) Erlang distribution. 
The transit rate is given by k1 . (b) Coxian distribution. The transit rate is given by k1 · p . Additional elimination 
rate (1− p)k1 is derived by the process of model formulation.
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To further simplify the model, we substitute the average values in place of pi and ki , that is, p = 1
n

∑n
i=1 pi and 

k1 =
1
n

∑n
i=1 ki . Then these approaches satisfy the assumptions. Substituting them into Eq. (4), associated with 

the first equation in Eq. (2). Then, Eq. (1) gave rise to the following system of ODEs:

which considers the death probability of some cells during one another transition. The schematic diagram of the 
resulting Coxian TCM is shown in Fig. 1b.

Growth and mortality functions. Simeoni and colleagues developed a well-known perturbed growth 
(tumor) model, which is a special type of Erlang  TCM2. We call this TCM as Simeoni TCM. Their model was 
applied to describe the delays for capturing tumor data. They presented the growth function kin and mortality 
function kout given by

Note that for a sufficiently large φ (more than 10), kin is approximately exponential growth with a linear rate �0u 
less than or equal to the threshold wth = �1/�0 and non-linear growth with a rate of (�1 · u)/w otherwise. They 
described two growth rates in a single form for computational reasons. Also, they considered the number of the 
compartments of the damaged cells as four to capture the delay process.

Pharmacokinetic model. The pharmacokinetic (PK) model was from the Magni study and was also 
applied to Simeoni  TCM7. PK model consists of two compartments as follows:

where q1 and q2 are the amounts of drug in the plasma and peripheral compartments, respectively, and V is the 
volume in plasma. C(t)(ng ·ml−1) is the concentration, and v(t) is the bolus administration ( ng · kg−1 ). Such 
obtained drug concentration C is applied to Eqs. (2) and (5) for the comparison between Simeoni and Coxian 
TCMs with n = 4.

Parameter values. Parameter estimations and model simulations are performed in both TCMs based on 
the data set. Data set consists of tumor size vs. time profile, as shown in mouse 1507. The tumor was implanted 
on day 0 with an initial size of 0.0121g, and the drug was administered on day 13 and injected every day for 10 
days. We reproduce their study and plot PK profile detail, as shown in Fig. 2. The parameter values are the same 
except for p: For the PK model, k01 = 1.6 , k21 = 0.2353 , k12 = 0.1699 and V = 1028 and for per injection time 

d(y1 + y2 + · · · + yn)

dt
= kout(C, u)−

n
∑

i=1

(1− pi)kiyi = kout(C, u)−

n
∑
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(kout ∗ fi)(t).
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(
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w
)φ) 1
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and kout(C, u) = η · C · u.
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dq1
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C(t) =
q1(t)
V ,

Figure 2.  (a) 10 times dosing regimen per day from day 13 is plotted. (b) PK profile are plotted. Red one 
represents observed data after final injection. (c) PK profile in the  study7 is reproduced.
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tin , q1(tin) = 4.5× 107 . tin represents dosing timing for 10 injections. For the tumor model, initial tumor size 
w0 = 0.0121 , �0 = 0.25 , �1 = 0.4603 , φ = 20 , η = 0.7816 and k1 = 0.2859 . All simulations were conducted by 
Matlab 2021a using the ODE45, ODE solver based on Runge-Kutta method and lsqnonlin function, a nonlinear 
optimization for parameter estimation. The only difference between both models is p and the estimated value is 
0.44268.

Comparison between Simeoni and Coxian TCMs. PK Profile using Eq. (6) is shown in Fig.  2. All 
parameters are from the  study7. The predicted curve captures the bi-exponential behavior that describes the typi-
cal PK of anticancer therapy. Simeoni and Coxian TCMs with the number of the compartments of the damaged 
cells, n = 4 , are compared shown in Fig. 3a. Their dynamics look similar, but we change the y-axis as log-scale 
and time axis to see the difference, as shown in Fig. 3b. After day 13 that is the first injection, inhibition of the 
tumor cells is seen, and the drug effect phase is considered around day 13 to 30. We measure normalized root 
mean square error (n-RMSE). n-RMSE is given by 

√

∑n
i=1(yi − ŷi)2/n/(ymax − ymin) . yi is the ith observation 

and ŷi is the corresponding value given the model. Also, the number of the data is n = 10 , and ymax and ymin are 
the maximum and minimum values given measured data. Measured n-RMSEs for Erlang and Coxian TCMs are 
0.1062 and 0.0745, respectively, showing that Coxian TCM fits data more reliable than Simeoni TCM. To explore 
the influence of p, twenty samples of p are chosen and plotted in Fig. 3c. If p = 1 , then Coxian TCM is exactly 
Simeoni TCM. Notably, some dynamics are over that of Simeoni TCM, indicating stronger delays. The various 
values of p are investigated and plotted for the change of delays in Fig. 4a. p = 0 shows the biggest inhibition 
in tumor weight during the drug effect period. Our expectation is that if p increases, then delays are stronger, 
but not likely from the simulation results. The change of p does not assure in regular sequence in multiple dos-
ing regimens. We investigate the effect of p depending on the number of the compartment of damaged cells, n. 
In Fig. 4, the values of p are differently given, and the change of n is explored in the figures. In Simeoni TCM, 
n determines the magnitude of the tumor delay. That is, if n is increasing, then the delay is stronger shown in 
Fig. 4f. However, in the Coxian model, p also affects the change of the delay but not follows regularly as n shown 
in Fig. 4b–e. Rather the change of p captures various delays. Thus, the sophisticated delays can be expressed by 
tuning p. Consequently, the change of p may induce heterogeneous dynamical changes of delays in multiple 
dosing regimens, as shown in Fig. 4. Here, heterogeneous dynamics mean that their delay effect is not followed 
by regular sequences. This phenomenon is also seen in Fig. 4a,d. The Coxian model approach, combined with 
the number of the compartments and variation of p, enables more diverse tumor inhibition cases upon different 
dosing regimens.

We explore the differences between p and the number of compartments for a single injection. In this case, 
lapatinib data is used to clarify the relationship. Single drug concentration with control, 5 µM and 10 µM was 
injected into the tumor cells. We measured the tumor size at specific times after injection. The detailed process 
of in vitro experiment is shown in “Materials” section. Modeling is provided with the growth function whose 
form is given by a logistic growth kin = �0 · (1− w/umax)u,w = u+ y1 + y2 + · · · + yn, since the final tumor 
size is limited. The mortality function and others are the same. We call Erlang TCM with the logistic growth 
as logistic TCM. The number of the damaged compartments, n, is four in logistic TCM and five in Coxian 
TCM. Drug concentration does not change as time elapses because short time and no elimination process is 
considered. From control data using logistic TCM, �0 and umax are estimated by 0.12 and 0.0066. Using two data 
sets of 5 µM and 10 µM, k1 and η are estimated by 0.1682 and 0.0035. In Coxian TCM, all parameters are the 
same, and p is estimated by 0.9. Data fit with data variance is shown in Fig. 5a. We measure n-RMSE for each 
case (control, 5 µM and 10 µM). Also, the number of the data per the case is eight. For control case, n-RMSE is 
0.1032. For 5 µM, 0.2385 and 0.227 for logistic and Coxian TCM, respectively. For 10 µM, 0.0815 and 0.0774 
in turn, showing that fit quality of Coxian TCM is better. We compare the change of p and the number of the 
compartments. Fixing n = 4 in both models, p is variated from zero to one with interval 0.2. In Erlang TCM, 
the number of the compartment is changed. Delays positively follow the number of the compartments and the 

Figure 3.  Simeoni and Coxian TCMs are compared. The number of the damaged cells is n = 4 and the 
total number of the cell compartments is five in both TCMs. All parameters are the same. (a) Both dynamics 
look similar in the linear scale. (b) Log-scale is applied and time is limited from day 10 to day 30. Dynamics 
conducted by Coxian TCM show less delay in the drug effect phase. (c) Twenty samples of p are collected and 
dynamics are plotted. Some of dynamics show stronger delay.
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increase in p, showing that magnitude of delay seems similar, but the change of p enables various dynamics, as 
shown in Fig. 5b,c. This result shows that variation of p enables more delicate delay expression than the change 
of the number of the compartments. Coxian TCM reflects the realistic situation considering the sudden death 
of the cells during the transit processes with the help of p and enables that the cells of the same age do not have 
the same death. Consequently, Coxian TCM is the extended model that can capture various delays and provide 
realistic death processes of the damaged cells.

Equilibrium upon constant drug infusion. We investigate the change of the equilibrium according to 
constant drug infusion. If the drug is infused, given by C , the slight change of infusion C triggers the difference 
in equilibrium, as shown in Fig. 6. This depends on the ratio �0/η , and does not change in variations of initial 
tumor sizes shown in Fig. 6a,b. Equilibrium depends on the value of p shown in Fig. 6c. Non-zero equilibrium 

Figure 4.  (a) For the change of delay, dynamics of Coxian TCM are investigated by various p’s. The number of 
the compartments of the damaged cells is n = 4 . p = 1 represents Erlang TCM. (b)–(e) Delays are differently 
determined by the number of the compartments depending on p. Delay is not followed as regular sequences. (f) 
In Erlang TCM, tumor delay follows the regular sequence.

Figure 5.  (a) Data fit using Erlang and Coxian TCMs with logistic growth. Parameters are estimated for three 
data set using Erlang TCM with n = 4 . In Coxian TCM with n = 5 , all parameters are the same as Erlang TCM 
and p = 0.9 . (b) In logistic TCM, dynamics are presented by the change of the number of the compartments. 
Control case is excluded. (c) In Coxian TCM with n = 4 , p is variated from 0 to 1 with interval 0.2 and delays 
are compared to (b).
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is decreasing as p is increasing when C is less than �0/η . We also present the steady-state analysis at equilibrium 
points mathematically. Proofs are shown in Supplementary Information.

Proposition 1 Let kin(u,w) = �0u/
(

1+
(

�0
�1
w
)φ) 1

φ and kout(C, u) = η · C · u from Eq. (5). If drug C(t) is admin-
istered through an infusion, yielding a (steady state) constant concentration C = C . If (i) C > �0/η, then the only 
equilibrium point is u = y1 = · · · = yn = 0 . (ii) C < �0/η , then two equilibrium points are u = y1 = · · · = yn = 0 
and u = �1

ηC+ (ηC)2

k1
·
1−pn

1−p

 , y1 = ηC u
k1

 , . . . , yi = ηCu
k1

pi−1 , i = 1, 2, . . . , n , and

(iii) C = �0/η , then the infinite equilibrium points are u = w

1+
η
k1
C·

1−pn

1−p

≤ �1

�0+
η
k1
C�0·

1−pn

1−p

.

Corollary 1 If kin = �0

(

1− u
wmax

)

u and kout are the same, then if (i) C ≥ �0
η

 , then there is a unique equi-
librium zero; (ii) C < �0

η
 , then u = wmax

�0−ηC
�0

 , yi = η
k1
Cupi−1 , i = 1, 2, . . . , n− 1 , yn =

η
k1
Cu , and 

w =
(

1+
η
k1
C
(

1+
1−pn−1

1−p

))

u.

Proposition 2 Let kin be Simeoni, or the logistic growth rate. Then, the equilibrium point u = y1 = · · · = yn = 0 
is unstable if C < �0

η
 and globally asymptotically stable if C > �0

η
.

Proposition 3 Let kin be Simeoni, or the logistic growth rate. If C < �0
η

 , then the non-zero equilibrium points are 
asymptotically stable for n = 2, 3, 4.

Discussion
The responses of cell populations have attracted attention in PKPD. TCMs describe delays or aging processes in 
the cell population after drug administration. In Erlang TCM, all damaged cells are eliminated through transit 
processes, and a system of ODEs expresses the processes. We develop the generalized TCM using an age-struc-
tured model, and a stochastic process using a survival function is applied to the transit process as a convolution 
of the distribution and degradation rate. Thus, we provide two delayed cell death processes by Erlang and Cox-
ian distributions. From Erlang distribution, existing TCMs are derived. Another is Coxian TCM. This model 
considers that some of the cohorts could fall into sudden death. This model covered Erlang TCM and captured 
various delay processes using the probability p. The relation between p and the number of the compartments 
is compared in terms of delays in dynamics. Coxian TCM may reflect the flexible delay effect of the drug at the 
effect phase. In addition, equilibrium analysis is conducted to capture Coxian TCM’s characteristics determined 
by p. p affects the change in the nonzero equilibrium points.

One assumption was used for the Coxian model in the model establishment. (1− p1)k1 = · · · = (1− pn−1)kn 
means that the instant death rate is the same in all compartments. If this assumption does not hold, the model 
becomes more complicated as the number of the compartments increases. This disadvantage is shown in phase-
type distribution except for Erlang distribution. To overcome this shortcoming, non-Markovian distribution 
such as Mittag-Leffler (ML) distribution can be  applied22. There is no explicit closed-form of density function 
f or a differential equation to interact with the relationship in the ML distribution. However, fractional deriva-
tives can be derived by using the appropriate Laplace transformation. Finding the biological significance of this 
model is the subject of the next study.

w =

{

u+
∑n

i=1 yi =
(

1+
η
k1
C ·

1−pn

1−p

)

u, if p < 1
(

1+ nC η
k1

)

u, if p = 1.

Figure 6.  (a) �0/η is 4032.3 which represents threshold. Constant drug infusions are given by 4032.2. w0 ’s 
are variated from 0.001 to 0.00329 with the constant intervals. Drug infusion is 4032.2. Tumor has non-
zero equilibrium. (b) Drug infusion rate is 4032.4 with the same initial tumor size in (b). Tumor has zero 
equilibrium. (c) Initial tumor size w0 is fixed by 0.0121. The equilibrium points are changed according to the 
value of p. Ten points of p are chosen from uniform distribution [0, 1]. The equilibrium points are decreasing as 
p is increasing when C is less than �0/η.
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Prediction after the model formulation is considered. Once the number of compartments is determined in the 
TCM model, parameters can be estimated for the data. Here, two problems may arise. The first is the prediction 
of a new dosing regimen after a dosing regimen, and the second is the dynamics when the drug concentration 
is changed. It is a problem of determining the number of compartments in TCMs. The compartments can be 
chosen to reflect the complex processes within the cells of the drug. For example, in the case of an antibody-drug 
conjugate, it undergoes a receptor-mediated endocytosis process after binding to a target antigen. The drug has a 
mechanism of inhibiting cancer through early endosome, late endosome, and lysosomal degradation processes, 
 etc23,24. At least three compartments are required. Determination of the number of compartments is biologi-
cally important, but in most cases, it is used to fit responses such as changes of the cells. From the model point 
of view, the Coxian model somewhat compensates for this shortcoming by using p. We conducted the study 
using the average value p instead of pi , but it seems that it will be possible to generate results if we use pi after 
determining the number of biological compartments. The second point is predicting dynamics when changing 
the dose concentration. In an experiment using lapatinib, both models did not fit well when predictions were 
conducted for 20 µM after using estimated parameters that fit the data using the concentration of control, 5, 
10 µM. For this reason, the drug effect is saturated and does not change above some concentrations. To reflect 
this, the drug effect model can be applied to TCM. However, this study focused on studying the diversification 
of the delay effect using p. Despite the advantage of TCM using Coxian distribution, determining all pi values is 
challenging for estimating values due to the number of parameters depending on the transit compartments. In 
this study, this difficulty is resolved by the mean value p of pi , but this approach loses the nature of each transit 
compartment and only reflects the indirect elimination process directly. Each transit compartment may have a 
different MRT in a real situation, but it is unlikely to measure all experimentally. However, inferring some pi ’s 
could be valuable in the essential transit processes.

Several Erlang TCMs with various growth and mortality functions are widely used in  PKPD2,7,10,  epidemics25,26, 
and other research  areas27–29. In PKPD, they measured tumor growth and the effect of anticancer treatment using 
the TCMs, associated with parameter estimation of data. In epidemics, Erlang TCMs are used for determining 
latent and infectious periods or vaccination periods. Also, Erlang TCM is applied to measure time elapse for cell 
infection and virus production, describe the interactions between the immune system and tumor cells taking into 
account distributed time delays, or compare population models with delayed continuous-time Markov chains. 
Using Erlang distribution, they obtain a simplistic result regarding time delays. However, these approaches could 
miss realistic time delays in the  phase30. Thus, we believe that TCM obtained by Coxian distribution could be an 
alternative to compensate for the limitation.

Materials and methods
Materials. A lapatinib-free base was purchased from LC Laboratories (Woburn, MA, USA). RPMI 1640 
(containing 300 mg/L of L-glutamine, 25 mM HEPES, and 25 mM NaHCO3) cell culture medium, penicillin-
streptomycin, and fetal bovine serum (FBS) were obtained from Gibco Life Technologies, Inc. (Carlsbad, CA, 
USA). All other reagents were of analytical grade and were purchased from commercial sources.

Incubation time and cell seeding density‑dependent proliferation assay. Incubation time- and 
cell seeding density-dependent cell proliferation profiles were tested in SK-BR-3 (human breast adenocarci-
noma) cells using an MTS-based  assay31,32. SK-BR-3 cells were purchased from the Korean Cell Line Bank 
(Seoul, Korea). A mixture of RPMI 1640, heat-inactivated FBS (10%, v/v), and penicillin-streptomycin (1%, v/v) 
was used as the complete cell culture medium for SK-BR-3 cells. SK-BR-3 cells were seeded onto 96-well plates 
(at a density of 2.0 · 103 , 5.0 · 103 , and 1.0 · 104 cells per well) and incubated for 0, 24, 48, and 72 h at 37◦C ( n = 5 
in each group). Cells were treated with CellTiter 96� AQueous One Solution Cell Proliferation Assay Reagent 
(Promega Corp., Fitchburg, WI, USA) and processed according to the manufacturer’s  protocol31. After incubat-
ing for 1 h at 37◦C , the absorbance values at 490 nm were estimated using a plate reading spectrophotometer 
(SpectraMax i3; Molecular Devices, Sunnyvale, CA, USA)33.

Anticancer activity test in 3D spheroid model. The spheroid growth inhibition study of lapatinib 
was assessed using a 3D spheroid model of SK-BR-3 cells. SK-BR-3 cells were cultured in an AggreWellTM400 
24-well plate (STEMCELL Technologies Inc., Vancouver, BC, Canada). Cells ( 2.4 · 105 cells) prepared in RPMI 
1640 (containing 300 mg/L of L-glutamine, 25 mM HEPES, and 25 mM NaHCO3), including heat-inactivated 
FBS (10%, v/v), and penicillin-streptomycin (1%, v/v), were applied to each well and spheroids were formed 
according to the manufacturer’s  directions34. The cell culture media were gently replaced every other day for 96 
h. The spheroids were treated with lapatinib (5, 10, and 20 µM) and incubated at 37◦C in complete cell culture 
medium ( n = 30 in each group). After cultivation for 0, 1, 2, 3, 6, 24, 48, and 72 h, the shape of SK-BR-3 cell 
spheroids was observed by inverted microscopy (Eclipse TS100-F; Nikon, Tokyo, Japan). The volume (V, mm3 ) 
of the spheroid was calculated using the following formula: 0.5 · (long diameter) · (short diameter)235.

Methods. Mathematical formulation: age-structured based perturbed tumor model using survival func-
tion. Consider a cohort of cells, a group of cells of age in an interval of length �a . Then, we obtain the Mcken-
drick-von Foerster equation as follows:

(7)
{

du
dt = kin(u,w)− kout(C, u)
∂φ
∂t + ∂φ

∂a · da
dt = −µ(a,C)φ(a, t),



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10086  | https://doi.org/10.1038/s41598-022-13836-4

www.nature.com/scientificreports/

where u = u(t) is the number of proliferating cells with initial u(0) = u0 and C = C(t) is the drug concentration. 
The total number of damaged cells at time t is given by y(t) =

∫∞
0

φ(a, t)da . w = w(t) is the total number of cells 
given by w(t) = u(t)+ y(t) . We expect that the unit of age is the same as that of time and so assume da/dt = 1 . 
In addition, if the mortality rate µ(a,C) depends only on age a, then µ(a,C) = µ(a) . This assumption is reli-
able because the age depends on the duration after the drug C is injected. At a = 0 , the boundary condition is 
φ(0, t) = kout(C, u) , meaning that damaged tumor cells of age zero are created by tumor size and drug concentra-
tion. The initial condition of φ is given by φ(a, 0) = 0 , indicating that all tumors without drug administration are 
proliferating cells. Under these conditions, time t represents the time since administration of the drug.

By the method of characteristics, the existence and uniqueness of the solution for Eq. (7) was proved, which 
can be solved as  follows36:

which holds that φ(a, t) = kout(C(t − a), u(t − a))e
∫∞
0

µ(α)dα for all t ≥ 0 . In addition, we integrated the second 
equation in Eq. (7) over the age a. Then

The mortality rate µ(a) is related to the probability of survival. To see this, we consider a stochastic process. Let 
S(a) = Pr{T ≥ a} be the probability of survival from zero to age a. Then, S(a)y denotes the number of cells from 
the cohort with age a, and the number of cells that die in �a is given by S(a+�a)y − S(a)y = −µ(a)S(a)y�a . 
Dividing both sides by y�a and �a → 0 . Then,

Because the initial value of S was the probability of survival until age 0, we assumed S(0) = 1 . Solving this 
equation, we found S(a) = exp(−

∫∞
0

µ(α)dα) , whose derivative defined the probability density function f of 
Pr{T < a} , such that f (a) = −dS/da = µ(a)S(a) . This indicates the probability that a cohort dies within age a. 
Thus, µ can be interpreted as the death hazard rate. Substituting Eq. (8) into Eq. (9) together with f, we derived 
the following equation:

where ∗ denotes the convolution operator. Thus, we obtained the master equation for the perturbed tumor model 
as follows:

associated with u(0) = u0 , y(t) =
∫∞
0

φ(a, t)dt , and w(t) = u(t)+ y(t) . The mortality (elimination) rate of 
collection of damaged cells y was delayed and given in the form of convolution.

Data availibility
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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