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Background: The heart undergoes structural and functional changes in

response to injury and hemodynamic stress known as cardiac remodeling.

Cardiac remodeling often decompensates causing dysfunction and heart

failure (HF). Cardiac remodeling and dysfunction are significantly associated

with cigarette smoking. Although cigarette smoking has declined, the roles of

nicotine and novel tobacco products (including electronic cigarettes and heat-

not-burn tobacco) in cardiac remodeling are unclear. In this perspective, we

present evidence demonstrating maladaptive cardiac remodeling in nicotine-

exposed mice undergoing hemodynamic stress with angiotensin (Ang)-II

infusion and review preclinical literature linking nicotine and novel tobacco

products with cardiac remodeling and dysfunction.

Methods: Adult, male C57BL/6J mice were exposed to room air or chronic,

inhaled nicotine for 8 weeks. A subset of mice was infused with Ang-II via

subcutaneous osmotic mini-pumps during the final 4 weeks of exposure. Left

ventricular structure and function were assessed with echocardiography.

Results: Chronic, inhaled nicotine abrogated Ang-II-induced thickening of the

left ventricular posterior wall, leading to reduced relative wall thickness. Ang-II

infusion was associated with increased left ventricular mass index in both air-

and nicotine-exposed mice.

Conclusions: These changes suggest a phenotypic shift from concentric

hypertrophy to eccentric hypertrophy in nicotine-exposed, hemodynamically-

stressed mice which could drive HF pathogenesis. These findings join a

growing body of animal studies demonstrating cardiac remodeling and

dysfunction following nicotine and electronic cigarette exposure. Further

exploration is necessary; however, clinicians and researchers should not

overlook these emerging products as potential risk factors in the pathogenesis

of cardiac remodeling and associated diseases including HF.
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nicotine, electronic cigarettes (E-cigarettes), heat-not-burn (HNB), cardiac
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Introduction

Following injury or hemodynamic stress, the heart

undergoes extensive structural and functional changes known

collectively as cardiac remodeling (1). The mechanisms driving

cardiac remodeling are complex and involve cellular death,

inflammation, oxidative stress, modified energy and calcium

homeostasis, neurohormonal activation, altered contractile

machinery, fibrosis and extracellular matrix remodeling,

and cardiomyocyte hypertrophy with geometric changes

(2). Cardiac remodeling is concerning due to its propensity

to decompensate toward cardiac dysfunction and disease

states including myocardial infarction and heart failure (HF)

(2, 3). Cardiac remodeling, cardiac dysfunction, and HF are

significantly associated with both current and former cigarette

smoking, as well as second-hand smoke exposure (4–11).

Although cigarette smoking has declined worldwide (12), the

cardiovascular risks of using novel tobacco products, including

electronic cigarettes (13–15) and heat-not-burn tobacco (16),

are poorly established.

Electronic cigarettes generate vapor by heating liquid

containing nicotine, vegetable glycerin, propylene glycol,

flavoring additives, and other chemicals. In contrast, heat-

not-burn tobacco products generate nicotine-containing vapor

by heating a cigarette-like tobacco plug to sub-combustion

temperatures; this process aims to provide a similar experience

to cigarette smoking while reducing exposure to toxic inhalants

(17). Studies comparing nicotine emissions between electronic

cigarettes, heat-not-burn tobacco products, and combustible

cigarettes have been inconclusive (18–21). Clinically, differences

in nicotine delivery between various products are likely

insignificant due to nicotine dose titration by consumers (22).

A recent cohort study of over 5 million Korean adults

found that short-term cardiovascular disease risk was reduced

in patients who switched from cigarette smoking to novel

tobacco product use (23). While this finding is promising from

a public health perspective, patients switching from cigarette

smoking to novel tobacco product use had 1.7 times greater

risk of developing cardiovascular disease in comparison to

patients who quit nicotine and tobacco products entirely (23).

Due to concerns surrounding the shifting nicotine and tobacco

consumption landscape, representatives of the American Heart

Association, World Heart Federation, American College of

Cardiology, and European Society of Cardiology issued a joint

statement calling for further study of the cardiovascular health

effects of nicotine and novel tobacco product use (24).

Despite the well-established relationship between cigarette

smoking and cardiovascular pathology, the roles of nicotine

and novel tobacco product use in these conditions are unclear.

Epidemiological studies of novel tobacco products currently

face challenges including the long time-course of cardiovascular

disease pathogenesis and confounding caused by previous

and current use of other tobacco products in study subjects

(25). One analysis of Waves 1 through 5 (2013-2019) of the

Population Assessment of Tobacco and Health (PATH) Study

found reduced risk of HF, myocardial infarction, and stroke

in exclusive electronic cigarette users vs. combustible tobacco

users (26); a second analysis of this cohort found no differences

in cardiovascular disease events between combustible tobacco

users, those who transitioned to electronic cigarette use or dual-

use, and those that quit tobacco products (27). Authors of both

studies, however, indicate significant limitations surrounding

short follow-up duration in relation to the disease endpoints

(26, 27). Other clinical trials using acute endpoints, which

have been limited by small sample sizes, have noted potential

risk factors for cardiac remodeling and dysfunction including

elevated systolic and diastolic blood pressure, vascular stiffness,

endothelial dysfunction, oxidative stress, and pro-thrombotic

effects with the use of electronic cigarettes containing various

nicotine concentrations (14). Notably, a previously healthy 19-

year-old patient developed signs and symptoms of acute cardiac

dysfunction during an episode of electronic cigarette or vaping

use-associated lung injury (28). Small clinical studies have also

identified elevated blood pressure, vascular stiffness, oxidative

stress, and acute impairment of systolic and diastolic cardiac

function in users of heat-not-burn tobacco (29–31).

A growing body of preclinical literature implicates nicotine

and novel tobacco products in cardiac remodeling and

dysfunction, highlighting concerning connections which have

not been identified in early clinical studies of these devices.

In this Perspective, we discuss that mounting preclinical

evidence and present original data demonstrating maladaptive

cardiac remodeling driven by chronic, inhaled nicotine in a

mouse model.

Materials and methods

Animals and exposure model

Adult, male C57BL/6J mice (8–12 weeks old) from Jackson

Laboratory (Bar Harbor, ME) were housed in a temperature

(21 C) and humidity-controlled facility under a 12-h dark/light

cycle, fed standard mouse chow (iOS Teklab Extruded Rodent

Diet 2019S; Envigo, Huntingdon, United Kingdom) and water

ad libitum. Nicotine-exposed mice were housed in a nicotine

inhalation chamber (La Jolla Alcohol Research, La Jolla, CA),

while air-exposed mice were housed outside of the chamber in

the same room. All procedures were approved by the Louisiana

State University Health Sciences Center Institutional Animal

Care and Use Committee (#3674).

Nicotine vapor was produced by bubbling air through

a gas-washing bottle containing free base nicotine (Sigma-

Aldrich, St. Louis, MO), as previously described (32, 33). The

concentrated nicotine vapor was then diluted with air and
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evenly distributed to each chamber at a flow rate of 7 to

8 L/min. Flow rate was adjusted to achieve plasma cotinine

levels (approximately 600 ng/mL), comparable to those observed

in human combustible cigarette and novel tobacco product

users (34–36). Nicotine exposure followed a 12 h on/12 h off

schedule, overlapping with the dark cycle. After 4 weeks of

exposure, a subset of mice was implanted with subcutaneous

osmotic mini-pumps (Alzet Model 1004; Durect Corporation,

Minneapolis, MN) containing angiotensin-II (Ang-II, Sigma-

Aldrich) for infusion at a dose of 450 ng/kg per min for a

duration of 4 weeks while maintaining either nicotine- or air-

exposure.

Echocardiography and analysis

B-mode and M-mode echocardiographic assessment was

performed using the Vevo 3,100 Imaging System with a 30-

MHz probe (VisualSonics, Toronto, Canada) at the conclusion

of the 8-week exposure period under 1–1.5% isoflurane

anesthesia. Heart rate was maintained between 450 and 550

beats per min. Ultrasound images were processed using the

leading-edge technique in Vevo LAB on a minimum of

3 cardiac cycles to calculate group averages. Corrected left

ventricular (LV) mass was calculated as 0.8424 x [(LVID;d

+ LVPW;d + LVAW;d)3–LVID;d3], where LVID;d was LV

internal diameter at diastole, LVPW;d was LV posterior wall

thickness at diastole, and LVAW;d was LV anterior wall

thickness at diastole. Systolic measurements are denoted as

LVID;s and LVPW;s. LV mass index (LVMI) was calculated

by dividing corrected LV mass by tibia length at 8 weeks.

Relative wall thickness (RWT) was calculated as 2 x (LVPW;d

/ LVID;d).

Data are displayed as mean ± SEM. Findings

were analyzed by two-way ANOVA using GraphPad

Prism 9 (GraphPad Software, San Diego, CA). A

Tukey–Kramer post hoc test for multiple comparisons

between means was performed when interactions were

present on two-way ANOVA. P < 0.05 was considered

statistically significant.

Chronic, inhaled nicotine drives
maladaptive cardiac remodeling in
hemodynamically-stressed mice

Cardiac dysfunction, eventually progressing to HF, occurs

as a result of poor compensation following injury (such

as myocardial infarction) or hemodynamic stress (such

as volume or pressure overload). Cardiac hypertrophy is

one mechanism that maintains cardiac function following

exposure to these stresses. The compensatory phase of cardiac

hypertrophy can be described using LaPlace’s Law, which

states that:

Wall Stress =
Pressure x Radius

2 x Wall Thickness
(1)

In this theoretical model, parallel deposition of sarcomeres

in a process called concentric hypertrophy increases LV wall

thickness and decreases chamber diameter, which normalizes

wall stress in response to elevated LV pressure (37). In response

to increased volume, the LV walls may become thinned

through series deposition of sarcomeres with dilatation of

the LV chamber in a process called eccentric hypertrophy

(37). Hypertrophic changes eventually become maladaptive,

however, leading to impaired function and worsened pathology

(37, 38). The mechanisms underlying transition from adaptive

cardiac remodeling to maladaptive cardiac remodeling are

poorly understood and remain an active area of research with

potential ramifications in the treatment of cardiac hypertrophy

and HF (39).

In this study, C57BL/6J mice were exposed to room air or

inhaled nicotine for 4 weeks. A subset of mice was infused with

Ang-II via osmotic mini-pumps during an additional 4-weeks

exposure period. LVPW;s (1.32± 0.03mm, n= 19) and LVPW;d

(0.93± 0.02mm, n= 19) in Air+Ang-IImice were significantly

increased vs. both Air mice (LVPW;s: 1.16 ± 0.03mm, n = 22,

P < 0.001; LVPW;d: 0.75 ± 0.02mm, n = 22, P < 0.0001) and

Nicotine+ Ang-II mice (LVPW;s: 1.18± 0.03mm, n= 19, P <

0.01; LVPW;d: 0.83± 0.03mm, n= 19, P< 0.05). There were no

significant differences in LVPW;s and LVPW;d betweenNicotine

+ Ang-II mice and Nicotine mice (LVPW;s: 1.15± 0.02, n= 23;

LVPW;d: 0.78 ± 0.02, n = 23) (Figures 1A,B). There were also

no significant differences in LVID;s and LVID;s between any of

the groups (Figures 1C,D).

These findings of impaired compensatory remodeling in

a model of nicotine inhalation are consistent with studies

using alternative nicotine exposure routes. Maternal nicotine

exposure (100µg/mL in drinking water during gestation) in

rats reduces ejection fraction (EF), LVAW;s and LVPW;s in

offspring via DNA methylation of cardiac-specific genes (40).

Nicotine delivered by osmotic mini-pump at 6 mg/kg/day

or 12 mg/kg/day in Sprague-Dawley and Long-Evans rats

reduced heart length and heart weight, but did not change

thickness of the LV, right ventricle (RV), or septal walls

(41). Induction of pressure overload by transverse aortic

constriction in ghrelin knockout mice induced elevations in

heart weight indexed to tibial length, LVAW thickness, and

LVPW thickness; treatment of this model with nicotine tartrate

salt dissolved in the drinking water abrogated these changes

(42). Rats subjected to LVAW myocardial infarction after 7-

days of treatment with 1.75 mg/day of nicotine via patch

were reported to have reduced LVAW thickness and increased
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FIGURE 1

Chronic, inhaled nicotine drives maladaptive cardiac remodeling in mice undergoing hemodynamic stress. (A,B) Inhaled nicotine abrogates

angiotensin (Ang)-II-induced left ventricular (LV) posterior wall thickening at systole and diastole (LVPW;s and ;d). (C,D) Neither Ang-II nor

nicotine inhalation a�ect LV chamber diameter (LVID;s and ;d). (E) Ang-II increases LV mass indexed to tibia length (LVMI). (F) Ang-II increases

relative wall thickness (RWT) in air-exposed mice only. (G) Inhaled nicotine exposure causes a shift from concentric to eccentric hypertrophy

during hemodynamic stress which may exacerbate LV wall stress and promote decompensation based upon LaPlace’s Law. (H,I) Neither Ang-II

nor nicotine a�ect LV function measured by fractional shortening and ejection fraction. N = 19–23 per group. Data are displayed as mean ±

SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (two-way ANOVA with Tukey-Kramer post hoc test); #### indicates a main e�ect of

Ang-II (P < 0.0001, two-way ANOVA); ¶indicates a main e�ect of nicotine (P < 0.05, two-way ANOVA). Figure 1G was created with

BioRender.com.
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dilatation of the LV chamber vs. mice that did not receive

nicotine (43).

There was a main effect of Ang-II (P < 0.0001) to

increase LVMI in both air-exposed and nicotine-exposed mice

(Figure 1E). There was also a main effect of nicotine (P < 0.05)

leading to a reduction of LVMI (Figure 1E). In contrast, RWT

was increased in Air+ Ang-II mice (P < 0.0001 vs. Air), but not

Nicotine + Ang-II mice (P = 0.416 vs. Nicotine) (Figure 1F).

These changes suggest three distinct groups: absent remodeling

in Air and Nicotine mice, concentric hypertrophy in Air+Ang-

II mice, and eccentric hypertrophy in Nicotine + Ang-II mice

(44). Concentric and eccentric hypertrophy are both clinically

correlated with HF (45). HF incidence is greater in patients

with eccentric hypertrophy than in patients with concentric

hypertrophy (45). Additionally, concentric hypertrophy is

associated with relative preservation of cardiac function (HF

with preserved EF, HFpEF) vs. eccentric hypertrophy (HF with

reduced EF, HFrEF) (45). Matrix metalloproteinase (MMP)

activation, leading to wall thinning and LV dilatation, is

thought to play a mechanistic role in eccentric hypertrophy and

HFrEF (44, 46, 47). Another study using osmotic delivery of

both nicotine and Ang-II in mice reported increased MMP-2

activity, increased heart weight indexed to body weight, and

dilatation of the aorta providing further support for our findings

indicating a shift toward eccentric hypertrophy in mice exposed

to inhaled nicotine while infused with Ang-II (48). Furthermore,

cigarette smoke exposure upregulated MMP-9 and inhibited

adaptive remodeling in a rat model of volume overload, leading

to eccentric hypertrophy and impaired ventricular function,

indicating overlap in the mechanisms of nicotine- and cigarette-

induced pathology (49).

These findings, when considered in the context of LaPlace’s

Law, suggest that nicotine exposure induces a shift from

concentric to eccentric hypertrophy during hemodynamic

stress which may exacerbate LV wall stress and promote cardiac

decompensation (Figure 1G). It is, however, important to

acknowledge that Ang-II infusion is a model of hypertension

and cardiac remodeling which does not progress to HF in

mice. We found no significant differences in echocardiographic

measurements of cardiac function (EF and fractional shortening,

FS) between Air, Air + Ang-II, Nicotine, and Nicotine+Ang-II

mice (Figures 1H,I). Future studies must explore additional

models of hemodynamic stress which progress to cardiac

dysfunction (such as transverse aortic constriction or

myocardial ischemia-reperfusion injury) to better comprehend

the role of nicotine in compensatory remodeling.

Discussion

Our study and others provide evidence of impaired cardiac

compensation in animal models of nicotine exposure. Nicotine

is of particular interest as the primary biologically active

component of novel tobacco products; however, emissions

from these devices contain hundreds of additional chemicals

creating complex interactions. At present, there have been

no independent studies of the cardiac effects of heat-not-

burn tobacco in animals. Studies conducted by researchers

affiliated with Philip Morris International, a tobacco company

and producer of the IQOS heat-not-burn system, reported

reduced atherosclerosis, LV remodeling and dysfunction, and

cardiac gene changes in female Apolipoprotein E knockout mice

exposed to heat-not-burn aerosol vs. cigarette smoke (50, 51).

Preclinical evidence of cardiac remodeling and dysfunction

following electronic cigarette exposure is, in contrast, more

robust (Table 1).

Exposing Apolipoprotein E knockout mice to 12 weeks

of electronic cigarette vapor containing 2.4% nicotine caused

extensive cellular changes in cardiomyocytes including

shrunken nuclei (indicative of apoptosis), abnormal myofibrils

in the cytoplasm, mitophagy, mitochondrial DNA lesions,

and accumulation of lipids and reactive oxygen species (52).

These cardiomyocyte changes resulted in cardiac dysfunction

including reduced FS and EF (52). C567BL/6J mice fed high

fat diet and exposed to 12 weeks of electronic cigarette vapor

with 2.4% nicotine showed reduced FS and EF associated with

cardiomyopathy-like cellular changes on electron microscopy

of the ventricle (53). Cardiomyocytes from mice exposed

to electronic cigarette vapor with 2.4% nicotine exhibited

increased apoptosis, increased oxidative stress, and reduced

AMPK phosphorylation; these in vivo and ex vivo findings were

absent in mice exposed to electronic cigarette vapor with 0%

nicotine (53).

In C57BL/6J mice, 60 weeks of inhalation exposure to

electronic cigarettes containing 24 mg/mL of nicotine resulted

in thickening of the LVAW and LVPW which were comparable

to 60 weeks of exposure to 3R4F research cigarettes (54).

These changes in LV chamber dimensions were associated with

increased heart weight indexed to body weight, superoxide

production in the cardiac tissue, and cardiovascular dysfunction

(54). Treatment of Sprague-Dawley rats with irbesartan, an

Ang-II type 1 receptor (AT1R) antagonist, ameliorated cardiac

hypertrophy, fibrosis, reactive oxygen species accumulation,

inflammation, and LV dysfunction induced by 28 days of 0.6

mg/kg of nicotine delivered by intraperitoneal injection (55).

This nicotine exposure model also exacerbated LV dysfunction

and infarct size in Langendorff-perfused hearts undergoing ex

vivo ischemia-reperfusion injury (55, 56). Three months of

exposure to electronic cigarette vapor containing 20.2 mg/mL

of nicotine in male, adolescent FVB (Susceptible to the Friend

leukemia virus B) mice induced LV systolic and diastolic

dysfunction which were not present in adult mice or female,

adolescent mice (57).

In addition to changes in the LV, nicotine and novel tobacco

products induce changes in pulmonary circulation and RV

remodeling. We have previously shown that chronic, inhaled
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TABLE 1 Summary of animal studies demonstrating cardiac structural and functional changes associated with nicotine and novel tobacco products.

Ref. Species Model Finding

LV N/A C57BL/6 (Adult, ♂) 8 wks inhaled nic± 4 wks Ang-II

infusion

Concentric→ Eccentric hypertrophy

(40) Sprague-Dawley (PND1, ♂/♀) Nic in H2O of pregnant dams during

gestation

↓ EF, ↓ LVAW, and LVPW in offspring

(41) Sprague-Dawley and Long-Evans

(Adult, ♂/♀)

2 wks nic infusion ↓HW, ↓HL

(42) Ghrelin-KO C57BL/6 (Adult, ♂) 12 wks transverse aortic constriction±

nic tartrate salt in H2O

↓HW, ↓ LVAW, and LVPW after transverse

aortic constriction

(43) Sprague-Dawley (Adult, ♂) 1 wk nic patch+ LVAWmyocardial

infarction

↓ LVAW, ↑ LV dilatation after myocardial

infarction

(48) C57BL/6 (Adult, ♂) 4 wks nic infusion± 4 wks ang II

infusion

↑HW, ↑ Cardiac MMP-2, ↑ Aortic dilatation

(52) ApoE-KO C57BL/6 (Adult, ♂) 12 wks e-cig (2.4% nic) inhalation Cardiomyocyte abnormalities, ↓ EF and FS,

↑ ROS

(53) C57BL/6 (Adult, ♂) 12 wks e-cig (2.4% nic) inhalation±

HFD

Cardiomyocyte apoptosis, ↓ EF and FS, ↑

ROS

(54) C57BL/6 (Adult, ♂) 60 wks e-cig (24 mg/mL nic) inhalation ↑HW, ↑ LVAW and LVPW, ↑ ROS, ↓

Vascular function

(55, 56) Sprague-Dawley (Adult, ♂) 4 wks nic intraperitoneal injection± I/R

and oral irbesartan

↑ Cardiac hypertrophy and fibrosis, ↑ infarct

area, ↑ ROS, ↑ Inflammation, ↓ LV function

after I/R attenuated by irbesartan

(57) FVB Mice (Adolescent and Adult,

♂/♀)

12 wks e-cig (20.2 mg/mL nic)

inhalation

↑ Collagen I and III, ↓ LV systolic and

diastolic function in adolescent ♂ only

RV (32, 33) C57BL/6 (Adult, ♂) 8 wks inhaled nic± 8 wks losartan

infusion

↑ RVSP, ↑ RV wall thickness, ↑ RV dilatation

abrogated by losartan

(58) α7-nAChR-KO C57BL/6 (Adult,

♂/♀)

8-12 wks inhaled nic ↑ RVSP, ↑ RV wall thickness, ↑ RV dilatation,

↓ Vascular function in wildtype ♂ only

(59) C57BL/6 (Adult, ♂) 24 wks heated e-cig (24 mg/mL nic)

inhalation

↑ RV wall thickness, ↓ RV function, ↑

Systemic inflammation

Ang, angiotensin; ApoE, Apolipoprotein E; E-cig, electronic cigarette; EF, ejection fraction; FS, fractional shortening; FVB, susceptible to Friend leukemia virus B; HFD, high-fat diet; HW

and HL, heart weight and length; I/R, myocardial ischemia/reperfusion injury; LV, left ventricle; LVAW or PW, LV anterior or posterior wall thickness; MMP, matrix metalloproteinase;

Nic, nicotine; nAChR, nicotinic acetylcholine receptor; PND, post-natal day; ROS, reactive oxygen species; RV, right ventricle; RVSP, RV systolic pressure.

nicotine exposure causes pulmonary hypertension associated

with RV remodeling, elevated RV brain-type natriuretic peptide,

and increased expression of angiotensin-converting enzyme

in the RV, but not LV (32). These changes are abrogated

by treatment with losartan, a specific AT1R antagonist (33).

Nicotine-induced pulmonary hypertension, RV remodeling, and

vascular dysfunction are ameliorated by α7 nicotinic cholinergic

receptor knockout, and are absent in female mice (58). The

pathogenesis of pulmonary hypertension induced by Sugen and

hypoxia also involves α7 nicotinic cholinergic receptor-mediated

cross-talk between cardiomyocytes and cardiac fibroblasts,

leading to RV fibrosis (60). Treatment of cardiac fibroblasts

isolated from the RV, but not the LV, with cigarette smoke

extracts or 600 nM of nicotine stimulated fibroblast proliferation

(61). Mice exposed to 6 months of heated electronic cigarette

liquid containing 24 mg/mL of nicotine developed significant

RV wall thickening and RV dysfunction associated with

extensive changes in systemic inflammation (59).

This study is limited by the inclusion of a single nicotine

dose and exposure duration. The dose- and time-response

relationships between nicotine and maladaptive cardiac

remodeling have not been established. The effect of nicotine

on other cardiovascular parameters (including heart rate, skin

temperature, and blood pressure), however, exhibits a flattened

response with moderate doses achieving maximal effects (62).

An expanding number of studies, including ours, demonstrate

nicotine-associated cardiac remodeling and dysfunction

using numerous dosages, exposure durations, routes of

administration, and animal models. This suggests complex

relationships which warrant examination in future studies.

Cigarette smoking is strongly associated with cardiac

remodeling and dysfunction (4–11). Early clinical studies of
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novel tobacco products have shown promising reductions in

cardiovascular diseases when compared to cigarette smoking

(23, 26, 27). Despite this, caution must be exercised due to the

prolonged disease course of cardiovascular pathology in relation

to the short history of novel tobacco products. Clinical studies

using acute endpoints have reported cardiovascular changes

which may predispose patients to the development of cardiac

remodeling and dysfunction (14). Additionally, a growing body

of preclinical evidence has linked nicotine and novel tobacco

product exposure with significant cardiac remodeling and

dysfunction in animal models. These findings are particularly

concerning due to novel tobacco product use among young,

never smokers which may lead to future cigarette smoking

(63). Further exploration is necessary; however, clinicians and

researchers should not overlook nicotine and novel tobacco

product use as potential risk factors in the pathogenesis

of cardiac remodeling and associated diseases including HF.
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