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Background. SPTSSA encodes the small subunit A of serine palmitoyltransferase. It catalyzes the formation of sphingoid long-
chain base backbone of sphingolipids. Its role in glioma prognosis and tumor-infiltrating immune cells remains unclear.
Methods. We analyzed SPTSSA expression and association with clinical prognosis using GEPIA and CGGA database. Then,
GSEA was performed to identify relevant biological functions of SPTSSA. The correlations between SPTSSA expression and
tumor immune infiltrates were investigated using CIBERSORT and TIMER. Finally, IHC and IF were performed to confirm
the value of prognosis and the correlation with immune infiltration. Results. SPTSSA expression was significantly upregulated
in diffuse glioma compared to normal tissues and associated with poor survival in GEPIA and CGGA database. Then, we
identified biological processes and signaling pathways associated with SPTSSA expression. The result showed that SPTSSA
enriched in the GO term like oxidative stress. Finally, we showed that SPTSSA expression was significantly associated with
tumor-infiltrating immune cells and overall survival via IHC. Conclusion. These findings suggest that SPTSSA expression might
be used as a prognostic biomarker for glioma and potential target for novel glioma therapy.

1. Introduction

In adults, in the central nervous system, the glioblastoma
multiforme (GBM) is known to be the most prevalent form
of malignancy. Representing almost 15% of all brain tumors,
it has an incidence of 3.4 per 100,000 [1–3]. Eighty percent
of GBMs is primary (de novo) GBMs and mainly occurs in
older patients; the remaining GBMs are secondary GBMs
derived from lower-grade astrocytoma or oligodedrogliomas
and mainly occur in younger patients. GBM is an aggressive
neoplasm; if untreated, patients have a median survival of 3
months [4]. The current standard treatments include surgi-
cal resection, chemotherapy with temozolomide, and radio-
therapy [5]. With a median survival level of 12-14 months,
the prognosis of GBM remains poor despite the advances
in radiotherapy and surgery. Less than 5% of patients survive
longer than 5 years after diagnosis [6–8]. Novel GBM treat-
ments with improved clinical outcomes are urgently needed.

Cancer immunotherapy takes advantage of the body’s
own immune system to eradicate tumor cells [9, 10]. Cur-

rent GBM immunotherapy approaches include checkpoint
inhibitor treatment, adoptive cell therapy, dendritic-cell-
based therapy, and peptide vaccination [11, 12]. Because
the immune system plays a key role in the formation and
establishment of tumors, a deep understanding of tumor
microenvironment is essential to elucidate tumor-immune
interactions and develop effective immunotherapy for
GBM. Previous studies suggest that both tumor-associated
macrophages (TAMs) and tumor-infiltrating neutrophils
(TINs) could affect the treatment outcome and overall sur-
vival in GBM [13–16]. However, comprehensive analysis of
various immune cell subtypes of GBM is lacking.

With the rapid development of various techniques for
gene expression analysis and accumulation of large gene
expression databases on clinical samples, bioinformatics
analysis plays a significant role in screening and identifica-
tion of candidate biomarkers for various diseases including
cancers [17–19]. Bioinformatics not only provides data for
identification of functionally differentially expressed genes
(DEGs) for cancer diagnosis and prognosis but can also infer
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the percentage of tumor-infiltrating immune cells from gene
expression profiles [20, 21]. Finally, IHC result confirmed
that SPTSSA was a novel biomarker associated with the infil-
trating immune cells.

In the current study, we used bioinformatics analysis on
GEPIA and CGGA databases and identified SPTSSA expres-
sion correlating with the prognosis of glioma patients. We
further determined the correlation of SPTSSA expression
with tumor-infiltrating immune cells using CIBERSORT,
TIMER, and IHC. Our data provide rationale for future clin-
ical and experimental studies of SPTSSA in GBM.

2. Material and Methods

2.1. GEPIA Dataset Analysis.We used Gene Expression Pro-
filing Interactive Analysis (GEPIA) (http://gepia.cancer-pku
.cn/), an interactive web server to identify cancer types that
showed differential expression of SPTSSA gene between can-
cerous and normal tissues. Among cancer types that demon-
strated differential expression of SPTSSA gene, we analyzed
the association of SPTSSA expression and overall survival.

2.2. Clinical Information and the CGGA mRNA Matrix. In
this study, the glioma samples obtained from the CGGA
network (http://www.cgga.org.cn) numbering 1018 were
included. The respective clinicopathological information
and the informed consent for all these samples were
obtained. The institutional review board of the Tiantan Hos-
pital approved this study. To ascertain the differences in the
SPTSSA expression and the survival value, an analysis was
conducted initially. Besides, the mRNAseq_325 (Illumina
HiSeq 2000 or 2500) and the mRNAseq_693 (Platform: Illu-
mina HiSeq) datasets were also downloaded for further
investigations. From the total number of 1,018 glioma sam-
ples comprising the two datasets, 693 samples were from
mRNAseq_693, and 325 samples were from the mRNA-
seq_325. For batching and normalizing the two mRNA
matrices, the limma and Sva packages were utilized.
Table 1 enumerates the 749 completed clinical information
contained in the clinicopathological characteristics of the
patients received from the CGGA databases. The R software
was used to conduct the gene expression and the survival
analyses (version 3.6.2).

2.3. Gene Set Enrichment Analysis (GSEA). To determine the
statistical significance of a previously outlined set of genes
and the presence of consistent differences concerning two
biological states, researchers utilize a computational method
like GSEA [22, 23]. In this research, GSEA produced a pre-
liminary list that classified the genes based on their associa-
tion with the SPTSSA expression. Moreover, it elaborates on
the remarkable differences between the survival of low- and
high-SPTSSA groups.

In every analysis, gene set permutations were performed
repetitively for 1000 times. We created a phenotype label
based on the SPTSSA’s expression level. Furthermore, we
used the normalized enrichment score (NES) and nominal
p value to categorize the enriched pathways in every pheno-

type [24]. Significantly enriched gene sets occurred at a dis-
covery rate of jNESj > 1 and ðFDRÞ < 0:05.

2.4. Tumor-Infiltrating Immune Cell Analysis Using
CIBERSORT. CIBERSORT is a gene expression-based ana-
lytical tool for characterizing immune cell composition
(http://cibersort.stanford.edu). Using CIBERSORT, we cal-
culated the percentage of infiltrating immune cells in glioma
tissues. Wilcox test was used to analyze the difference
between SPTSSA high- and low-expression groups. R lan-
guage survival package was used to determine the relation-
ship between infiltrating immune cells and overall survival.

2.5. TIMER Database Analysis. Tumor Immune Estimation
Resource (TIMER, http://cistrome.shinyapps.io/timer/) is a
web server for comprehensive analysis of tumor-infiltrating
immune cells. Using TIMER database, we further validated
the correlation between SPTSSA expression and tumor-
infiltrating immune cells.

2.6. Sample Collection. The SPTSSA expression analysis uti-
lized IHC to assess the glioma tissues of 35 patients on par-
affin-embedded, formalin-fixed slides. These samples were
collected from the Affiliated Hospital of Nantong University
from 2004 to 2014. Using these tissues, the TMA was con-
structed through the Tissue Microarray System (Quick-
Ray, UT06, Unitma, Seoul, South Korea) based on the
approach mentioned previously. The clinicopathological
information obtained included the differentiation grade, his-
tological type, age, and sex. All patients in the study signed
and issued a written informed consent. The Affiliated Hospi-
tal of Nantong University’s Human Research Ethics Com-
mittee approved the study protocol (2018-K020).

2.7. Construction of the Tissue Microarray (TMA). From the
tissue areas containing>50% tumor, the pertinent regions
were selected for the TMA construction from each block of
the glioma tissue. Using the MTA-1 Manual Tissue Arrayer
(Beecher Instruments, Sun Prairie, WI, USA), representative
tumor cores measuring around 1mm and two/three in num-
ber were transferred from the glioma tissue blocks to the
recipient TMA blocks in each case. In this manner, the
TMAs were constructed.

2.8. Preparation of Monoclonal Antibody against SPTSSA.
Mab (monoclonal antibody) was prepared from female SPF
(specific pathogen free) mice which firstly received 60μg
polypeptide (3.0mg/mL) subcutaneous injections. Then,
four mice received either four subcutaneous injection poly-
peptide. Indirect ELISA was performed to analyze the titer
of IgG antibody. No. 4 mouse was chosen to perform cell
fusion.

2.9. Immunohistochemistry (IHC). To quench the endoge-
nous peroxidase, the TMA sections were incubated for 15
minutes with methanol and 3% H2O2 after being deparaffin-
ized. By heating the sections in sodium citrate buffer
(10mmol/L, pH6.0) for 3 minutes in a pressure cooker,
the antigen was retrieved. Subsequently, for one hour, with
the primary goat anti-SPTSSA antibody-diluted bovine
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serum albumin, the tissue sections were incubated. The
phosphate-buffered saline was used to wash the sections
before being incubated for 15 minutes with horseradish
peroxidase-conjugated donkey anti-goat antibody (Abcam)
and washed further. Prior to the light counterstaining with
hematoxylin, the sections were incubated for 15 minutes
with diaminobenzidine solution (Kem-En-Tec Diagnostics,
Taastrup, Denmark) to develop the color.

2.10. Immunofluorescence Staining. The glioma samples
were cut in thin sections of 3μm for immunostaining. Using
the Fluorescence Kit (NEL 797001KT; PerkinElmer) and the
Opal 8-color Fluorophore TSA, the multiplex immunofluo-
rescence (IF) was done for CD83/CD56/CD20/CD68/
CD66b/CD8/CD4/CD3 on the 3μm formalin-fixed glioma
tissue sections. Since combining four or more antibodies
using IHC was challenging technically, instead of IHC, we
performed the multiplexed IF.

2.11. Multispectral Analysis and Imaging. With an interac-
tive image segmentation system, the Vectra 3 automated
quantitative pathology imaging system, the image analysis,
and acquisition were performed on the glioma slides.
According to the intensity and the staining pattern on each
selected image, the pathologist decided the fluorescent
intensity count cutoff value for positivity for each marker
of interest (CD83/CD56/CD20/CD68/CD66b/CD8/CD4/
CD3). The extragerminal center area and the germinal cen-
ter area were included for each image of the normal glioma
tissue. The manual tissue segmentation function of the soft-
ware was utilized for differentiating the two areas and ana-
lyzed independently.

2.12. Survival Analysis. Using SPTSSA medium expression
level, glioma samples were stratified into high-SPTSSA
expression and low-SPTSSA expression groups. Kaplan-
Meier survival analysis was used to estimate the survival dis-
tributions. Evaluating the statistical significance required the
log-rank test between stratified survival groups through the
GraphPad Prism package. Then, we filtered the survival
and gene expression data using Cox regression analyses at
p < 0:05.

3. Results

3.1. SPTSSA Was Significantly Upregulated in Diffuse Glioma
Compared to Normal Tissues and Associated with Poor
Survival.We searched Gene Expression Profiling Interactive
Analysis (GEPIA) database for SPTSSA expression in vari-
ous tumor types. TCGA (http://tcga-data.nci.nih.gov/tcga/)
and GTEx (http://commonfund.nih.gov/GTEx/) datasets
from 33 tumor types were retrieved. The analysis of gene
expression profile across all tumor samples and paired nor-
mal tissues indicated that seven tumor types (DLBC, GBM,
LGG, LIHC, PAAD, TGCT, and THYM) showed signifi-
cant higher SPTSSA expression in tumor tissues than in
normal tissues (Figure 1(a)). Among these seven tumor
types, we separated tumor cases into high-SPTSSA expres-
sion cases (>median expression level) and low-SPTSSA
expression cases (≤median expression level) (Figure 1(b)).
Log rank survival analysis indicated that high-SPTSSA
expression in GBM and LGG was associated with poor sur-
vival (HR = 2:3, pðHRÞ = 7:3e − 10, Logrank p = 2:7e − 10)
(Figure 1(c)).

Table 1: Clinical information analysis based on CGGA database.

Total (749) Low expression (374) High expression (375) χ2 p

PRS_type

Primary 502 267 235 6.691 0.035

Recurrent 222 95 127

Secondary 25 12 13

Grade

WHO II 218 127 91 16.663 0

WHO III 240 128 112

WHO IV 291 119 172

Gender
Male 307 167 140 4.147 0.042

Female 442 207 235

Age
≤41 342 169 173 0.068 0.795

>41 407 205 202

Radio_status
No 124 74 50 5.644 0.018

Yes 625 300 325

Chemo_status
No 229 134 95 9.718 0.002

Yes 520 240 280

IDH_mutation_status
Wildtype 339 157 182 3.247 0.072

Mutant 410 217 193

1p19q_codeletion_status
Noncodel 614 283 331 7.888 0.005

Codel 155 91 64

3Oxidative Medicine and Cellular Longevity

http://tcga-data.nci.nih.gov/tcga/
http://commonfund.nih.gov/GTEx/


0

T 
(n

 =
 7

7)
N

 (n
 =

 1
28

)
T 

(n
 =

 4
04

)
N

 (n
 =

 2
8)

T 
(n

 =
 1

08
5)

N
 (n

 =
 2

91
)

T 
(n

 =
 3

06
)

N
 (n

 =
 1

3)
T 

(n
 =

 3
6)

N
 (n

 =
 3

49
)

T 
(n

 =
 4

7)
N

 (n
 =

 3
37

)
T 

(n
 =

 1
82

)
N

 (n
 =

 2
86

)
T 

(n
 =

 1
63

)
N

 (n
 =

 2
07

)
T 

(n
 =

 5
19

)
N

 (n
 =

 4
4)

T 
(n

 =
 6

6)
N

 (n
 =

 5
3)

T 
(n

 =
 5

23
)

N
 (n

 =
 1

00
)

T 
(n

 =
 2

86
)

N
 (n

 =
 6

0)
T 

(n
 =

 1
73

)
N

 (n
 =

 7
0)

T 
(n

 =
 5

18
)

N
 (n

 =
 2

07
)

T 
(n

 =
 3

69
)

N
 (n

 =
 1

60
)

T 
(n

 =
 4

83
)

N
 (n

 =
 3

47
)

T 
(n

 =
 4

86
)

N
 (n

 =
 3

38
)

T 
(n

 =
 8

7)
T 

(n
 =

 4
26

)
N

 (n
 =

 8
8)

T 
(n

 =
 1

79
)

N
 (n

 =
 1

71
)

T 
(n

 =
 1

82
)

N
 (n

 =
 3

)
T 

(n
 =

 4
92

)
N

 (n
 =

 1
52

)
T 

(n
 =

 9
2)

N
 (n

 =
 3

18
)

T 
(n

 =
 2

62
)

N
 (n

 =
 2

)
T 

(n
 =

 4
61

)
N

 (n
 =

 5
58

)
T 

(n
 =

 4
08

)
N

 (n
 =

 2
11

)
T 

(n
 =

 1
37

)
N

 (n
 =

 1
65

)
T 

(n
 =

 5
12

)
N

 (n
 =

 3
37

)
T 

(n
 =

 1
18

)
N

 (n
 =

 3
39

)
T 

(n
 =

 1
74

)
N

 (n
 =

 9
1)

T 
(n

 =
 5

7)
N

 (n
 =

 7
8)

T 
(n

 =
 7

9)

T 
(n

 =
 2

75
)

N
 (n

 =
 9

)

100

200

300

400

Tr
an

sc
rip

ts 
pe

r m
ill

io
n 

(T
PM

)

500

600
A

CC
BL

CA
BR

CA
CE

SC
CH

O
L

CO
A

D
D

LB
C

ES
CA

H
N

SC
KI

CH
KI

RC
KI

RP
LA

M
L

LU
A

D
LU

SC
M

ES
O

O
V PC

PG
PR

A
D

RE
A

D
SA

RC
SK

CM
ST

A
D

TH
CA

U
CE

C
U

CS
U

V
M

G
BM

LG
G

LI
H

C

PA
A

D

TG
CT

TH
YM

(a)

0

2

4

6

⁎

⁎

8

LGG
(num(T) = 518; num(N) = 207) (num(T) = 163; num(N) = 207)

GBM

(b)

0.0

0.2

0.4

0.6

Pe
rc

en
t s

ur
vi

va
l

0.8

1.0

Overall survival

0 50 100
Months

Logrank p = 2.7e–10
HR(high) = 2.3

n(high) = 338
n(low) = 338

p(HR) = 7.3e–10

150 200

Low SPTSSA TPM
High SPTSSA TPM

(c)

Figure 1: (a) Overview of expression of all cancers and normal tissues in GEPIA database. (b) Differences of SPTSSA in normal cells, low-
grade glioma, and glioblastoma. (c) Grouped by median, high expression of SPTSSA was associated with poor survival.
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3.2. Correlation of SPTSSA Expression with Clinical
Characteristics. To confirm our observation, we next ana-
lyzed SPTSSA expression using CGGA database. Log-
rank test analysis showed that high-SPTSSA expression
was significantly associated with poor survival (p < 0:001)
(Figure 2(a)). In univariate analysis, PRS-type, histology,
grade, age, chemotherapy, IDH-mutation, 1p19q-codeke-
tion, and SPTSSA expression were all significantly associated
with survival (Figure 2(b)). In multivariate analysis, PRS-
type, grade, IDH-mutation, 1p19q-codeletion, and SPTSSA
remained significantly associated with survival (Figure 2(c)).
Moreover, a nomogram was carried out to investigate individ-
ualized survival probability (Supplementary Figure 1A), and
calibration curve was carried out to demonstrate the
accuracy of the nomogram in predicting prognosis at
different time points (Supplementary Figure 1B). The cox
analysis between SPTSSA and OS, PFI, DSS, and DFI was
also carried out (Supplementary Figure 2A-2D). The results
showed that SPTSSA correlated positively with OS, PFI, and
DSS based on pan-cancer analysis. All the results indicate
that SPTSSA could serve as an independent prognostic
predictor for glioma.

3.3. Multifactorial Integrated Survival Analysis in CGGA
Database. The radiotherapy (Figure 3(a)), chemotherapy
(Figure 3(b)), IDH1 genotypes (Figure 3(c)), and 1p19q
status (Figure 3(d)) were added as variables in multifacto-
rial analysis to further investigate the clinical value of
SPTSSA. The correlation between the expression of
SPTSSA and the survival rate with chemotherapy was ana-
lyzed subsequently. The poorest outcome was noticed in
the case of the highest SPTSSA expression with chemo-
therapy (Figure 3(b), cherry), whereas the expression of
SPTSSA without chemotherapy (Figure 3(b), purple) indi-
cated the lowest. The role of the corresponding radiother-
apy (p < 0:0001) SPTSSA as an important indicator was
evidenced by the higher expression of SPTSSA (Figure 3(a),
cherry and green) in the IDH1-mutant groups (Figure 3(a),
purple and blue) revealing poor survival. The patients with
high expression of SPTSSA (Figure 3(d), green) and noncodel
1p19q finally indicated the worst prognosis.

3.4. Correlations between SPTSSA and Immunotherapy,
Immunotherapy Response Prediction. Cancer immunother-
apy is radically transforming cancer [25], and the use of
immunotherapy in cancer treatment is on the rise [26]. Sev-
eral studies have shown that immunotherapy and targeted
therapy are effective in melanomas [27]. Thus, it is necessary
to investigate the relationship between SPTSSA and immu-
notherapy and immunotherapy response prediction. In our
study, we downloaded 109 samples from GSE91061, and
the results showed that SPTSSA expression level has a
positive correlation with anti-PD-1/CTLA-4 therapy both
in LGG and GBM (Supplementary Figure 3A). And
immunotherapy response prediction of AUC is 0.688
which reveals that SPTSSA can predict immunotherapy
response of glioma patients (Supplementary Figure 3B).

Furthermore, we investigated the relationship between
SPTSSA and immune suppressive factors, immune promot-

ing factors, MHC factors, chemokine, and receptors (Supple-
mentary Figure 3C). The results showed that SPTSSA has a
positive relationship with most immune suppressive factors,
immune promoting factors, MHC factors, chemokine, and
receptors which indicate that SPTSSA could have a good
immune therapy towards glioma patients.

3.5. Connections between SPTSSA and Genomic Alteration.
The majority of cancers harbor at least one genomic alter-
ation that could lead to potential treatment options, with
84% showing at least one. And tailored medicine is often
based on specific genetic alterations that improve treatment
outcomes [28]. Thus, exploring the relationship between
SPTSSA and genomic alteration seems to be necessary. In
our study, we found that SPTSSA is positively correlated
with CALN1 in GBM, while no positive correlated genomic
alteration found in LGG. And in GBM, the gain of SPTSSA
genomic alteration located in 17q13.2, while the loss of
SPTSSA genomic alteration located in 14q13.1 and 14q24.2
(Supplementary Figure 4A-4B).

3.6. Gene Set Enrichment Analysis (GSEA). To distinguish
the differentially activated signaling pathways in GBM, we
performed the GSEA between low- and high-SPTSSA
expression data sets. Under the MSigDB Collection’s
(c5.all.v7.1.symbols.gmt) enrichment analysis, the SPTSSA
generated significant differences that were reported in the
GSEA (p < 0:05). Our selection of the most highly enriched
signaling pathways was based on their normalized enrich-
ment scores (jNESj > 1) (Figure 4). The outcome revealed
that negative regulation of response to oxidative stress, neg-
ative regulation of mitotic cell cycle, neuron death in
response to oxidative stress, positive regulation of cellular
catabolic process, and transcription factor complex were
enriched in low expression phenotype (Figure 4(a)).

3.7. Connections between SPTSSA and TMB, MSI, and
Immune Checkpoint. There are studies which reveal that
lower TMB values are associated with longer mean overall
survival times, concluding that TMB is a marker of tumor
malignancy [29]. Instability of microsatellites (MSI) results
from mutations in DNA mismatch repair (MMR) genes,
which fail to repair errors in DNA replication in repetitive
sequences (microsatellites) [30]. There are studies found that
MSI is associated with poor differentiation, proximal loca-
tion, and failure of chemotherapy in colorectal cancers
[31]. Thus, investigating the relationship between SPTSSA
and TMB, MSI seem to be necessary. Regarding TMB, we
found that SPTSSA expression level is correlated with
TMB in GBM and LGG, while in MSI, we found no sense
(Figures 5(a) and 5(b)).

Further, immune cells, checkpoint expression, and MSI
status play a significant role in prognosis [32]. Thus, we fur-
ther investigate the relationship between SPTSSA and
immune checkpoint. And the results showed that SPTSSA
correlated with most immune checkpoints (Figure 5(c)).

3.8. Associations between SPTSSA and DNA Methylation.
DNA methylation is mediated by DNA methyltransferase
(DNMT) and is affected by the environment [33–35]. Thus,

5Oxidative Medicine and Cellular Longevity



0.00

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25
p < 0.001

0.75

1.00

3210
Time (years)

121110987654

Low

SP
TS

SA
 le

ve
l

High

3210
Time (years)

121110987654

177231284375 031640536493113135
117171261374 038162330496886

SPTSSA level

High

Low

(a)

p value Hazard ratio

SPTSSA

PRS_type

Histology

Grade

Gender

Age

Ratio

Chemo

IDH_mutation

1p19q_codeletion

<0.001

<0.001

<0.001

<0.001

0.655

<0.001

0.571

<0.001

<0.001

<0.001

1.427 (1.265–1.610)

2.123 (1.818–2.478)

4.487 (3.695–5.449)

2.883 (2.526–3.291)

1.044 (0.866–1.258)

1.624 (1.345–1.960)

0.929 (0.720–1.199)

1.647 (1.328–2.044)

0.317 (0.262–0.384)

0.231 (0.169–0.315)

3210
Hazard ratio

54

(b)

Figure 2: Continued.
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we investigate the relationships between SPTSSA and four
methytransferases (DNMT3B, DNMT3A, DNMT2, and
DNMT1) (Supplementary Figure 5A). p < 0:05 and R >
0:20 indicated a significant and positive relationship,
respectively. The results showed that SPTSSA has a
positive correlation with four methytransferases in LGG,
while in GBM, SPTSSA only has a positive correlation with
DNMT3B, DNMT3A, and DNMT2.

3.9. Correlation of SPTSSA Expression and Infiltrating
Immune Cells. We used CIBERSORT analysis to evaluate
the correlation of SPTSSA expression with tumor-infiltrating
immune cells (TIICs). As Figure 6(b) illustrates, our results
demonstrated two statistically significant associations. First,
the ratio of monocytes, NK cells (activated), T follicular
helper (Tfh) cells, naive CD4+ T cells, memory B cells, and
naive B cells were substantially lower in tumor cases with
high SPTSSA expression. Second, eosinophils, dendritic cells
(activated and resting), and macrophages (M0) were consid-
erably higher in tumor cases with high SPTSSA expression.

3.10. Correlation of Infiltrating Immune Cells and Overall
Survival. Using log-rank test survival analysis, we showed
that high number of macrophage M0 cells (p < 0:001), T
cells CD4 naive (p < 0:001), monocytes (p < 0:001), macro-
phages M2 (p < 0:001), dendritic cells activated (p < 0:001),
T cells gamma delta (p = 0:004), T cells regulatory (Tregs)
(p = 0:009), neutrophils (p = 0:030), and plasma cells (p =
0:032) were significantly associated with survival (Figure 6(a)).

3.11. Validation of Correlation between SPTSSA and
Infiltrating Immune Cells. Using the TIMER database
(Figure 6(b)), the correlation between the infiltrating
immune cells and the SPTSSA expression was analyzed fur-
ther to confirm our observation. The SPTSSA expression

being significantly correlated with numbers of tumor-
infiltrating dendritic cells, neutrophils, and macrophages
was revealed clearly.

3.12. Immunohistochemistry (IHC). To estimate the expres-
sion of SPTSSA in glioma tissues, we used IHC. Our findings
revealed that in contrast to low-grade (I and II) gliomas,
high-grade (III and IV) gliomas have highly expressed
SPTSSA (Figure 7(a)). Log rank survival analysis indicated
that high-SPTSSA expression in glioma was associated with
poor survival (Logrank p = 0:045) (Figure 7(b)). In univari-
ate analysis and multivariate analysis, SPTSSA is the only
factor significantly associated with survival (Figure 7(c)).

3.13. Correlation Analysis between SPTSSA Expression and
Immunosuppressive Markers. To investigate the relationship
between SPTSSA and the tumor immunology infiltrating
cells, we focused on the correlations between SPTSSA
and well-known immunosuppression-related genes. Analy-
sis with TMA showed that SPTSSA had highly positive
correlation with CD8, CD66b, and CD20 (Supplementary
Figure 5B).

4. Discussion

In the current study, by employing various bioinformatics
analysis tools, we identified that SPTSSA expression was
upregulated in diffuse glioma and associated with poor sur-
vival. We characterized SPTSSA-related biological processes
and signaling pathways. Finally, we provided evidence that
SPTSSA expression was correlated with tumor immune infil-
trates by CIBERSORT, TIMER, IHC, and IF.

GEPIA is a web-based interactive tool for mining RNA
sequencing data on TCGA and the GTEx databases [17,
18]. It covers over 45,000 genes. GEPIA allows experimental
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Figure 2: (a) Using CGGA database, grouped in median, high expression of SPTSSA predicts poor prognosis. (b, c) Univariate and
multivariate Cox analyses indicated that SPTSSA was an independent predictor for OS.
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Figure 3: Continued.
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Figure 3: Survival analysis of CGGA patients to SPTSSA expression compared with (a) radiotherapy, (b) chemotherapy, (c) IDH mutation,
and (d) 1p19q status.
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Figure 4: (a) Enrichment plots from the Gene Set Enrichment Analysis. (b) The proportions of 22 tumor-infiltrating immune cells in high-
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Figure 5: Continued.
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biologists with limited computational programming skills
to perform large scale gene expression analyses [36, 37].
For current study, we utilized both differential expres-
sion analysis and patient survival analysis functions of

GEPIA. We found that SPTSSA was not only differen-
tially expressed in GBM but also associated with GBM
survival. We further validated our findings by searching
CGGA database.

Type

(c)

Figure 5: Correlations between SPTSSA and (a) TMB and (b) MSI. (c) Relationships between SPTSSA expression level and immune
checkpoints.
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SPTSSA is the gene encoding the small subunit A of
serine palmitoyltransferase (SPT). It catalyzes the formation
of sphingoid long-chain base backbone of sphingolipids
[38]. Sphingolipids are structural compounds of biological
membranes, and recent studies suggest sphingolipids can
also serve as secondary messengers, participating in apopto-
sis, proliferation, senescence, angiogenesis, and vesicular
trafficking [39, 40]. Because alterations in bioactive sphin-
golipids have been linked to cancer progression and prog-
nosis, their key metabolic enzymes have been actively
pursued as novel targets in cancer drug development
[41–44]. The enrichment analysis showed that SPTSSA is

related to the oxidative stress. Numerous studies have
shown that the role of oxidative stress in glioma is quite
important. To our best knowledge, this is the first study
reporting the connection between SPTSSA expression, a
key catalytic enzyme in sphingolipids synthesis, and cancer
progression and prognosis.

To further shed light on the potential function of
SPTSSA in GBM progression, we used both CIBERSORT
and TIMER to correlate tumor-infiltrating immune cells
with SPTSSA expression in GBM. Tumor-infiltrating
immune cells are major member of the tumor microenviron-
ment. They correlate with tumor prognosis and response to
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Figure 7: (a) IHC of grade II~IV glioma sample from the Affiliated Hospital of Nantong University. (a) Using TMA, grouped in median,
high expression of SPTSSA predicts poor prognosis. (b, c) Univariate and multivariate Cox analyses indicated that SPTSSA was an
independent predictor for OS.
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therapy. Traditionally, immunohistochemistry [45–47] and
flow cytometry [48] are used to analyze and enumerate
different subsets of immune cells. However, these methods
are limited by the availability of markers and antibodies
for identification of subtypes of immune cells as well as
high quality tumor samples. CIBERSORT is a type of in
silico tissue dissection method for enumerating different
cell fractions from undissected tissue gene expression pro-
files through computational deconvolution analysis [20,
49]. Using pure immune cell subtype expression profiles,
CIBERSORT can accurately estimate the immune cell sub-
types of a tumor biopsy and enable the discovery of bio-
markers and novel immunotherapeutic targets. Using
CIBERSORT, we showed that the numbers of CD4 T
memory cells and macrophage cells were positively corre-
lated with SPTSSA expression, while the number of acti-
vated mast cells were negatively correlated with SPTSSA
expression.

The TIMER was used to analyze the association with the
survival of the tumor-infiltrating immune cells, to confirm
our observations further. Cancer biologists are enabled in
quantifying the abundance of tumor-infiltrating immune
cells through a flexible and comprehensive mode by the
TIMER (Tumor Immune Estimation Resource) [21]. The
abundance of tumor-infiltrating immune cells from the bulk
gene expression profiles are identified using the TIMER
computational deconvolution methods. The association with
overall survival was provided together with the association
of the tumor-infiltrating immune cell abundance with the
gene expression by TIMER. We successfully identified that
higher numbers of activated mast cells were associated with
better survival in GBM, that higher numbers of macrophage
M0/M1 cells were associated with poor survival in GBM,
and that there was a correlation with the SPTSSA expression
of the tumor-infiltrating dendritic cells, neutrophils, and the
macrophages. The SPTSSA being an independent prognosis
factor and dysregulated in glioma was confirmed from the
IF and the IHC results.

5. Conclusion

In summary, using bioinformatics tools, we identified
high-SPTSSA expression in GBM tissues, and high-SPTSSA
expression was associated with poor survival. In silico
tumor-infiltrating immune cell analysis suggests that
high-SPTSSA expression was associated with high number
of specific subtype immune cells. Future experimental
studies are needed to explore the potential of SPTSSA as
prognostic marker as well as novel immunotherapy target
for GBM.
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