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ABSTRACT Three chloramphenicol-resistant Pseudomonas sp. strains were isolated
from wheat grain in Germany on rose Bengal agar. The draft genome sizes ranged
from 5,924,931 to 6,124,470 bp. All the isolates possessed genes for efflux pumps
that might be responsible for an intrinsic chloramphenicol resistance. No acquired
antibiotic resistance genes in these strains could be determined.

Species belonging to the genus Pseudomonas (sensu stricto) are members of the
gammaproteobacteria and are Gram-negative catalase-positive rods (1). These

bacteria exhibit remarkable metabolic and physiologic versatility, which enables them
to effectively colonize a wide range of terrestrial and aquatic habitats (2, 3). In addition,
pseudomonads are important, as they are pathogenic toward plants and humans. Apart
from some species being important plant pathogens, isolates from other species
(e.g., P. aeruginosa, P. fluorescens, P. putida, and P. stutzeri) interact with plants and
can contribute to plant health by antagonizing plant-pathogenic microorganisms,
thereby directly influencing plant disease resistance and promoting growth (2, 4).
In regular bacteriological screens of whole-grain wheat samples after harvest, rose
Bengal agar medium (containing 100 �g/ml chloramphenicol as the antibacterial
agent) was used for the selective enumeration of yeasts and fungi. The appearance of
some chloramphenicol-resistant bacterial colonies from 1 g of wheat grain sample was,
however, noticed after 5 days of incubation at 25°C. Three strains isolated from this
medium in 2016 were investigated using whole-genome sequencing in order to
identify the strains and the chloramphenicol-resistance gene(s).

For whole-genome sequencing, single colonies were cultured in Luria-Bertani broth
overnight at 30°C. The total genomic DNA of the Pseudomonas sp. strains was extracted
using the peqGOLD bacterial DNA kit (Peqlab, Erlangen, Germany) according to the
manufacturer’s instructions. The sequencing library was prepared with an Illumina
TruSeq Nano DNA prep kit (Illumina, San Diego, CA, USA) and run on an Illumina MiSeq
instrument with 2 � 251-bp paired ends. A total of 1,750,480 paired ends and 52,100
single-end sequence reads were obtained from three samples with coverage that
ranged from 23- to 38-fold. The low-quality reads and adapter sequences were re-
moved with Trimmomatic version 0.36 (5). The reads were de novo assembled using
SPAdes version 3.13.0 (6) with the parameters k-mer 77 and careful and a minimum
contig length of 500 bp. The draft genome sequences were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (7) and analyzed for gene features with
PATRIC (8). Except for the SPAdes pipeline, default parameters were used for all other
software. The genome features and the quality information of the de novo assembly are
described in Table 1. The genomes consisted of 80 to 153 contigs per strain, and the
N50 values ranged from 75,064 to 240,160 bp (Table 1). To identify these strains, the
complete 16S rRNA gene sequences were extracted from the PATRIC data set and
applied in the EzTaxon pipeline (9). The 16NI and 133NRW strains were identified as P.
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orientalis with 99.86 and 99.73% 16S rRNA gene similarities, while strain 770NI showed
100% nucleotide identity with the Pseudomonas sp. strain CP019856_s 16S rRNA gene.
Using the ResFinder server version 3.1 (10), none of the isolates were found to carry any
acquired chloramphenicol resistance genes, such as genes involved in chloramphenicol
acetylation (cat genes). All three isolates, however, contained genes encoding a MexAB-
OprM and a MexEF-OprN efflux pump; these were previously described in connection
with intrinsic chloramphenicol resistance in P. aeruginosa strains. In addition, the
MexEF-OprN efflux pump genes were found to be inducible by chloramphenicol (11).
The presence of these genes may explain the chloramphenicol resistance of the isolates
investigated.

Data availability. The whole-genome sequences of P. orientalis strains 16NI and
133NRW and Pseudomonas sp. strain 770NI were deposited in DDBJ/ENA/GenBank
under the accession no. SGFD00000000, SGFE00000000, and SGFF00000000, respec-
tively. The raw reads can be found in the SRA with no. SRR8607514 (16NI), SRR8607513
(133NRW), and SRR8617823 (770NI).
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TABLE 1 De novo assembly of three Pseudomonas strains isolated from wheat grain

Strain
GenBank
accesion no.

SRA
accession no.

No. of
contigs

No. of
CDSa

Genome
size (bp) N50 (bp)

GC
content (%)

16NI SGFD00000000 SRR8607514 123 5,413 5,972,457 121,728 60.65
133NRW SGFE00000000 SRR8607513 153 5,647 6,124,470 75,064 60.48
770NI SGFF00000000 SRR8617823 80 5,485 5,924,931 240,160 60.17
a CDS, coding DNA sequences.
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