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Voltage-gated proton channels are unique ion channels, membrane proteins

that allow protons but no other ions to cross cell membranes. They are found

in diverse species, from unicellular marine life to humans. In all cells, their

function requires that they open and conduct current only under certain con-

ditions, typically when the electrochemical gradient for protons is outwards.

Consequently, these proteins behave like rectifiers, conducting protons out

of cells. Their activity has electrical consequences and also changes the pH

on both sides of the membrane. Here we summarize what is known about

the way these proteins sense the membrane potential and the pH inside

and outside the cell. Currently, it is hypothesized that membrane potential

is sensed by permanently charged arginines (with very high pKa) within

the protein, which results in parts of the protein moving to produce a con-

duction pathway. The mechanism of pH sensing appears to involve

titratable side chains of particular amino acids. For this purpose their pKa

needs to be within the operational pH range. We propose a ‘counter-

charge’ model for pH sensing in which electrostatic interactions within the

protein are selectively disrupted by protonation of internally or externally

accessible groups.
1. Introduction
The focus of this review is how the voltage-gated proton channel, HV1, senses

voltage and pH. HV1 is a unique ion channel, a membrane protein that allows

protons (Hþ) but no other ions to cross cell membranes. Its existence was first

postulated in 1972 by Hastings and co-workers [1], who proposed that it trig-

gered the flash in bioluminescent dinoflagellates, a role that was recently

confirmed [2,3]. Proof of the existence of HV1 was produced a decade later

by Thomas and Meech with their 1982 voltage-clamp study of snail neurons

[4]. Nearly a quarter of a century later, the gene for voltage-gated proton chan-

nels was finally identified [5,6]. Subsequently, proton currents have been

identified in cells from 15 species, and HVCN1 genes (that code for HV1) in

another 11 species have been confirmed by expression in heterologous

systems and voltage clamp. To date, only one gene per species has been

found, although, in several cases, truncated isoforms have been identified

[7–9]. An astonishing variety of functions have been identified in these phylo-

genetically disparate species, many of which are listed in table 1. Involvement

of HV1 in human health is extensive [48], but beyond the scope of this review.

The protein at the focus of this chapter is the voltage-gated proton channel,

HV1. Being ‘voltage-gated’ means that it can sense voltage, specifically the elec-

trical potential difference across a cell membrane. As indicated by its name, the

voltage-gated proton channel is an ion channel that conducts protons selec-

tively when it is opened by depolarizing transmembrane voltages (making

the membrane potential—the difference in voltage inside the cell compared

with outside—more positive). HV1 channels open in response to depolarization,

and they close with hyperpolarization (more negative membrane potentials).

How this occurs will be discussed. A crucial and unique property of the HV1
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Table 1. Types of functions proposed for HV1 in different cells. Functions proposed for HV1 in various cells are sorted into the four main effects of HV1 activity,
in some cases arbitrarily. NOX is NADPH oxidase. BCR is B cell receptor. Vm is membrane potential.

cell �pHi �pHo regulate Vm charge compensation

dinoflagellates trigger bioluminescent flash

[1,3]; feeding [2]

proton action

potential [3]

coccolithophores calcification [10]

insect acid extrusion [11]

snail neurons acid extrusion [4,12,13] acidification of confined

spaces [14]

ROS production for host

defence [15]

amphibian oocyte maturation, fertilization

[16,17]

Vm oscillations [18]

zebra fish neutrophils [19]

respiratory

epithelium

acid extrusion [20] optimize pH of airway

surface fluid [21]; CO2

extrusion [22]

facilitate DUOX1 activity [23]

skeletal myotubes acid extrusion [24]

phagocyte optimize pHi for NOX

[25 – 27]

phagosome pH and volume

[28,29]

regulate Vm [28,30];

avoid apoptosis

[31]

prevent NOX self-inhibition

at high potentials

[32 – 34]

microglia optimize pHi for NOX [35];

volume regulation [36]

ROS production [35,37]

basophil histamine secretion [38]

cardiac myocytes CO2 elimination [39]

cardiac fibroblasts regulate Vm [40]

osteoclasts acid extrusion [41] regulate Vm [41]

sperm alkaline pHi triggers

capacitation [42]

ROS production by NOX5

mediates motility [43]

cancer cells tumour growth [44] metastasis [44]

B lymphocyte ROS production in BCR

signalling [7,45]

malignant B cells short isoform promotes

proliferation [8]

kidney acid extrusion [46] Naþ-dependent ROS

production [47]
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channel is that its voltage sensitivity is modulated pro-

foundly by the pH. Therefore, a second focus of this review

is how the protein senses and responds to the pH. The aim

of this review is to describe the current state of understanding

of the gating mechanism of HV1. Gating is a quintessential

property of all ion channels—a channel without gating is

simply a pernicious shunt that would rapidly dissipate the

membrane potential as well as the concentration gradient of

any ions to which it is permeable. Ion gradients are required

to drive transport of substances into or out of the cell, to gen-

erate energy from food and to conduct electrical impulses in

excitable cells. By ‘gating’ we mean that the channel exists in

at least two distinct functional states, ‘closed’ and ‘open’.

When the channel is closed, it does not conduct current. To

be precise, one Kþ channel was shown to conduct detectably

when closed, but the ‘closed’ channel current was more than
105 smaller current than the open channel current [49]. When

a channel is open, it conducts current in the form of ions,

usually at a constant rate. Ion channels differ from other

transporters in being completely passive, conducting ions

according to their electrochemical gradient. The chemical gra-

dient drives ions from the side with higher concentration

towards the side with lower concentration. The size and

direction of ionic current is also sensitive to the electrical

potential across the membrane, which can drive current in

either direction, either supported or opposed by the chemical

gradient. The membrane potential at which the electrical and

concentration gradients balance is the Nernst potential [50].

For example, the Nernst potential for Hþ (EH) is

EH ¼
RT
F

ln
½Hþ�o
½Hþ�i

,
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Figure 1. Architectural features of voltage-gated Kþ channels, HV1 channels and voltage-sensing phosphatases (VSP). The top row shows monomeric subunits of
the complete molecule in the lower row. Kþ channels are homotetramers with six transmembrane helices per monomer. Segments S1 – S4 form the voltage-sensing
domain (VSD) and S5 – S6 form the conduction pathway. In the complete assembled channel (below), four VSDs (each comprising S1 – S4) surround a single central
pore through which Kþ permeates. Dashed lines indicate central aqueous regions inside each VSD. HV1 resembles an isolated VSD with only four TM segments and
no explicit pore domain [5,6], but functions without accessory proteins [51]. It forms a dimer, largely due to coiled-coil interaction in the C terminus, but each
protomer has its own conduction pathway [52 – 54]. Phosphorylation of Thr29 in the N terminus [8,55] greatly enhances HV1 activity [56], especially in phagocytes
[57]. The VSP lacks conduction altogether, but senses voltage and modulates phosphatatse activity accordingly [58,59]. Reprinted with permission from DeCoursey
[60] (Copyright & 2010 American Physiological Society).
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where R is the gas constant, T is the absolute temperature, F is

Faraday’s constant, [Hþ] is the proton concentration, and the

subscripts o and i mean outside and inside the cell, respect-

ively. If the membrane potential is positive to EH, protons

will be driven out of the cell; at voltages negative to EH,

they will enter the cell. The Nernst potential is useful

experimentally to establish the ion selectivity of a channel.

Current through a proton-selective channel will reverse at

EH regardless of the presence of other ions.

The topology of HV1 is illustrated by the cartoon in

figure 1, which emphasizes the similarities and differences

between molecules that contain voltage-sensing domains

(VSDs). The VSD contains a number of charged amino

acids that are thought to move when changes in membrane

potential alter the electric field within the membrane. Most

of these charges are Arg, or occasionally Lys, which are

located every third position in the S4 helix and are thought

to face the pore [61]. Voltage-gated Kþ and Naþ channels

have up to seven charged groups in S4, the VSP has four

and HV1 has only three. In Kþ channels, applied voltage

causes the four VSDs to move and pull on parts of the central

pore domain (S5 and S6), causing an opening to appear

through which Kþ as well as water molecules can pass.

Ions are hydrophilic and can diffuse through water rapidly,

but they avoid entering hydrophobic regions of cell mem-

branes or of membrane proteins. Most ion channels are

thought to have narrow hydrophilic regions where ions and

water must move in single file. The conduction pathway of

HV1 is within its VSD, which comprises the entire transmem-

brane region (S1–S4), whereas the VSDs in other membrane

proteins serve mainly to sense voltage, and then in response
they open a separate pore (e.g. the Kþ channel) or turn-on an

enzyme (e.g. the voltage-sensing phosphatase, VSP). As indi-

cated schematically by the dashed hourglass shapes in

figure 1, each VSD contains aqueous vestibules with a

narrow constriction at the middle of the membrane. The con-

striction in HV1 conducts protons, but in Kþ channels or the

VSP they normally do not conduct at all. Intriguingly, if the

Kþ pore domain is removed altogether, the Kþ channel

VSD in isolation forms a proton-conducting channel [62].

Even when the molecules are still intact and attached to

their pore domains, the VSDs of both voltage-gated Kþ

[63–65] and Naþ channels [66,67] can be induced to conduct

protons by mutating particular Arg in the S4 segment to his-

tidine (His). This mutation would result in four proton-

conducting VSDs surrounding the central Kþ-conducting

pore. His are well known for their ability to transfer protons

[68,69], as they do in the M2 influenza A viral proton channel

[70] and in carbonic anhydrase II [71]. Similarly, when Arg205

(the first—outermost—of three Arg (arginines) in S4)1 in

hHV1 is replaced by His, inward proton current is detectable

[72]. All of these ‘gating pore’ currents support the idea that

the VSD resembles an hourglass with aqueous vestibules

separated by a narrow hydrophobic region. In the guise of

hydronium ions, protons can reach most places that water

can. Although aquaporin channels normally conduct water

at a high rate but exclude protons, showing that this is not

a firm rule, point mutations can enable proton conduction

even through aquaporin [73,74]. Presumably, a single His at

the centre of a VSD can, perhaps with a bit of wiggling

around, access both external and internal solutions and trans-

fer a proton across this narrow bridge. This is what HV1



(a) (b)

Hv1

100 pA 30 pA

3 s 1 s

Hv1DC rsif.royalsocietypublishing.org

4
normally does whenever it opens, except without the benefit

of His. In hHV1, the proton is transferred by the carboxyl

group of Asp112 [75,76] and perhaps other acidic groups

[77], as occurs in numerous proton pathways in other

pumps and enzymes [69,78–81].

We will identify HV1 from different species with prefixes,

hHV1 ¼ human, mHV1 ¼mouse, otherwise two letters for

genus and species, e.g. CiHV1 ¼ Ciona intestinalis. Although

there are some apparent differences [82], the functional simi-

larities among HV1 from widely disparate species are

remarkable.
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Figure 2. Cooperative gating of HV1. The HV1 dimer behaves as expected of a
classical Hodgkin – Huxley n2 system. The WT channel in most species is a
dimer in which both protomers must undergo a conformational change
before either conducts. This manifests as sigmoidal activation kinetics in
hHV1 (a). Truncation of the C terminus eliminates coiled-coil interaction and
results in each monomer apparently functioning independently. In monomeric
constructs (b), activation is exponential and is five to seven times faster than in
the dimer [52,83,84]. Lines show single exponential fits; both currents were
recorded at þ50 mV at a symmetrical pH of 7.5. In (c), the red trace is
the fluorescence signal from a tag attached to S4 in dimeric CiHV1, showing
the exponential time course of its movement. The black trace shows the cur-
rent, with its sigmoid turn-on. The green trace is the square of the red
fluorescence signal, matching the current in the classical Hodgkin – Huxley
manner, in which both protomers must activate before current is observed.
(a,b) Reprinted with permission from Musset et al. [83] (Copyright &
2010 The Physiological Society) and (c) Reprinted with permission from
Gonzalez et al. [85] (Copyright & 2010 Nature Publishing Group).
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2. HV1 exhibits cooperative gating
As shown in figure 1, HV1 is a dimer, but each protomer has

its own conduction pathway. The channel is voltage-gated,

meaning that it opens when the membrane potential is

depolarized, i.e. made more positive. Compared to most

voltage-gated ion channels, HV1 opens extremely slowly

(figure 2), at least in mammals. Voltage-gated Naþ channels,

for example, open within a millisecond or so, triggering an

action potential in nerve or muscle cells. Kþ channels in the

same cells open only slightly more slowly, to repolarize the

membrane. Although in snail neurons where proton currents

were first identified, HV1 are as fast as other channels [4,12],

mammalian HV1 are approximately 103 slower. When HV1 is

forced to function as a monomer, it continues to exhibit the

main properties of the dimer, but it opens five to seven

times faster [52,83,84], as seen in figures 2a,b.

There is agreement that the two protomers in the HV1

dimer gate cooperatively, but not on precisely what ‘coopera-

tive gating’ means. One definition of cooperative gating of

HV1 is that a voltage-sensitive conformational change (gener-

ally envisaged as outward movement of the S4 helix) must

occur in each protomer before either one can conduct [85].

Figure 2c illustrates that HV1 is well described by this type

of cooperative gating, analogous to that proposed by Hodg-

kin and Huxley for squid axon Naþ and Kþ channels [86].

In the latter channels, three to four identical ‘particles’

(what we now would call VSDs) were proposed, and molecu-

lar biology eventually confirmed that there are four subunits

in both types of (tetrameric) channel [87]. An alternative pro-

posal is that strong positive cooperativity exists in HV1 such

that opening of one protomer greatly accelerates the opening

of the other [88], analogous to the cooperative binding of

oxygen to the four haem groups in a haemoglobin molecule.

The gating model discussed below in §5.2 illustrates a poss-

ible mechanism for DpH dependent gating, which will be

discussed later. In this model, the channel gates coopera-

tively, and the final concerted opening process results from

protonation of both protomers at internal locations [89].
3. What is the difference between open and
closed HV1 channels?

A straightforward, if reductionistic, way to dissect the physical

process of gating would be to compare the structures of open

and closed HV1 channels, which would reveal which parts

must move and by how much. This is not possible at present,

because only one crystal structure exists and this is presumed

to be in a closed state (i.e. the membrane potential in the crystal

is effectively 0 mV and mHV1 is closed at 0 mV). The molecule
crystallized was a chimeric protein that includes parts of mouse

HV1 (mHV1) spliced together with parts of two other proteins

[90]. In addition, electron paramagnetic resonance (EPR) spec-

troscopy data exist for the human HV1, hHV1, also in a

presumed closed state [91]. A growing number of homology

models have been produced that often reflect the preconceived

notions of their creators [72,77,83,92–98]. These are based

mostly on homology with the VSDs of other voltage-gated ion

channels [99]. The main differences are with regard to the

extent of movement of the S4 helix during gating. A different

approach by Li et al. [91] was to use the crystal structures of

the ‘down’ and ‘up’ states of a voltage-sensing phosphatase

[100] as templates. To create a homology model, a starting con-

formation is selected based on structures of homologous

proteins, which is allowed to relax using molecular dynamics

(MD) simulations. Sometimes multiple possible templates are

assumed and statistical analysis or other criteria reveal the

more probable model [93,94,99]. Accurate homology models

would provide a starting point for understanding gating. How-

ever, the value of structural information, preferably structures

for both closed and open channel proteins, cannot be overstated.

The question how open and closed channels differ is more

difficult and subtle for HV1 than it is for other kinds of ion

channels, because protons can and do traverse pathways

that other ions cannot [68,69,101–107]. Normal ions require

a pore wide enough to accommodate them, typically

accompanied by water; often there is a ‘single-file’ region
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within which ions and water molecules cannot pass each

other [87,108–110]. Proton pathways through proteins consist

of hydrogen-bonded chains that may include any combi-

nation of water and side chains of certain amino acids

[68,78,80,101,111–113]. Protons transfer across hydrogen

bonds between waters or titratable groups; exclusion of

other ions can be achieved by packing the protein to preclude

water or foreign ion permeation [69]. There need not be any

‘pore’ as such; in principle, a channel might conduct protons

but not water. In contrast with other ion channels, it is not

obvious a priori that conducting and non-conducting states

of proton channels would differ in any predictable and

easily observable way. For example, the M2 proton channel

of influenza A virus ‘opens’ to conduct Hþ with high

[114,115], albeit not perfect, selectivity [116–118] when the

third of four His residues in a ring is protonated [119–124];

this produces only a subtle conformational change—a slight

expansion of the ring due to electrostatic repulsion, which

is nevertheless sufficient to permit Hþ shuttling.

Protons (and to a lesser extent OH–) diffuse through

water approximately five times faster than other ions [125]

because the proton alone can move by a Grotthuss hopping

mechanism [126,127]. Other ions must diffuse around

waters, whereas protons can save time and distance by vir-

tually hopping ‘through’ waters because, crucially, the

identity of the proton may change with each transfer [128].

Water contains 110 M hydrogen atoms, each of which is inter-

changeable with the excess proton in H3Oþ. Because the

mechanism of proton transfer in water is highly efficient,

proton pathways through proteins typically comprise

mostly water [103].

The crystal structure of closed HV1 revealed two hydro-

phobic regions in the permeation pathway [90]. The

presumption was that these hydrophobic zones would be smal-

ler or absent in the open (conducting) state. However, most

homology models of the open state of HV1 also predict distinctly

hydrophobic regions in the HV1 permeation pathway [94,96,98].

It is instructive that the mean hydration profile calculated for a

series of hHV1 mutants was indistinguishable for constructs

found experimentally to be proton-selective, anion-permeable

or non-conducting [95]. In addition, an MD simulation of pre-

sumed closed and open states of hHV1 revealed no clear wet/

dry transitions [98]. Nevertheless, the conductance of hHV1

mutants in which Asp at position 112 was replaced with various

neutral amino acids decreased with hydrophobicity of the sub-

stituent, to zero (undetectable) for the two most hydrophobic

amino acids Val and Ile (fig. 9 in [129]). Evidently, a sufficiently

hydrophobic region can occlude even Hþ conduction, but

whether HV1 gating uses a tunable hydrophobic constriction

[96] is not clear at present. Introduction of His into the S4 helix

as R205H results in proton leakage in closed hHV1 channels

[72]. This result suggests that Hþ conduction is occluded at

only a single constriction in the closed state.
4. What evidence supports molecular movement
during gating of HV1 channels?

4.1. What evidence supports molecular movement
during gating of other voltage-gated ion channels?

In part because of its relative novelty, most people who study

HV1 today previously or contemporaneously worked on
other ion channels. Consequently, we all have preconceptions

of how voltage-gated channels work, and we tend to project

onto HV1 the properties and mechanisms that apply to other

(more extensively studied) channels. Several types of exper-

imental evidence provide information about the extent of

molecular movement of channels: gating currents, accessibility

studies, FRET (fluorescence resonance energy transfer)

measurements, and structural studies including X-ray crystallo-

graphy and EPR. Similar experiments performed on HV1 are

discussed in § 4.3. Most such studies indicate substantial move-

ment of the S4 transmembrane segment during gating of other

voltage-gated ion channels [110,130–139]. The S4 helix is

believed to be the main voltage-sensing element of voltage-

gated ion channels, because it has a series of cationic residues

(mostly Arg with occasionally Lys) along its inner wall,

spaced at every third position so that they line the pore

[61,140]. It is widely believed that voltage gating occurs

when S4 moves outwards, with a twist [141]. Recent studies

conclude that four Arg move from intracellular towards extra-

cellular positions in the Shaker Kþ channel [134,142–145].

Because the cationic Arg are thought to interact with acidic resi-

dues in other parts of the VSD [146–147], one may quantify S4

movement by the number of discrete ‘clicks’ each Arg moves,

being stabilized sequentially by the negatively charged

groups as S4 ratchets outwards. Tao et al. [143] proposed that

each gating charge moves through a ‘gating charge transfer

center’ where it interacts with two acidic groups. S4 appears

to move slightly less in Naþ channels [148,149], and even less

in CiVSP, just one click [100]. The default starting point of

our imagination is, therefore, our view of how other VSD-con-

taining molecules move during gating.

We now step back to the foundation of modern ion

channel research, Hodgkin & Huxley [86]. Based on their pio-

neering application of the voltage-clamp technique, they

proposed that the pathway for ionic currents could be acti-

vated by the movement of a large quantity of charge across

the membrane. They measured ionic currents using voltage

clamp, and from the maximum current (I ) at each voltage

(V ) and Ohm’s Law they calculated the conductance (inver-

sely related to resistance) G ¼ 1/R ¼ I/V. Assuming that

current through a single type of channel has been isolated,

the conductance is roughly proportional to the fraction of

channels that open at each voltage. The G–V relationship

thus shows the probability of channel opening as a function

of voltage. Hodgkin and Huxley commented on the extreme

steepness of the G–V relationship, from which they calcu-

lated that the equivalent of six elementary charges (e0) must

cross the membrane for each conduction site (now called a

‘channel’). Later, more sophisticated estimates increased the

gating charge for voltage-gated Naþ, Kþ and even Ca2þ chan-

nels to 12–14 e0 per channel [150–154]. The gating currents

predicted by Hodgkin and Huxley to reflect the movement

of charges within the membrane have been detected

[155–158]. A crucial discovery was that replacing each of

four Arg in S4 individually with His produced a proton-selec-

tive pathway through the Shaker Kþ channel VSD [63–65].

Each mutant behaved as though protons (carried on a hydro-

nium ion) could approach the His, bind, and then be

translocated to the other side. This provided strong evidence

that only a quite narrow region of the VSD is inaccessible to

aqueous solution; and that the VSD is hourglass-shaped

with large aqueous vestibules. If the first Arg is replaced by

an amino acid smaller than His, a non-selective cation current



Figure 3. Side view of the open human HV1 channel, with the external end
up. Transmembrane helices are colour-coded: S1 ¼ red, S2 ¼ yellow, S4 ¼
blue and S3 is shown as lines to be unobtrusive. Key amino acids are labelled
and shown with side chains as sticks. Asp112 is crucial for selectivity; Phe150

demarcates inner and outer aqueous vestibules and the three Arg in S4 sense
voltage. Figure is based on the model of Li et al. [91]. Note that Asp112 inter-
acts with Asp208 [94], and Arg211 is below Phe150, and thus is exposed to the
inner vestibule. Drawn with PyMol.
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is seen [159]. Intriguingly, even without Arg mutation, the iso-

lated Shaker VSD (i.e. with the pore domain S5–S6 removed)

conducts cations, with a strong preference for protons [62].

The short region between the vestibules has been called var-

iously a hydrophobic gasket [91,160], hydrophobic plug

[62,96,161,162,] or hydrophobic barrier [163]. The importance

for voltage gating is that most of the transmembrane electric

field drops across this hydrophobic region. The aqueous ves-

tibules are low-resistance pathways in series with the high-

resistance hydrophobic gasket. Consequently, if a charge

moves or switches its accessibility from one side of the short

hydrophobic region to the other, the result is electrically

indistinguishable from the charge crossing the entire membrane.

4.2. Gating charge movement
Gating mechanisms can be constrained by measuring the

amount of charge that moves when the channel opens, as

‘gating current’. Unfortunately, this measurement is more

difficult for HV1 than for other channels [82]. Direct measure-

ment of gating currents using voltage clamp requires

eliminating the permeant ion, which is impossible for Hþ,

or blocking the current by occlusion, but all known potent

inhibitors of HV1 modify gating and exhibit state dependence

[164,165]. A recent approach is to measure HV1 gating cur-

rents in a non-conducting mutant [166,167]. Very rough

estimates of gating charge can be obtained from the slope

of a Boltzmann function fit to the gH–V relationship; a

more reliable estimate can be obtained from its limiting

slope at large negative voltages [168,169].

The channel at the focus of this review, HV1, has only

three Arg in its S4 helix [5,6], which remains true for

confirmed HV1 in all species thus far [2,3,10,11,19,170–172].

It is, however, a dimer that operates cooperatively

[52–54,83,85,88,173,174]. If all three Arg moved effectively

across the entire membrane electical field when HV1

opened, one would predict a gating charge of 6 e0 for the

dimer. Remarkably, this is precisely the value that was

obtained from limiting slope measurements a decade before

the gene was identified [175,176]! Tetrameric voltage-gated

ion channels have four VSDs (figure 1), each moving approxi-

mately three charges for a total of 12–14 e0; the two VSDs of

the HV1 dimer together move half this charge. Similar values

have been measured in heterologously expressed proton

channels: 6 e0 for hHV1, [177], 6 e0 for CiHv1 [178], 5.5 for

HtHV1 [172] and 4 e0 for mHV1 [84]. Consistent with the

cooperative gating mechanism, monomeric constructs exhibit

gating charge just half of those values: 3 e0 for CiHv1 [85] and

2 e0 for mHV1 [84]. Finally, mutation of each of the three

Arg in S4 to Asn reduced the gating charge assessed by the

limiting slope method [178]. However, despite everything

working out so neatly, it is not clear that all of the gating

charge movement in HV1 results from S4 movement (as

will be seen shortly.

4.3. Accessibility of various parts of the HV1 protein to
aqueous solution

Membrane proteins are proteins embedded in the plasma or

organelle membranes of cells. The accessibility of specific

locations on a protein gives clues to its gross topology. The

parts of the protein that are in contact with the aqueous sol-

utions on either side of the membrane should be accessible to

water-soluble probe molecules. Sites buried within the
protein or that abut the membrane are not likely to be acces-

sible. In a commonly used technique called ‘cysteine scanning

mutagenesis’ or ‘Cys scanning’, individual amino acids are

replaced with Cys, and then probed with MTS (methanethio-

sulfonate) reagents [133,135]. If a Cys is accessible, MTS

reagents may react with it and alter channel function.

Under voltage clamp, the sidedness and state dependence

(i.e. whether accessibility differs when the channel is open

or closed) of MTS action can be determined. The ‘PEGylation

protection’ assay also uses Cys scanning, but requires western

blots which cannot be done in vivo and thus reveals accessi-

bility only of presumed closed channels (because there is no

membrane potential) and does not distinguish sidedness

[179–181]. Cys scanning and MTS modification of CiHV1

channels in open or closed states clearly show changes in

accessibility consistent with outward S4 movement of

roughly one click [85,178]. Accessibility changes in the S1 seg-

ment are consistent with inward movement of S1 or simply

widening of the internal vestibule of hHV1 [182]. Inward

movement of S1, which has two to three negatively charged

groups (Asp and Glu), and outward movement of S4, with

its three cationic Arg, could both contribute to measured

gating charge movement.

Accessibility of specific locations in the protein can be

assessed in other ways. Introducing a pair of Cys or His resi-

dues and then probing with metals (Cd2þ or Zn2þ) under

voltage clamp can reveal state-dependent interactions (i.e.

the metal binds preferentially in open or closed channels)

[183,184]. When the three Arg in S4 of hHV1 (figure 3) were

individually replaced with His and probed with Zn2þ in

the open state, the outermost two, R1 and R2, were accessible

to the external solution, but R3, Arg211 was not. R2 appeared

also to be internally accessible, presumably in closed
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channels, but the innermost Arg, R3, was accessible only

from the internal solution and was clearly accessible even

in the open state [94,95]. These data were interpreted as indi-

cating that a one-click outward movement of S4 was

sufficient to result in hHV1 opening. In the closed crystal

structure of HV1 [90], the Asp112 in the middle of S1 that is

crucial to proton selectivity [75] interacts with the first Arg

in S4 (R1 or Arg205). In our model, Asp112 interacts with the

second Arg of S4, Arg208 in the open channel [94,95]. Statisti-

cal analysis of extensive MD simulations of the open hHV1

model to compare the assumptions that Asp112 interacted

either with R2 or R3 consistently supported the stability of

the R2 interaction [94]. If the R211H mutation can be taken

at face value, models in which the third Arg moves all the

way into the external vestibule must be ruled out. As with

all mutations, the interpretation of R211H assumes that the

molecule behaves essentially identically to wild-type (WT).

It is also evident that neutralizing the cationic Arg in S4

may alter the extent of S4 movement [178]. His is a con-

ditionally conservative replacement for Arg in that it might

be cationic, but its pKa in solution is 6.5 and this could be

altered by the local environment within the protein, and

thus its protonation state even at pH 6.0 is not clear. Another

note of caution is that the hHV1 molecule is highly dynamic,

even more than other VSDs [91], and this mobility might

manifest as the molecule sampling a wide range of confor-

mations. Thus accessibility by any criterion will have a

statistical component. However, that R3 is not externally

accessible in spite of the high molecular mobility strengthens

the argument that S4 outward movement is limited.
5. What is the mechanism of DpH-dependent
gating?

5.1. What is DpH-dependent gating?
One of the most distinctive properties of HV1 is DpH-

dependent gating [89]. This feature occurs universally in all

species studied thus far and is essential to all of its functions

[48]. The biological significance of DpH dependence is that

HV1 acts to extrude acid from cells (figure 4). The channel

is regulated by pH so that (with rare exceptions) it only

opens when doing so will result in outward Hþ current.

This functional ‘rectification’ is due almost entirely to the

pH dependence of gating, and does not reflect rectification

of the open channel current. Under symmetrical pH con-

ditions (pHo ¼ pHi) the open HV1 channel conducts

outward current somewhat better than inward, but by a

factor of less than 2 [89]. Four types of consequences of

HV1 activity can be listed (table 1), although some proposed

functions do not fit neatly into these categories or have uncer-

tain mechanisms. Hþ efflux will change pH on both sides of

the membrane, depending on the situation, pHo or pHi may

be more critical. One could subdivide these further: in the

face of an acid load, Hþ efflux serves to keep pHi constant,

but increasing pHi is a signal for sperm capacitation [42]. In

a number of cells, the electrical consequences of HV1 activity

are crucial (table 1). The best studied example is charge com-

pensation during the phagocyte ‘respiratory burst’, i.e.

NADPH oxidase (NOX) activity. NOX is electrogenic

[32,34,57,185] and produces massive depolarization in neu-

trophils [186–188]. HV1 compensates for the electron efflux
through NOX, limiting the extent of depolarization

[28,30,33,34,189]. Without HV1, the NOX-induced depolariz-

ation would rapidly produce self-inhibition [28,33,34].

Another cell that uses the electrical manifestations of HV1

activity is the dinoflagellate, in which an HV1-mediated

action potential triggers the bioluminescent flash [2,3].
5.2. How does DpH-dependent gating work?
Increasing pHo or decreasing pHi shifts the position of the

gH–V relationship negatively by 40 mV per unit change in

pH [89]. How does the channel sense pH, or more specifi-

cally, the pH gradient, DpH? Then, how does the channel

transduce this perception into channel opening? Many

enzymes are pH-sensitive, and they generally sense pH via

protonatable groups. In a survey of 35 arbitrarily selected

proteins, pH sensing was impaired by mutation of His in

20, Glu in 15, Asp in 7, Arg in 6, Lys in 6 and Gly in 3,

and pH sensing frequently involved multiple amino acids

[190]. It is difficult to envisage a pH-sensing mechanism

that does not involve titratable amino acid side chains,

although one exhaustive study of hHV1 found that mutation

of several dozen individual titratable residues failed to elim-

inate or even attenuate DpH-dependent gating [92]. These

authors concluded somewhat cryptically that ‘interactions

between water molecules and S4 arginines may underlie

coupling between voltage- and pH-gradient sensing’. The

only explicit model to explain DpH-dependent gating postu-

lated that one or more protonatable groups sense pH as

shown in figure 5. This model accounts for the DpH depen-

dence of gating by means of titratable groups on the

channel that stabilize the closed or open conformation

when protonated from the outside or the inside, respectively

[89]. A crucial aspect of this model is a requirement for alter-

nating access of the titratable groups; they are accessible to

the external or internal solution but not at the same time,
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and accessibility changes occur only in the deprotonated con-

dition. The voltage dependence may result from movement

of charges through the membrane electrical field during the

conformational change (states 2$ 3) or from voltage-depen-

dent binding or unbinding of protons to the titratable groups

or both. The latter possibility was called a ‘proton well’ by

Mitchell [191]. This model predicts the 40 mV shift of the

gH–V relationship and qualitatively reproduces pH effects

on gating kinetics [89]. Measurement of the pH dependence

of gating transitions [89,192] provides a basis for refining

such a model.

Recent indirect evidence indirectly supports a model for

DpH-dependent gating that involves titratable sites. The

WT hHV1 was shown to exhibit saturation of DpH depen-

dence at pHi or pHo higher than 8.0 [193], which might be

expected if the ambient pH were approaching the pKa of

one or more titratable groups. More surprisingly HtHV1, a

proton channel from the snail Helisoma trivolvis, was ident-

ified whose gH–V relationship shifted only 20 mV or less

when pHi was varied, despite normal or even hyper-

normal responses to changes in pHo (greater than 50 mV

per unit) [172]. One key difference between the sequences

of snail and human HV1 was in the S2 and S3 intracellular

linker. When His168 in human HV1 was replaced with gluta-

mine, which occupies that position in HtHV1, the mutant
human channel behaved like the snail, with greatly weakened

pHi sensitivity [194]! A shortened isoform of HV1 in human

sperm, lacking the first 68 amino acids of the intracellular

N terminus also has subnormal pHi sensing [9]. Selective

impairment in pHi sensing is consistent with distinct internal

and external pH sensors, as opposed to a centrally located

sensor that samples pH on both sides of the membrane.

Additional evidence that distinct external and internal sen-

sors exist is that mutation of an unusual tryptophan in the

hHV1 pore, Trp207, modifies pHo sensing without affecting

pHi sensing [193].

5.3. The counter-charge model for DpH-dependent
gating

The identification of the gene for the voltage-gated proton

channel HV1 [5,6] revealed its surprising homology with

the VSD of Kþ, Naþ and Ca2þ channels (figure 1). Despite

several distinct differences, for example, HV1 contains only

three Arg residues in S4, the overall arrangement is similar.

All VSDs have four transmembrane helices, with a series of

cationic Arg or Lys in S4 that are thought to sense voltage,

and several conserved acidic amino acids in S1–S3 that are

thought to interact with the cationic residues to stabilize

closed, open or intermediate states. The basic groups in S4

are thought to move outwards during channel opening, pas-

sing through a ‘hydrophobic gasket’ [91,100,195,196,] or

‘charge transfer centre’ [143] that includes an extremely

highly conserved Phe (Phe150 in hHV1), which is the delimiter

between inner and outer vestibules that access internal and

external aqueous solutions, respectively. Furthermore, Cys

scanning indicates that the general movement of S4 relative

to the other domains (S1–S3) in proton channels [85] is quali-

tatively similar to the movement that occurs in other voltage-

gated ion channels [63,133–135]. Thus, one or more Arg resi-

dues are accessible to the internal solution in the closed state,

but move outwards past a short constriction (depicted in

figure 6 as the highly conserved Phe150), to become accessible

to the external solution in the open state. We assume that the

Arg in S4 contribute to the voltage dependence of gating

[178], as they do in other ion channels [130,131,140,152,154].

The high pKa of Arg means that it will remain positively

charged under almost all conditions, a desirable property

for a voltage-sensing element. One of the unique features of

voltage-gated proton channels is that their voltage-dependent

gating is strictly regulated by the pH gradient, DpH. Specifi-

cally, increasing pHo or decreasing pHi by one unit shifts the

gH–V relationship by 240 mV [89]. This regulation results in

the proton channel opening only when the electrochemical

gradient is outwards (figure 4), such that opening will

result in acid extrusion from cells [89]. This property is

observed in all voltage-gated proton channels identified

to date, and is crucial to the physiological roles of this

channel [60,68].

The model in figure 6 illustrates a hypothetical mechan-

ism for the DpH dependence of gating. In this model,

electrostatic interactions between the Arg in S4 and acidic

residues in other transmembrane segments regulate the

DpH dependence of gating. This kind of charge–pair inter-

action has been proposed to occur within the VSD during

gating of other voltage-gated ion channels, stabilizing

closed or open states [146,147,197]. An additional twist

added to this strategy by HV1 is that charge–pair
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interactions can be inhibited by protonating the acidic

member of the pair. In this way, pH naturally exerts the

effects that are predicted more generally by the model in

figure 5. Protonation of acidic groups that are accessible to

the internal solution in the closed state destabilizes their

interaction with Arg, promoting channel opening. Conver-

sely, protonation of groups that are externally accessible in

the open state destabilizes the open state by eliminating

their interaction with Arg residues, thus promoting channel

closing. Several acidic residues unique to proton channels

(i.e. lacking homology with the VSD of other channels),

such as Asp112 and Asp185 [82], may contribute to this mech-

anism, in addition to acidic residues homologous to those

thought to interact electrostatically with S4 Arg residues in

Kþ channels [146,147,198–200]. Given that no single

point mutation abolishes DpH dependence [82,92], the

mechanism that produces the DpH-dependent gating crucial

to proton channel physiology is evidently robust and

incorporates redundancy.

Strong experimental support for this type of model exists

[82,92]. Neutralizing acidic residues that are internally acces-

sible and interact with Arg preferentially in the closed state

should destabilize the closed state and promote the open

state. In other words, neutral mutants of internal acidic

amino acids should shift the gH–V relationship negatively.

Two key residues whose neutralization promotes the open

state are Asp174 and Glu153 [82,92,96,201]. Conversely, neutra-

lizing acidic residues that are externally accessible and

interact with Arg preferentially in the open state should

destabilize the open state and promote channel closing.

Replacing acidic amino acids with neutral ones should shift

the gH–V relationship positively, and this has been reported

for Asp112, Asp123 and Asp185 [82,92,96].

Despite the simplicity and intuitive appeal of the counter-

charge model, an explicit quantitative model has not been

published, and other types of models can be envisaged.

Understanding the mechanism of DpH-dependent gating of

HV1 remains an elusive pimpernel.
6. Physiological modulators of gating
Several physiological molecules modulate HV1 gating, in

each case increasing the sensitivity to voltage as well as alter-

ing the kinetics of the response. The best characterized

response is a constellation of four profound changes called

the ‘enhanced gating mode’, which occurs in phagocytes

during the ‘respiratory burst’ when phagocytosed bacteria

are killed or agonists like chemotactic peptides are applied

[57,189,202]. The proton current increases, activation (channel

opening) becomes much faster, deactivation (channel closing)

much slower and the gH–V relationship shifts negatively by

40 mV [57,60,68,202,203]. In most cases, the signalling path-

way involves protein kinase C (PKC) [56,60,68,204–206],

which phosphorylates the hHV1 molecule at Thr29 in the

intracellular N terminus [8,55]. Another type of gating enhan-

cer is arachidonic acid [207] and other unsaturated long-chain

fatty acids [42,208]. Arachidonic acid can increase Hþ cur-

rents directly [206–212], but can also act indirectly by

activating PKC [206]. The actual physical mechanism by

which gating enhancers enhance gating is unknown. The

PKC phosphorylation site Thr29, for example, is located in

the mostly disordered intracellular N terminal region, and

how it manages to influence gating can only be speculated.
7. Summary
Given the uncertainties in interpreting data and the inaccessi-

bility of the events and structures responsible for gating and

conduction in hHV1, what conclusions can we draw? To some

extent, gating and conduction are not such clearly separable

processes as they are in other channels. Protons both carry

current and also tightly regulate when the channel will

open or close. Gating at minimum requires rearrangement

between conformations that permit or prevent selective Hþ

conduction. That gating is regulated by both voltage and

pH constrains possible mechanisms. Although little molecu-

lar movement is required to effect gating by a priori



rsif.royalsocietypublishing.org
J.R.Soc.Interface

1

10
considerations, many types of evidence support some move-

ment occurring, especially of the S4 helix. The dynamic

nature of hHV1 revealed by EPR means that there is extensive

motion [91], but the nature of the motion is unspecified. That

the selectivity filter retains function when repositioned from

position 112 to 116 in the S1 helix (WT Asp112 to V116D)

means that there is some leeway in creating an open and

Hþ-selective conducting state, but the fact that moving Asp

to other locations failed to produce Hþ current means that

Hþ-selective conduction has fairly stringent requirements

[95]. That many point mutations cause loss of selectivity or

abolish function altogether [82] indicates that there are a

number of places in the HV1 molecule where arbitrary

changes are not allowed. Evidently, it is easier to impair func-

tion than to explain it. The more exotic mechanism of DpH-

dependent gating most probably involves titratable sites,

but if so, these must exhibit redundancy, because DpH
dependence is not eliminated by single point mutations

[82,92].
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Endnote
1Amino acids in proteins are numbered starting from the N terminus.
Because there are differences in the primary sequences in different
species, the numbering of equivalent positions differs. The first Arg
in S4 in human HV1 is at position 205, but in mouse it is 201.
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