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Abstract

Dispositional anxiety is a stable personality trait that is a key risk factor for internalizing
disorders, and understanding the neural correlates of trait anxiety may help us better
understand the development of these disorders. Abnormal cortical folding is thought to
reflect differences in cortical connectivity occurring during brain development. Therefore,
assessing gyrification may advance understanding of cortical development and organiza-
tion associated with trait anxiety. Previous literature has revealed structural abnormalities
in trait anxiety and related disorders, but no study to our knowledge has examined gyrifica-
tion in trait anxiety. We utilized a relatively novel measure, the local gyrification index
(LGI), to explore differences in gyrification as a function of trait anxiety. We obtained struc-
tural MRI scans using a 3T magnetic resonance scanner on 113 young adults. Results
indicated a negative correlation between trait anxiety and LGl in the left superior parietal
cortex, specifically the precuneus, reflecting less cortical complexity among those high on
trait anxiety. Our findings suggest that aberrations in cortical gyrification in a key region of
the default mode network is a correlate of trait anxiety and may reflect disrupted local pari-
etal connectivity.

Introduction

Dispositional anxiety is a stable personality trait with biological underpinnings [1] that is a risk
factor for numerous psychiatric disorders, including anxiety disorders, depression, and sub-
stance use [2-4]. Understanding individual differences in brain structure associated with this
personality trait has the potential to advance understanding of the etiology of these burden-
some disorders.

Previous research has shown that trait anxiety and anxiety-related traits are associated with
variation in cortical volume and thickness of regions implicated in anxiety-related processes.
For instance, trait anxiety and neuroticism have both been linked to reduced thickness in the
orbitofrontal cortex [1,5,6]. Behavioral inhibition, a construct similar to trait anxiety, has been
associated with decreased gray matter volume in the medial orbitofrontal cortices and the pre-
cuneus [7]. The orbitofrontal cortex is important for various cognitive and emotional processes
that are thought to be impaired in anxiety, such as extinction learning [8]. Additionally, both
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the orbitofrontal cortex and precuneus have been identified as nodes in the default mode net-
work (DMN), a neural network involved in self-referential or self-focused attentional process-
ing [9-11]. This network is particularly relevant for internalizing disorders such as anxiety and
depression, as DMN dysfunction may be a core neural substrate of pathological self-focused
thought, such as rumination or worry [12-14].

As these studies indicate, trait anxiety is associated with abnormalities in cortical volume
and thickness; however, to our knowledge no one has assessed the relationship between trait
anxiety and cortical folding or gyrification. The process of gyrification begins in the second tri-
mester in utero [15,16], and is thought to be largely complete by the third trimester [17]. Gyri-
fication has been posited to reflect underlying structural connectivity because cortical folding
allows for more efficient network wiring as surface area expands in the rapidly developing
brain [18]. Initially, theories of gyrification argued the ratio of folding to surface area (the gyri-
fication index) [19] remains relatively constant after the first few years of life, and therefore
should primarily reflect early developmental, and genetic influences [17]. However, more
recent evidence has pointed to developmental changes in gyrification throughout adolescence
and adulthood [16,20-22]. Additionally, monozygotic twins have differences in gyrification
patterns, suggesting a greater role for environmental factors influencing gyrification, more so
than measures of cortical volume [23,24]. This is particularly true within more superficial sulci
[25]. Therefore, differences in gyrification patterns may arise across a larger window of devel-
opment than previously thought. Importantly, gyrification has been linked to measures of cor-
tical connectivity, both functional [26] and structural [27]. Thus, abnormal cortical folding
may provide insight into variation in cortical connectivity that may arise during cortical
development.

Aberrant gyrification has been linked to various psychiatric disorders such as schizophrenia
[28,29] and autism [30,31]. Abnormal morphology may, therefore, represent a disruption in
neurodevelopment that puts one at risk for these and other disorders. Of most relevance for
the current study, investigations across clinical samples of anxiety and depression in adults
have revealed gyrification abnormalities in the precuneus and posterior cingulate, another key
node in the posterior DMN [32-34]. Additionally, there is some evidence suggesting that gyri-
fication abnormalities are linked to dysfunction in this network. Nixon and colleagues [33]
found that individuals with depression displayed hypogyrification in the precuneus, as well as
increased task-based functional connectivity between the precuneus and anterior nodes of the
DMN. Since the DMN is thought to subserve self-focused thought, excessive connectivity may
reflect pathological self-focus such as worry [13,14]. Thus, research in this area suggests that
there may be a link between gyrification and DMN dysfunction in internalizing disorders that
may reflect a vulnerability to developing an anxiety or depressive disorder.

The aim of the current study was to investigate abnormalities in cortical folding that may be
associated with trait anxiety, a core risk factor for some of the most prevalent forms of psycho-
pathology, including anxiety disorders, depression, and substance use. Examining gyrification
alongside trait anxiety may provide us with important clues about structural differences that
arise during neurodevelopment that are associated with this important risk factor. We used a
three-dimensional measurement of gyrification, the local gyrification index (LGI) [35], to
assess differences in gyrification as a function of trait anxiety.

Materials and Methods
Participants

One hundred and twenty one individuals ranging from 18 to 35 (72 females) were recruited
from the University of Wisconsin-Milwaukee student body and local community to participate
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in the study. All aspects of this study were approved by both the Medical College of Wisconsin
and the University of Wisconsin, Milwaukee (IRB# PRO00012620). Informed written consent
was obtained from each participant in accordance with the University of Wisconsin-Milwau-
kee and Wisconsin Medical College Institutional Review Boards. Mean age of the sample was
21.9 + 3.8 years. Subjects were excluded from the study if they were left handed, had a history
of significant head trauma, contradiction to magnetic resonance imaging, history of a neuro-
logical disorder, psychotic disorder, or bipolar disorder, as assessed by the Structured Clinical
Interview for DSM-IV Disorders [36].

Eight subjects were excluded from the final analyses. Six were dropped due to excessive
motion during scanning, one was dropped due to technical issues with the scanner, and one
was dropped due to the presence of manic episodes. Final data analyses included the remaining
113 subjects.

Quantifying Trait Anxiety

Participants completed the Trait version of the Spielberger State-Trait Anxiety Inventory
(STAI) [37], a 20-item questionnaire that has high test-retest reliability as well as high internal
consistency [38]. The mean STAI score was 39.7 + 10.7 (range 21-66).

MRI Acquisition

High resolution spoiled gradient recalled (SPGR) images were acquired in a sagittal orientation
(TR = 8.2ms; TE = 3.2ms; FOV = 24cm; flip angle = 12°; voxel size (0.9375 x 0.9375 x Imm) on
a 3.0 Tesla short bore GE Signa Excite MRI system using a 12-channel head coil.

Cortical Reconstruction and LGI Maps

FreeSurfer 5.0 (www.nmr.mgh.harvard.edu/freesurfer) [39,40] installed on a Red Hat Enter-
prise Linux v.6.6 was used to reconstruct the cortical surface as a triangular mesh. The Freesur-
fer reconstruction pipeline is described in more detail in [39], but consists of transformation to
Talairach space, normalization of intensity, removal of non-brain tissue (skull), and segmenta-
tion of gray and white matter. In addition, we used manual editing to further correct the pial
and white matter surfaces and remove skull and dura mater left over from skull-stripping.

The LGI, developed by Schaer and colleagues [35], was used to assess the ratio of buried to
visible cortex, or amount of gyrification. This technique is a three-dimensional extension of the
GI technique of Zilles and colleagues [19]. This new method is fully automated, and therefore
provides a less subjective measure that takes into account the three-dimensional nature of the
cortical folds and is not biased by the orientation of the slices [35]. In addition, the primary
advantage is the ability to localize specific abnormalities in cortical folding, whereas previous
methods only yielded a global measure of gyrification. The FreeSurfer LGI computation creates
a triangulated mesh of the outer hull of the brain, calculates the LGI ratio between the pial sur-
face and outer hull at the center of a 25 mm spherical region of interest, and propagates these
values onto the pial surface, assigning LGI values to each vertex on the mesh surface [35,41].

Statistical Analyses

The relationship between trait anxiety and gyrification was assessed on surface maps at every
vertex in the brain using the different offset, different slope (DODS) design provided in Qdec
in FreeSurfer, with age and sex added as covariates. LGI values were first mapped to a normal-
ized brain for each subject. We applied a smoothing kernel of 5 mm FWHM. To correct for
multiple comparisons cluster correction was done using Monte Carlo simulation with 10,000
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iterations. Using a vertex-wise threshold of p < .05, a minimum cluster size of 688.85 mm? was
considered significant.

For clusters showing a significant relationship between LGI and trait anxiety, we extracted
average LGI, along with surface area and cortical thickness. Although these measurements
have been linked to gyrification [20,21], they have different developmental trajectories [42],
thus, examining these measurements jointly may provide a more comprehensive account of
structural differences related to trait anxiety. Cortical thickness was defined as the distance
between the gray and white matter boundary. This distance was calculated at each vertex and
then averaged within significant clusters. Surface area was calculated by assigning the average
area of surrounding triangles to each vertex and summing those values within significant clus-
ters to obtain total surface area for the cluster. Multiple regressions, conducted in SPSS, were
used to determine the relationship between LGI and surface area, cortical thickness, and trait
anxiety. Age and sex were used as covariates in these analyses, and the results are presented in
partial correlations.

Results

The vertex-wise analysis revealed a negative correlation between trait anxiety and LGI in the
precuneus in the left hemisphere (cluster size = 2608.73 mm?, 5940 vertices, cluster corrected p
=.003; Fig 1). There were no regions where LGI was positively associated with trait anxiety,
and there was no moderating effect of sex. There was no relationship between anxiety and gyri-
fication in the right hemisphere.

We conducted follow up analyses to better understand how other features of the cortical
surface may be related to or explain differences in gyrification in the precuneus. Specifically, we
correlated average surface area and cortical thickness with average LGI within the significant
precuneus cluster. Controlling for the effects of sex and age, we found that surface area was
positively associated with LGI (r = 0.204, p = 0.032; Fig 2A). Additionally, we found that corti-
cal thickness was negatively correlated with LGI (r = -0.253, p = 0.007; Fig 2B). The relation-
ships between these measurements and gyrification are consistent with previous findings
[20,21]. To determine whether differences in surface area and cortical thickness accounted for
the relationship between LGI and trait anxiety, we assessed the relationship between average
precuneus LGI and trait anxiety with average surface area and cortical thickness added as
covariates (in addition to age and sex). We found that even after controlling for variance in sur-
face area and cortical thickness, there was still a negative association between trait anxiety and
LGI (r = -0.315, p = 0.001; Fig 2C).

Discussion

In the current study, we investigated differences in cortical gyrification associated with disposi-
tional anxiety. We found that there was less gyrification in the left precuneus as dispositional
anxiety increased. Although both cortical thickness and surface area were associated with gyri-
fication, the relationship between precuneus gyrification and trait anxiety remained significant
when controlling for these other cortical measurements. These findings suggest that there may
be differences that arise during neurodevelopmental in the precuneus in those with disposi-
tional anxiety, though longitudinal replication is warranted. Since theoretical [43] and empiri-
cal work [26,27,33] have linked gyrification to underlying cortical connectivity, these
aberrations in cortical morphology may be indicative of abnormalities in connectivity between
the precuneus and corresponding networks.

Functionally, the precuneus is involved in broad attentional and memory processes, as well
as self-reflection and self-focused thinking [44], and is a key node in the DMN [9-11]. Studies
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Fig 1. Decreased precuneus gyrification is associated with trait anxiety. (A) Inflated and pial surface
maps of the left hemisphere demonstrating decreased gyrification in the precuneus as a function of trait
anxiety. Images on the left depict the medial view of the left hemisphere. Images on the right are a view from
the top of the right hemisphere and are tilted 30 degrees to provide a better angle for viewing the cluster
extent. (B) Scatterplot of the correlation between trait anxiety and average LGl within the precuneus cluster.

doi:10.1371/journal.pone.0149434.g001

of anxiety and anxiety disorders have found abnormalities in both activation and functional
connectivity of the DMN [45]. Increased DMN activation has been also been linked to subjec-
tive reports of worry [13,14]. Additionally, several studies have found that in healthy individu-
als, precuneus activation is negatively correlated with activation of the amygdala [46,47].
Moreover, connectivity between these regions has also shown to be altered in social anxiety
[48], panic disorder [49] and in youths with generalized anxiety disorder [50]. Thus, the precu-
neus may play a modulatory role in affective processing, which is disrupted in anxiety [7,47].
The current findings raise the possibility that structural abnormalities in the precuneus may
underlie some of the functional abnormalities previously observed in anxiety in this region and
related circuitry.

Our findings are consistent with previous studies showing precuneus structural abnormali-
ties in anxiety-related personality dimensions and LGI-specific precuneus findings in clinical
populations. Both behavioral inhibition [7] and harm avoidance, [51] have been associated
with decreased precuneus gray matter volume. This relationship has also been detected in trait
anxiety, but did not survive correction for multiple comparisons [52]. Additionally, although
this is the first study to assess gyrification within dispositional anxiety, our findings are consis-
tent with previous studies examining gyrification in clinical samples of anxiety and depression.
Yoon and colleagues [32] demonstrated that hypogyrification in the precuneus was associated
with greater severity of symptoms in panic disorder, and Zhang and colleagues found precu-
neus/posterior cingulate cortex (PCC) hypogyrifaction in individuals with depression. Nixon
and colleagues [33] replicated the finding of decreased precuneus gyrification in depression
and further showed that this hypogyrification was associated with hyper-connectivity between
the precuneus and the dorsal lateral prefrontal cortex. Their findings are consistent with the
hypothesis that morphological abnormalities may reflect altered functional connectivity. The
present study extends these previous findings by suggesting that abnormalities in precuneus
cortical folding across these disorders may in part be due to the presence of these abnormalities
in dispositional anxiety, a core risk factor that is common to these emotional disorders [2-4].
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As posited above, the current findings may provide insight into the development of trait
anxiety by demonstrating a structural correlate that may arise during neurodevelopment.
Although earlier theories posit that the degree of brain gyrification takes place primarily in
utero and then stays constant through childhood and beyond [16,17], recent evidence has sug-
gested that there are developmental changes in gyrification throughout the lifespan [16,20-22].
Since the age of onset for various anxiety disorders ranges from early childhood to adulthood
[53], it is hard to definitely understand when these cortical differences occur without assessing
changes longitudinally. Additionally, the current study can only infer that these patterns may
represent abnormalities in neurodevelopment, for we did not assess cortical changes across
development or between individuals of different ages. However, structural abnormalities in the
precuneus and posterior cingulate have been identified in pediatric samples, with anxious
youths showing gray matter volume abnormalities [54,55], supporting the possibility that the
current LGI findings represent aberrations in early neurodevelopment.

We also investigated how other aspects of cortical structure correlated with LGI in the pre-
cuneus in order to provide a broader picture of the cortical surface and better understand how
these measurements are related to each other. Consistent with previous research [20,21], sur-
face area had a positive relationship with LGI while cortical thickness had a negative relation-
ship. While LGI was associated with thickness and surface area, these variables did not fully
account for the relationship between LGI and anxiety. Since other cortical structural measures
could not fully explain the relationship between LGI and trait anxiety, it is possible that other
structural factors are influencing this relationship. For instance, certain theories of gyrification
have emphasized the role of white matter tension [43] or white matter constraints [56] in the
development of gyrification. Therefore, it is possible that the current findings reflect underlying
differences in white matter strength. Further research on gyrification may be useful in under-
standing the association between gyrification abnormalities and the structural connectivity of
broader neural networks in this population.

Conclusions

In conclusion, we found differences in cortical gyrification associated with trait anxiety that
could not be explained by surface area or thickness within a key DMN node. These findings are
consistent with findings in clinical populations, highlighting the possibility that differences in
local parietal connectivity are associated with a personality dimension that is a key risk factor
for many of the most common forms of psychopathology. Although we did not investigate
connectivity directly, future research may shed light on whether these structural differences are
linked to disruptions in network connectivity. This structural aberration may in turn contrib-
ute to the emotional difficulties evident in high trait anxiety through influences on a primary
node of the DMN subserving self-referential and self-conscious thought.
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