Article

Asymmetric Vinylogous Aldol-type Reactions of Aldehydes with Allyl Phosphonate and Sulfone

Wen-Jun Yue,
Cheng-Yuan
Zhang, Liang Yin
liangyin@sioc.ac.cn

HIGHLIGHTS
Asymmetric vinylogous aldol

Excellent regioselectivity

HWE and Julia
olefinations

Article

Asymmetric Vinylogous Aldol-type Reactions of Aldehydes with Allyl Phosphonate and Sulfone

Wen-Jun Yue, ${ }^{1}$ Cheng-Yuan Zhang, ${ }^{1}$ and Liang Yin ${ }^{1,2, *}$

Abstract

SUMMARY Two catalytic asymmetric vinylogous aldol-type reactions of aldehydes with allyl phosphonate and allyl sulfone have been uncovered in good to high yields for the first time. The bulky ligand-(R)-DTBM-SEGPHOS-was found to be the key to perfectly control both regio- and enantioselectivities. Transformations of the vinylogous products (including Horner-Wadsworth-Emmons and Julia olefinations) were successfully realized by virtue of the phosphonate and sulfone moieties. Moreover, the present methodology was successfully applied in the asymmetric synthesis of natural products.

INTRODUCTION

Asymmetric vinylogous aldol reaction (VAR) has been one of the most important reactions in the synthesis of complex natural products, especially in the synthesis of polyketides. In the past decades, catalytic asymmetric VAR of aldehydes or ketones has evolved from classical Mukaiyama vinylogous aldol reaction (Denmark et al., 2005; Casiraghi et al., 2011; Pansare and Paul, 2011; Bisai, 2012; Kalesse et al., 2014; Hosokawa, 2018a, 2018b) to direct vinylogous aldol reaction (DVAR) (Li and Yin, 2018; Otsuka et al., 2013; Zhu et al., 2013; Li et al., 2014; Han and Chang, 2016; Jing et al., 2016; Ray and Mukherjee, 2018), which enjoys the advantages of easy reaction protocol and high atom economy (Trost, 1991; Anastas and Crabtree, 2009; Newhouse et al., 2009). However, the nucleophiles in DVAR were mainly limited to unsaturated carbonyl compounds and their close derivatives (Bai et al., 2017). Unsaturated phosphonates or phosphine oxides, as well as unsaturated sulfones, have never been investigated as prenucleophiles in vinylogous aldol-type reactions.

In such reactions, synthetically versatile chiral vinylogous products containing α, β-unsaturated phosphonate or phosphine oxide moiety or α, β-unsaturated sulfone motif (Nishida et al., 2008; Xue et al., 2011; Konno et al., 2012; Lefevre et al., 2013; Hornillos et al., 2015; Lim and Hayashi, 2015, 2017; Wang and Hayashi, 2018; El-Awa et al., 2009; Alba et al., 2010; Nielsen et al., 2010; Zhu and Lu, 2010; Moteki et al., 2010; Quintard et al., 2011; Moure et al., 2011; Nishimura et al., 2012; Halskov et al., 2012; Zhou et al., 2012; Hernández-Toribio et al., 2012), would be produced. Furthermore, phosphonates and phosphine oxides had great applications in medicinal and agricultural chemistry (Mucha et al., 2011; Ordóñez et al., 2012; Corbridge, 2013; Horsman and Zechel, 2017). Sulfones, especially α, β-unsaturated sulfones, were widely distributed in biologically active compounds, even in the commercial pharmaceuticals (Meadows and Gervay-Hague, 2006; Dunny et al., 2013; Woo et al., 2014; Fang et al., 2016). Therefore it is highly desirable to achieve a vinylogous aldol-type reaction of unsaturated phosphonates or phosphine oxides, as well as unsaturated sulfones.

One inherent difficulty faced in the vinylogous aldol-type reaction of allyl phosphonate or allyl sulfone is the control of regioselectivity. The addition of allyl phosphonate to aldehyde was investigated by Yuan and co-workers in detail (Scheme 1A) (Yuan et al., 1990, 1991). Treating allyl phosphonate with ${ }^{n}$ BuLi in tetrahydrofuran (THF) at $-70^{\circ} \mathrm{C}$ afforded the corresponding delocalized allylic carbanion, which reacted with benzaldehyde to give a mixture of α - and γ-adducts. α-Addition was the natural tendency and thus dominated the addition pathways, which led to the vinylogous product (γ-adduct) in significantly low yield. Increasing the steric hindrance of the alkyl group in phosphonate only led to a slight improvement of the γ-selectivity.

Furthermore, the addition of allyl sulfone to benzaldehyde catalyzed by a phosphine-based strong base was studied by Verkade and co-workers, which delivered the α-adduct in 63% yield at $-78^{\circ} \mathrm{C}$ (Scheme 1B) (Kisanga and Verkade, 2002). The same reaction promoted by stoichiometric ${ }^{n}$ BuLi also afforded the
${ }^{1}$ CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032, China
${ }^{2}$ Lead Contact
*Correspondence:
liangyin@sioc.ac.cn
https://doi.org/10.1016/j.isci 2019.03.010

A Reported Addition of Allyl Phosphonate to Benzaldehyde Dominated by α-Selectivity

B Reported Addition of Allyl Sulfone to Benzaldehyde Dominated by α-Selectivity

C This Work: Catalytic Asymmetric Vinylogous Aldol-Type Reactions of Allyl Phosphonate and Allyl Sulfone (γ-Selectivity)

D Selected Natural Products Synthesized with Horner-Wadsworth-Emmons (HWE) Olefination or Julia Olefination

Callipeltoside A

(\pm)-Indolizomycin

()-Ambruticin

Scheme 1. Aldol-type Reactions of Aldehydes with Allyl Phosphonate and Sulfone and Selected Natural Products Synthesized with Horner-Wadsworth-Emmons and Julia Olefinations
α-adduct exclusively, which was employed to prepare acyclic 2 -phenylsulfonyl 1,3-diene in 89% yield (Cuvigny et al., 1983, 1986; Chinkov et al., 2003). Obviously, it is challenging to overcome the inherent α-selectivity in the aldol-type reactions of allyl phosphonate and allyl sulfone. The other difficulty in the DVAR is the remote asymmetric induction as the functional group (aldehyde, ketone, ester, and amide generally, and phosphonate or sulfone here) is far from the reactive γ-position in form, which was viewed as a challenge in asymmetric catalysis (Shirokawa et al., 2004). To the best of our knowledge, there is no reported enantioselective method to carry out a vinylogous aldol-type reaction of allyl phosphonate or allyl sulfone (Scheme 1C).

The α-carbanions of phosphonate and sulfone have been employed as nucleophiles in Horner-WadsworthEmmons (HWE) and Julia olefinations, which were identified as two prominent synthetic tools to assemble the carbon-carbon double bond in organic synthesis, especially in the total synthesis of complex natural products (Kobayashi et al., 2018; Ma et al., 2010) (such as callipeltoside A, dictyostatin, indolizomycin and ambruticin) (Scheme 1D) (Trost et al., 2002; Ho et al., 2013; Kim et al., 1993; Liu and Jacobson, 2001). The products from the saturation of vinylogous aldol-type products ($3 / 5$) would be suitable substrates for HWE and Julia olefinations for further structure elaboration. Herein, we report two asymmetric vinylogous aldol-type reactions of aldehydes with allyl phosphonate and allyl sulfone catalyzed by a bulky chiral copper(I) complex and an organic base. The deprotonation of allyl phosphonate or allyl sulfone would generate a nucleophilic allylcopper(I) species, which afforded the vinylogous product through an asymmetric allylation via a six-member ring transition state (Scheme 1C).

RESULTS AND DISCUSSION

The reaction of allyl sulfone $4^{\prime} / 4$ and benzaldehyde ($2 a$ a) was investigated as a model reaction in the presence of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4} \mathrm{PF}_{6}\right.$, phosphine ligand, and Barton's base (Table 1). In all cases with 4^{\prime}, the vinylogous product $5 a^{\prime}$ was obtained with unsatisfactory regio- and enantioselectivities (entries 1-9). (R)-DTBMSEGPHOS, an effective bulky ligand, led to good control of the enantioselectivity in our previously reported catalytic asymmetric aldol reaction of unsaturated esters and aldehydes (Zhang and Yin, 2018) and gave excellent control of the regioselectivity. The enantioselectivity was improved from 43% to 76% by switching phenyl to 2-pyridinyl (entry 10). Lowering the temperature to $-40^{\circ} \mathrm{C}$ resulted in 97% enantiomeric excess (ee) for 5 a (entry 11). The moderate yield was enhanced to 98% by changing the ratio of $2 a / 4$, increasing the amount of Barton's base to $30 \mathrm{~mol} \%$, and prolonging the reaction time to 36 h (entries 12-14). Finally, the catalyst loading was successfully decreased to $3 \mathrm{~mol} \%$ without changing both regio- and enantioselectivities (entry 15).

By modifying the optimized reaction conditions for 4 (3 equiv. $1,20 \mathrm{~mol} \%$ Barton's base, and $-10^{\circ} \mathrm{C}$), the substrate scope of aldehydes 2 in the reaction with allyl phosphonate 1 was studied (Table 2). Aromatic aldehydes with electron-withdrawing groups or electron-donating groups were competent substrates to generate the corresponding vinylogous products uniformly in good yields with both excellent regioselectivity ($>20 / 1$) and excellent enantioselectivity ($\geq 95 \%$ ee) (3a-3o). Moreover, the reaction was not sensitive to the position of a substituent on the phenyl ring of the aromatic aldehydes. Even the sterically congested ortho- CF_{3}-benzaldehyde afforded the product 3 l in 91% yield with 95% ee. 1-Naphthaldehyde was also an excellent substrate (3p). Moreover, the present reaction conditions were applicable to various heteroaromatic aldehydes ($3 q-3 x$). Although the yields were moderate in some cases, both regio- and enantioselectivities were excellent. Particularly noteworthy are the aldehydes containing a pyridine motif (3t) and a carbazole motif ($3 x$) as these functional groups potentially can coordinate to the metal center and thus deactivate the catalyst.
α, β-Unsaturated aldehydes also served as suitable substrates (3y-3ai). Aryls, heteroaryls, alkyls, and vinyls with substituent were well tolerated at the β-position of the α, β-unsaturated aldehydes. Moreover, functional groups, such as alkyl chloride (3af), tert-butyldimethylsilyl (TBS)-ether (3ag), alkynyl (3ah), and prenyl (3ai), remained intact in the present reaction conditions. These functional groups offer the opportunity for further structure elaboration. It is noteworthy that acrolein (2ab), susceptible to conjugate addition, served as a suitable substrate to give the vinylogous product 3 ab in moderate yield with excellent enantioselectivity. The chiral aldehydes, including α, β-unsaturated aldehyde 2 aj derived from (-)-citronellal, (-)-perillaldehyde (2ak), and (-)-myrtenal (2al), were also investigated with both (R)-DTBMSEGPHOS and (S)-DTBM-SEGPHOS. In both cases, the products (3aj, 3aj', 3ak, 3ak', 3al, and 3al') were obtained in good yields with excellent diastereoselectivity, which indicated that the asymmetric

Table 1. Optimization of the Reaction Conditions ${ }^{\text {a }}$

$\begin{array}{llll}\mathrm{Ar}=\mathrm{Ph},(R)-\mathrm{R}=\mathrm{H}, \mathrm{Ar}=\mathrm{Ph},(R) \text {-SEGPHOS; }(R) \text {-QUINAP } & (R, R) \text {-QUINOXP* } \quad(R)-(S) \text {-JOSIPHOS }\left(R, R_{p}\right) \text {-TANIAPHOS } \quad(R, R) \text {-Ph-BPE } \\ \text { BINAP; } & \mathrm{R}=\mathrm{H}, \mathrm{Ar}=3,5 \text { - }^{2} \mathrm{Bu}_{2}-4-\mathrm{OMe}-\mathrm{Ph}, & \\ \mathrm{Ar}=\mathrm{ToI},(R)- & (R) \text {-DTBM-SEGPHOS } & \\ \text { TOL-BINAP } & & \end{array}$

HPLC, high-performance liquid chromatography; NMR, nuclear magnetic resonance
${ }^{\text {a }} 4 / 4$ ', $0.1 \mathrm{mmol} ; 2 \mathrm{a}, 0.2 \mathrm{mmol}$.
${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture using mesitylene as an internal standard.
${ }^{\text {c }}$ Determined by chiral-stationary-phase HPLC analysis.
${ }^{d} 4.0 .2 \mathrm{mmol} ; 2 \mathrm{a} .0 .1 \mathrm{mmol}$.
${ }^{\text {e }} 36 \mathrm{~h}$.
${ }^{\mathrm{f}} \mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ and ligand, $3 \mathrm{~mol} \%$, Barton's base $=2$ - ${ }^{\text {t }} \mathrm{Bu}-1,1,3,3$-tetramethylguanidine.
introduction was dominated by the copper(I)-catalyst. The absolute configuration of 3 a was determined to be R by transforming it to a reported compound (for details, see Supplemental Information). The absolute configurations of other products were tentatively assigned by analogy.

	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ (5 mol \%) (R)-DTBM-SEGPHOS (5 mol \%) Barton's Base ($20 \mathrm{~mol} \%$) THF (0.15 M), $-10^{\circ} \mathrm{C}, 48 \mathrm{~h}$ $\gamma / \alpha=>20 / 1$	
$R=H$, $3 a, 85 \%, 99 \%$ ee; ${ }^{\text {b }}$ $R=F$, $3 b, 81 \%, 99 \%$ ee; $R=C l$ $3 c, 74 \%, 99 \%$ ee;	$\begin{aligned} & R=F, 3 k, 90 \%, 98 \% \text { ee; } \\ & R=C F_{3}, 31,91 \%, 95 \% \text { ee; } \\ & R=O C H_{3}, 3 m, 91 \%, 98 \% \text { ee; } \end{aligned}$	$\begin{aligned} & R=C l, 3 n, 81 \%, 98 \% \text { ee; } \\ & R=B r, 30,88 \%, 97 \% \text { ee; } \end{aligned}$
$R=\mathrm{Br}$, $3 \mathrm{~d}, 77 \%, 98 \%$ ee; $R=1$, $3 \mathrm{e}, 92 \%, 99 \%$ ee; $R=\mathrm{Me}$, $3 \mathrm{f}, 80 \%, 98 \%$ ee; $R={ }^{t} \mathrm{Bu}$, $3 \mathrm{~g}, 90 \%,>99 \%$ ee; $R=\mathrm{CH}_{3} \mathrm{~S}$, $3 \mathrm{~S}, 85 \%,>99 \%$ ee; $R=\mathrm{CH}_{3} \mathrm{O}$, $3 \mathrm{l}, 81 \%, 97 \%$ ee; $R=\mathrm{CF}_{3} \mathrm{O}$, $3 \mathrm{j}, 83 \%, 99 \%$ ee;	 $3 p, 94 \%, 99 \%$ ee;	$\begin{aligned} & X=O, 3 q, 85 \%,>99 \% \text { ee; } \\ & X=S, 3 r, 91 \%,>99 \% \text { ee; } \end{aligned}$
3S, 76%, 98% ee;	3t, 55%, >99\% ee;	$3 \mathrm{u}, 85 \%$, >99\% ee;
$\begin{aligned} & X=0,3 v, 81 \%, 97 \% \text { ee; } \\ & X=S, 3 w, 90 \%,>99 \% \text { ee; } \end{aligned}$	$3 \mathrm{x}, 58 \%$, >99\% ee;	$\begin{aligned} & R=H, 3 y, 76 \%, 97 \% \text { ee; } \\ & R=M e, 3 z, 78 \%, 98 \% \text { ee; } \end{aligned}$
3aa, 85%, 98% ee;	3ab, 68\%, 93\% ee;	3ac, $58 \%, 97 \%$ ee;
3ad, 68\%, 95\% ee;	3ae, 71%, 93\% ee;	3af, 71\%, 97\% ee;

(

Table 2. Continued
HPLC, high-performance liquid chromatography; NMR, nuclear magnetic resonance
${ }^{\text {a }} 2,0.3 \mathrm{mmol} ; 1,0.9 \mathrm{mmol}$. Isolated yield was reported. Regio- and diastereoselectivity were determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture. Enantioselectivity was determined by chiral-stationary-phase HPLC analysis.
${ }^{\mathrm{b}}$ Gram-scale synthesis.
${ }^{c}(S)$-DTBM-SEGPHOS was used.

Moreover, the substrate scope of aldehydes in the reaction with allyl sulfone 4 was evaluated (Table 3). Various aromatic aldehydes with a substituent at ortho-, meta-, or para-position were suitable substrates. Both 1-naphthyl and 2-naphthyl aldehydes were well applicable. The vinylogous products (5 a- $5 \mathrm{~h}, 5 \mathrm{k}, 5 \mathrm{l}, 5 \mathrm{n}$, $50,5 p$, and $5 \mathrm{am}-5 \mathrm{aq}$) were isolated in moderate to excellent yields with excellent regio- and enantioselectivities. Heteroaromatic aldehydes also served as competent substrates without compromising enantioselectivity ($5 \mathrm{q}, 5 \mathrm{r}, 5 \mathrm{u}, 5 \mathrm{x}, 5 \mathrm{ar}$ and 5as). As for α, β-unsaturated aldehydes, aryls, heteroaryls, vinyls with substituent, and alkyls were accepted at β-position ($5 \mathrm{y}, 5 \mathrm{z}, 5 \mathrm{aa}, 5 \mathrm{ad}$, 5 ae , $5 \mathrm{at}, 5 \mathrm{au}$, and 5 ah). Moreover, the reaction conditions were successfully applied to chiral natural products bearing α, β-unsaturated aldehyde moiety, such as (-)-perillaldehyde (2ak) and (-)-myrtenal (2al). The corresponding vinylogous products ($5 \mathrm{ak}, 5 \mathrm{ak}^{\prime}, 5 \mathrm{al}$, and $5 \mathrm{al}^{\prime}$) were obtained in moderate yields with high diastereoselectivity. It is evident that in the case of (- -myrtenal with (S)-DTBM-SEGPHOS, mismatch phenomenon was observed. The absolute configuration of 5 a was assigned to be R by its transformation to a known compound (for details, see Supplemental Information). Analogically, the stereochemistry of other products was dictated tentatively. It should be pointed out that the gram-scale syntheses of both 3 a and 5 a were successfully carried out with constant results. Moreover, it should be mentioned that aliphatic aldehydes afforded α-adducts mainly in low yields at the present reaction conditions, which is a limitation of the present reactions. However, the vinylogous products of aliphatic aldehydes could be potentially accessed by the transformations of vinylogous products of various α, β-unsaturated aldehydes by means of the carbon-carbon double bond.

2, 1.0 equiv 4, 2.0 equiv	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right){ }_{4} \mathrm{PF}_{6}$ ($5 \mathrm{~mol} \%$) (R)-DTBM-SEGPHOS (5 mol \%) Barton's Base ($30 \mathrm{~mol} \%$) THF (0.15 M), $-40^{\circ} \mathrm{C}, 36 \mathrm{~h}$ $\gamma / \alpha=>20 / 1$	 5
$R=H$, $5 a, 95 \%, 97 \%$ ee; ${ }^{\text {b }}$ $R=F$, $5 b, 88 \%, 97 \%$ ee; $R=C l$, $5 c, 93 \%, 97 \%$ ee; $R=B r$, $5 d, 85 \%, 92 \%$ ee;	$R=F$, $5 K, 95 \%, 98 \%$ ee; $R=B r$, $5 a n, 85 \%, 92 \%$ ee; $R=M e$, $5 a o, 98 \%, 99 \%$ ee; $R=C F_{3}$, $5 I, 81 \%, 97 \%$ ee;	$R=F$, $5 \mathrm{ap}, 80 \%, 97 \%$ ee; $R=\mathrm{Cl}$, $5 \mathrm{n}, 81 \%, 98 \%$ ee; $\mathrm{R}=\mathrm{Br}$, $50,76 \%, 98 \%$ ee;
$R=1$, $5 e, 82 \%, 91 \%$ ee; $R=M e$, $5 f, 96 \%, 97 \%$ ee; $R={ }^{t} B u$, $5 g, 91 \%, 95 \%$ ee; $R=\mathrm{CH}_{3} \mathrm{~S}$, $5 h, 90 \%, 97 \%$ ee;		
	5aq, 88\%, 97\% ee;	5p, 97\%, 95\% ee;
$\begin{aligned} & X=O, 5 q, 81 \%, 98 \% \text { ee; } \\ & X=S, 5 r, 84 \%, 98 \% \text { ee; } \end{aligned}$	5ar, 76\%, >99\% ee;	$5 \mathrm{u}, 85 \%, 95 \%$ ee;
5as, 78\%, 97\% ee;	5x, 46\%, 93\% ee;	$\begin{aligned} & R=H, 5 y, 84 \%, 94 \% \text { ee; } \\ & R=M e, 5 z, 51 \%, 95 \% \text { ee; } \end{aligned}$
5aa, 80\%, 92\% ee;	$\begin{aligned} & R=M e, 5 a d, 50 \%, 93 \% \text { ee; } \\ & R={ }^{n} \operatorname{Pr}, 5 a e, 70 \%, 97 \% \text { ee; } \end{aligned}$	5at, 88\%, 96\% ee;
5au, 80\%, 94\% ee;	5ah, 70\%, 95\% ee;	5ak, 56\%, >20/1 dr;

Table 3. Substrate Scope of Aldehydes in the Reaction with $4^{\text {a }}$

Table 3. Continued
HPLC, high-performance liquid chromatography; NMR, nuclear magnetic resonance
${ }^{\text {a }} 2,0.3 \mathrm{mmol} ; 4,0.6 \mathrm{mmol}$. Isolated yield was reported. Regio- and diastereoselectivity were determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture. Enantioselectivity was determined by chiral-stationary-phase HPLC analysis.
${ }^{\mathrm{b}}$ Gram-scale synthesis.
${ }^{〔}(S)$-DTBM-SEGPHOS was used.

To get insights into the mechanism, rac- α - 3 a and rac- α - 5 a (racemic α-adducts) prepared according to a reported and a modified reaction procedure (for details, see Supplemental Information) were subjected to the standard reaction conditions, respectively (Scheme 2A). It was found that rac- $\boldsymbol{\alpha}$ - 3 a was completely consumed and 3a was observed in 40% yield with 99% ee, together with benzaldehyde (2a), allyl phosphonate 1 , and α, β-unsaturated phosphonate 6 . These results clearly indicated that retro-aldol reaction of rac- α-3a proceeded to afford benzaldehyde (2a) and allyl phosphonate 1 . One portion of allyl phosphonate 1 reacted with benzaldehyde (2a) to give the vinylogous product 3 a in 40% yield with 99% ee in the presence of $5 \mathrm{~mol} \%$ copper (I) catalyst and $20 \mathrm{~mol} \%$ Barton's base. One portion of allyl phosphonate 1 isomerized to α, β-unsaturated phosphonate 6 , whereas the other portion of allyl phosphonate 1 remained. The same tendency was also observed in the retro-aldol reaction of rac- $\alpha-5 a$. This phenomenon indicated that significantly reversible α-addition led to the transformation of α-adducts to γ-adducts, which finally led to excellent control of the regioselectivity.

Rac-3a and rac-5a prepared by $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4} \mathrm{PF}_{6}$-rac-DTBM-SEGPHOS-catalyzed reactions were also submitted to the standard reaction conditions, respectively (Scheme 2B). Thin-layer chromatography, ${ }^{1} \mathrm{H}$ nuclear magnetic resonance, and chiral high-performance liquid chromatographic analyses of the reaction crude mixtures indicated that slow and inefficient retro-vinylogous additions occurred, as 3a was obtained in 83% yield with -18% ee, whereas 5 a was generated in 70% yield with -8% ee. It was obvious that the retro-vinylogous aldol reactions of both (R)-3a and $(R)-5$ a proceeded selectively, which resulted in the slight enrichment of $(S)-3 a$ and $(S)-5 a$ in the reaction mixtures. However, these retro-vinylogous aldol reactions were very slow and inefficient, which would not have detrimental effect on the enantioselectivity in the catalytic asymmetric vinylogous aldol-type reactions of allyl phosphonate 1 and allyl sulfone 4 . Based on these important experimental observations and literatures (Bazán-Tejeda et al., 2006; Yamaguchi et al., 2007; Bouaouli et al., 2018), a possible reaction pathway was proposed in Supplemental Information.

The transformations of the vinylogous aldol products (3a and 5a) were carried out as shown in Scheme 3. The cleavage of unsaturated double bond in 3a was easily achieved through ozonolysis to deliver diol 8 in 67% yield after the reduction of generated aldehyde moiety with NaBH_{4}. After being protected as TBS-ether, 3a was reduced to phosphonate 10 with H_{2} in the presence of Pd / C. 10 W as easily transformed to α, β-unsaturated compounds 11 and 12 via α-functionalization and subsequent HWE olefination. The sulfone moiety in 5 a was successfully removed without touching the double bond to afford ester 13 in 52% yield after the protection of the alcohol motif. Sulfone 15 was easily accessed through the reduction of the unsaturated double bond and the protection of the hydroxyl group in 5 a, which was transformed to olefin 16 in 67% yield with $>20 / 1 \mathrm{E} / \mathrm{Z}$ ratio through modified Julia olefination. Ketone 17 was prepared from 15 in 68% yield in two steps by α-functionalization and the following removal of the sulfone group. Moreover, chiral diol 18 was synthesized from 5 a in 74% yield with $>20 / 1$ diastereoisomeric ratio (dr) in two steps through intramolecular oxo-Michael addition and the

Scheme 2. Trials for retro-Aldol Reactions of α-Adducts and γ-Adducts
cleavage of the generated acetal motif. Furthermore, the synthetic utilities of the present methodology were showcased by its applications in the asymmetric synthesis of yashabushidiol B and the formal asymmetric synthesis of (+)-cryptocaryalactone (for the details, see Supplemental Information). Moreover, our synthetic route provided a straightforward method for the asymmetric synthesis of various chiral diols 19. Some of the diols 19 (both natural and man-made) exhibited significant anti-proliferative activity on some human cancer cell lines (Narasimhulu et al., 2009; Yokosuka et al., 2002).

Limitations of Study
Aliphatic aldehydes were not applicable in the present reactions as α-adducts were obtained in low yields and no vinylogous products were generated. Fortunately, α, β-unsaturated aldehydes served as competent substrates and their vinylogous products could be potentially converted to the vinylogous products of aliphatic aldehydes through the transformations of carbon-carbon double bond.

Conclusion

In summary, two copper(I)-(R)-DBTM-SEGPHOS complex-catalyzed asymmetric vinylogous aldol-type reactions of aldehydes with allyl phosphonate and allyl sulfone were disclosed. These two reactions enjoyed advantages of 100% atomic economy, mild reaction conditions, easy reaction protocol, broad substrate scope, excellent regioselectivity, and excellent enantioselectivity. The mechanistic studies revealed a

Scheme 3. Transformations of the Vinylogous Products
significantly reversible α-addition process and a slightly reversible γ-addition process, which accounted for the perfect control of the regioselectivity in these two vinylogous aldol-type reactions. Finally, various transformations of the vinylogous products (including HWE and Julia olefinations) were successfully carried out by means of phosphonate and sulfone. Application of the present methodology in the asymmetric synthesis of complex natural products is currently on the way in our laboratory.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.03.010.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the "Thousand Youth Talents Plan," the National Natural Science Foundation of China (No. 21672235 and No. 21871287), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), CAS Key Laboratory of Synthetic Chemistry of Natural Substances, and the Shanghai Institute of Organic Chemistry.

AUTHOR CONTRIBUTIONS

L.Y. conceived the project and designed the experiments. W.-J.Y. and C.-Y.Z. performed and analyzed the experiments. L.Y. wrote the manuscript. W.-J.Y. wrote the Supplemental Information and contributed other related materials. All the authors discussed the results and commented on the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 1, 2019
Revised: February 23, 2019
Accepted: March 8, 2019
Published: April 26, 2019

REFERENCES

Alba, A.-N.R., Companyó, X., and Rios, R. (2010), Sulfones: new reagents in organocatalysis. Chem. Soc. Rev. 39, 2018-2033.

Anastas, P.T., and Crabtree, R.H. (2009).
Handbook of Green Chemistry-Green Catalysis (Wiley-VCH: Weinheim).

Bai, X., Zeng, G., Shao, T., and Jiang, Z. (2017). Catalytic enantioselective γ-selective additions of 2-allylazaarenes to activated ketones. Angew. Chem. Int. Ed. 56, 3684-3688.

Bazán-Tejeda, B., Bluet, G., Broustal, G., and Campagne, J.-M. (2006). α, β-Unsaturated δ-lactones from copper-catalyzed asymmetric vinylogous Mukaiyama reactions of aldehydes: scope and mechanistic insights. Chem. Eur. J. 12, 8358-8366.

Bisai, V. (2012). Organocatalytic asymmetric vinylogous aldol reactions. Synthesis 44, 14531463.

Bouaouli, S., Spielmann, K., Vrancken, E. Campagne, J.-M., and Gérard, H. (2018).
Mechanism of enolate transfer between Si and
Cu. Chem. Eur. J. 24, 6617-6624.
Casiraghi, G., Battistini, L., Curti, C., Rassu, G., and Zanardi, F. (2011). The vinylogous aldol and related reactions: ten years of progress. Chem. Rev. 111, 3076-3154.

Chinkov, N., Majumdar, S., and Marek, I. (2003). Stereoselective preparation of dienyl zirconocene complexes via a tandem allylic C-H bond activation-elimination sequence. J. Am. Chem. Soc. 125, 13258-13264.

Corbridge, D.E.C. (2013). Phosphorus: Chemistry, Biochemistry and Technology, Sixth Edition (CRC Press).

Cuvigny, .., Herve du Penhoat, C., and Julia, M (1983). Synthesis with sulfones (XXX): stereoselective synthesis of arenesulfonyl-1,3dienes. Tetrahedron Lett. 24, 4315-4318.

Cuvigny, T., Hervé du Penhoat, C., and Julia, M. (1986). Syntheses with sulfones XLVI: stereoselective preparation of 2-benzenesulfonyl-1,3-dienes and 2-benzenesulfonyl-1,4-dienes. Tetrahedron 42 5329-5336.

Denmark, S.E., Heemstra, J.R., Jr., and Beutner, G.L. (2005). Catalytic, enantioselective, vinylogous aldol reactions. Angew. Chem. Int. Ed. 44, 4682-4698

Dunny, E., Doherty, W., Evans, P., Malthouse, J.P.G., Nolan, D., and Knox, A.J.S. (2013). Vinyl sulfone-based peptidomimetics as antitrypanosomal agents: design, synthesis, biological and computational evaluation. J. Med. Chem. 56, 6638-6650.

El-Awa, A., Noshi, M.N., du Jourdin, X.M., and Fuchs, P.L. (2009). Evolving organic synthesis fostered by the pluripotent phenylsulfone moiety. Chem. Rev. 109, 2315-2349.

Fang, Y., Luo, Z., and Xu, X. (2016). Recent advances in the synthesis of vinyl sulfones. RSC Adv. 6, 59661-59676.

Halskov, K.S., Johansen, T.K., Davis, R.L., Steurer, M., Jensen, F., and Jørgensen, K.A. (2012). Cross-trienamines in asymmetric organocatalysis. J. Am. Chem. Soc. 134, 1294312946.

Han, J.-L., and Chang, C.-H. (2016). An asymmetric assembly of spirooxindole dihydropyranones through a direct
enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene
oxindoles with isatins. Chem. Commun. (Camb.) 52, 2322-2325.

Hernández-Toribio, J., Padilla, S., Adrio, J., and Carretero, J.C. (2012). Catalytic asymmetric synthesis of α-quaternary proline derivatives by 1,3-dipolar cycloaddition of α-silylimines. Angew. Chem. Int. Ed. 51, 8854-8858

Ho, S., Bucher, C., and Leighton, J.L. (2013). A highly step-economical synthesis of dictyostatin. Angew. Chem. Int. Ed. 52, 6757-6761.

Hornillos, V., Vila, C., Otten, E., and Feringa, B.L. (2015). Catalytic asymmetric synthesis of phosphine boronates. Angew. Chem. Int. Ed. 54, 7867-7871.

Horsman, G.P., and Zechel, D.L. (2017). Phosphonate biochemistry. Chem. Rev. 117, 5704-5783.

Hosokawa, S. (2018a). Remote asymmetric induction reactions using a E, E-vinylketene silyl N,O-acetal and the wide range stereocontrol strategy for the synthesis of polypropionates. Acc. Chem. Res. 51, 1301-1314.

Hosokawa, S. (2018b). Recent development of vinylogous Mukaiyama aldol reactions. Tetrahedron Lett. 59, 77-88

Jing, Z., Bai, X., Chen, W., Zhang, G., Zhu, B., and Jiang, Z. (2016). Organocatalytic enantioselective vinylogous aldol reaction of allyl aryl ketones to activated acyclic ketones. Org. Lett. 18, 260-263.

Kalesse, M., Cordes, M., Symkenberg, G., and Lu, H.-H. (2014). The vinylogous Mukaiyama aldol reaction (VMAR) in natural product synthesis. Nat. Prod. Rep. 31, 563-594.

Kim, G., Chu-Moyer, M.Y., Danishefsky, S.J., and Schulte, G.K. (1993). The total synthesis of indolizomycin. J. Am. Chem. Soc. 115, 30-39.

Kisanga, P.B., and Verkade, J.G. (2002). $\mathrm{P}\left(\mathrm{RNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$-Catalyzed 1,2-addition reactions of activated allylic synthons. J. Org Chem. 67, 426-430.

Kobayashi, K., Tanaka, K., III, and Kogen, H (2018). Recent topics of the natural product synthesis by Horner-Wadsworth-Emmons reaction. Tetrahedron Lett. 59, 568-582.

Konno, T., Shimizu, K., Ogata, K., and Fukuzawa, S. (2012). Rhodium-catalyzed enantioselective hydrogenation of unsaturated phosphonates by Click-Ferrophos ligands. J. Org. Chem. 77, 33183324.

Lefevre, N., Brayer, J.-L., Folléas, B., and Darses, S. (2013). Chiral α-amino phosphonates via rhodium-catalyzed asymmetric 1,4-addition reactions. Org. Lett. 15, 4274-4276.

Li, H., and Yin, L. (2018). Recent progress on direct catalytic asymmetric vinylogous reactions. Tetrahedron Lett. 59, 4121-4135.

Li, T.-Z., Jiang, Y., Guan, Y.-Q., Sha, F., and Wu, X.-Y. (2014). Direct enantioselective vinylogous aldol-cyclization cascade reaction of allyl pyrazoleamides with isatins: asymmetric construction of spirocyclic oxindoledihydropyranones. Chem. Commun. (Camb.) 50, 10790-10792.

Lim, K.M.-H., and Hayashi, T. (2015). Rhodiumcatalyzed asymmetric arylation of allyl sulfones under the conditions of isomerization into alkenyl sulfones. J. Am. Chem. Soc. 137, 3201-3204.

Lim, K.M.-H., and Hayashi, T. (2017). Dynamic kinetic resolution in rhodium-catalyzed asymmetric arylation of phospholene oxides. J. Am. Chem. Soc. 139, 8122-8125.

Liu, P., and Jacobson, E.N. (2001). Total synthesis of (+)-Ambruticin. J. Am. Chem. Soc. 123, 1077210773.

Ma, J.-H., Wang, F., Wang, J.-X., and You, Q.-D. (2010). Progress of Julia olefination in total synthesis of natural products. Chin. J. Org. Chem. 30, 1615-1623.

Meadows, D.C., and Gervay-Hague, J. (2006). Vinyl sulfones: synthetic preparations and medicinal chemistry applications. Med. Res. Rev. 26, 793-814.

Moteki, S.A., Xu, S., Arimitsu, S., and Maruoka, K (2010). Design of structurally rigid trans-diaminebased Tf-amide organocatalysis with a dihydroanthracene framework for asymmetric conjugate additions of heterosubstituted aldehydes to vinyl sulfones. J. Am. Chem. Soc. 132, 17074-17076.

Moure, A.L., Arrayás, R.G., and Carretero, J.C. (2011). Catalytic asymmetric conjugate boration of α, β-unsaturated sulfones. Chem. Commun. (Camb.) 47, 6701-6703.

Mucha, A., Kafarski, P., and Berlicki, Ł. (2011). Remarkable potential of the
α-aminophosphonate/phosphinate structure motif in medicinal chemistry. J. Med. Chem. 54, 5955-5980.

Narasimhulu, M., Reddy, T.S., Mahesh, K.C., Krishna, A.S., Rao, J.V., and Venkateswarlu, Y. (2009). Synthesis of yashahushidiol and its analogues and their cytotoxic activity against cancer cell lines. Bioorg. Med. Chem. Lett. 19, 3125-3127.

Newhouse, T., Baran, P.S., and Hoffmann, R.W. (2009). The economies of synthesis. Chem. Soc. Rev. 38, 3010-3021.

Nielsen, M., Jacobsen, C.B., Holub, N., Paixão, M.W., and Jørgensen, K.A. (2010). Asymmetric organocatalysis with sulfones. Angew. Chem. Int. Ed. 49, 2668-2679.

Nishida, G., Noguchi, M., Hirano, M., and Tanaka, K. (2008). Enantioselective synthesis of P-stereogenic alkynylphosphine oxides by Rhcatalyzed $[2+2+2]$ cycloaddition. Angew. Chem. Int. Ed. 47, 3410-3413.

Nishimura, T., Takiguchi, Y., and Hayashi, T. (2012). Effect of chiral diene ligands in rhodiumcatalyzed asymmetric addition of arylboronic acids to α, β-unsaturated sulfonyl compounds. J. Am. Chem. Soc. 134, 9086-9089.

Ordóñez, M., Sayago, F.J., and Cativiela, C. (2012). Synthesis of quaternary α-aminophosphonic acids. Tetrahedron 68, 6369-6412.

Otsuka, Y., Takada, H., Yasuda, S., Kumagai, N., and Shibasaki, M. (2013). Direct catalytic asymmetric addition of allylic cyanides to aldehydes for expeditious access to enantioenriched unsaturated δ-valerolactones. Chem. Asian J. 8, 354-358.

Pansare, S.V., and Paul, E.K. (2011). The organocatalytic vinylogous aldol reaction: recent advances. Chem. Eur. J. 17, 8770-8779.

Quintard, A., Alexakis, A., and Mazet, C. (2011). Access to high levels of molecular complexity by one-pot iridium/enamine asymmetric catalysis. Angew. Chem. Int. Ed. 50, 2354-2358.

Ray, B., and Mukherjee, S. (2018). Direct catalytic enantioselective vinylogous aldol reaction of allyl ketones to pyrazole-4,5-diones. J. Org. Chem. 83, 10871-10880.

Shirokawa, S., Kamiyama, M., Nakamura, T., Okada, M., Nakazaki, A., Hosokawa, S., and Kobayashi, S. (2004). Remote asymmetric induction with vinylketene silyl N, O-acetal. J. Am. Chem. Soc. 126, 13604-13605.

Trost, B.M. (1991). The atom economy-a search for synthetic efficiency. Science 254, 1471-1477.

Trost, B.M., Dirat, O., and Gunzner, J.L. (2002). Callipeltoside A : assignment of absolute and relative configuration by total synthesis. Angew. Chem. Int. Ed. 41, 841-843.

Wang, Z., and Hayashi, T. (2018). Rhodiumcatalyzed enantioposition-selective hydroarylation of divinylphosphine oxides with aryl boroxines. Angew. Chem. Int. Ed. 57, 17021706.

Woo, S.Y., Kim, J.H., Moon, M.K., Han, S.-H., Yeon, S.K., Choi, J.W., Jang, B.K., Song, H.J., Kang, Y.G., Kim, J.W., et al. (2014). Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson's disease therapy. J. Med. Chem. 57, 1473-1487.

Xue, Z.-Y., Li, Q.-H., Tao, H.-Y., and Wang, C.-J. (2011). A facile Cu(I)/TF-BiphamPhos-catalyzed asymmetric approach to unnatural α-amino acid derivatives containing gem-bisphosphonates. J. Am. Chem. Soc. 133, 11757-11765.

Yamaguchi, A., Aoyama, N., Matsunaga, S., and Shibasaki, M. (2007). Ba-catalyzed direct Mannich-type reactions of a β, γ-unsaturated ester providing β-methyl aza-Morita-Baylis-Hillman-type products. Org. Lett. 9, 3387-3390.

Yokosuka, A., Mimaki, Y., Sakagami, H., and Sashida, Y. (2002). New diarylheptanoids and diarylheptanoid glucosides from the rhizomes of tacca chantrieri and their cytotoxic activity. J. Nat. Prod. 65, 283-289.

Yuan, C., Yao, J., and Li, S. (1990). Studies on organophosphorus compounds XLIV. Structural effect of electrophiles on the regioselectivity of carbanion derived from dialkyl allylphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 53, 21-27.

Yuan, C., Yao, J., and Li, S. (1991). Studies on organophosphorus compounds XLV. Structural effects of ester alkyl group on dialkyl allylphosphonate carbanion on the regioselectivity of electrophilic addition. Phosphorus Sulfur Silicon Relat. Elem. 55, 125-131.

Zhang, H.-J., and Yin, L. (2018). Asymmetric synthesis of α, β-unsaturated δ-lactones through copper(l)-catalyzed direct vinylogous aldol reaction. J. Am. Chem. Soc. 140, 12270-12279.

Zhou, T., Peters, B., Maldonado, M.F., and Govender, T. (2012). Enantioselective synthesis of chiral sulfones by Ir-catalyzed asymmetric hydrogenation: a facile approach to the preparation of chiral allylic and homoallylic compounds. J. Am. Chem. Soc. 134, 1359213595.

Zhu, Q., and Lu, Y. (2010). Stereocontrolled creation of all-carbon quaternary stereocenters by organocatalytic conjugate addition of oxindoles to vinyl sulfone. Angew. Chem. Int. Ed. 49, 7753-7756.

Zhu, B., Zhang, W., Lee, R., Han, Z., Wang, W., Tan, D., Huang, K.-W., and Jiang, Z. (2013). Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: divergent synthesis of 3 -hydroxy-2-oxindole derivatives. Angew. Chem. Int. Ed. 52, 6666-6670.

ISCI, Volume 14

Supplemental Information

Asymmetric Vinylogous Aldol-type
 Reactions of Aldehydes
 with Allyl Phosphonate and Sulfone

Wen-Jun Yue, Cheng-Yuan Zhang, and Liang Yin

Supplement Information

Asymmetric Vinylogous Aldol-Type Reactions of Aldehydes with

Allyl Phosphonate and Sulfone

Wen-Jun Yue, ${ }^{1}$ Cheng-Yuan Zhang, ${ }^{1}$ and Liang Yin ${ }^{1,2, *}$
${ }^{1}$ CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
${ }^{2}$ Lead Contact
*Correspondence:liangyin@sioc.ac.cn

Copies of product NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2ah, related to Table 2

Figure S2. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 2ah, related to Table 2

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 2

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 2

Figure S5. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3a, related to Table 2

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 b}$, related to Table 2

Figure S7. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 b}$, related to Table 2

Figure S8. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3b, related to Table 2

Figure S9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{b}$, related to Table 2

Figure S10. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3c, related to Table 2

Figure S11. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 c , related to Table 2

Figure S12. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3c, related to Table 2

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d, related to Table 2

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d, related to Table 2

Figure S15. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3d, related to Table 2

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3e, related to Table 2

Figure S17. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{e}$, related to Table 2

Figure S18. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3e, related to Table 2

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3f, related to Table 2

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3f, related to Table 2

Figure S21. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f}$, related to Table 2

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 g , related to Table 2

Figure S23. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 g , related to Table 2

Figure S24. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g}$, related to Table 2

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 h , related to Table 2

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{h}$, related to Table 2

Figure S27. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 h , related to Table 2

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3i, related to Table 2

Figure S29. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{i}$, related to Table 2

Figure S29. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3i, related to Table 2

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3j, related to Table 2

Figure S31. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{j}$, related to Table 2

Figure S32. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{j}$, related to Table 2

Figure S33. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 j}$, related to Table 2

Figure S34. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k}$, related to Table 2

Figure S35. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k}$, related to Table 2

Figure S36. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k}$, related to Table 2

Figure S37. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k}$, related to Table 2

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3l, related to Table 2

Figure S39. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3l, related to Table 2

Figure S40. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 31, related to Table 2

Figure S41. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3l, related to Table 2

Figure S42. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m , related to Table 2

Figure S43. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 m , related to Table 2

Figure S44. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3m, related to Table 2

Figure S45. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 n , related to Table 2

Figure S46. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 n , related to Table 2

Figure S47. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{n}$, related to Table 2

Figure S48. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Table 2

Figure S49. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Table 2

Figure S50. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3o, related to Table 2

Figure S51. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3p, related to Table 2

Figure S52. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 p, related to Table 2

Figure S53. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3p, related to Table 2

Figure S54. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Table 2

Figure S55. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Table 2

Figure S56. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 q}$, related to Table 2

Figure S57. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{r}$, related to Table 2

Figure S58. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 r , related to Table 2

Figure S59. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 r , related to Table 2

Figure S60. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3s, related to Table 2

Figure S61. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 s , related to Table 2

Figure S62. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3s, related to Table 2

Figure S63. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3t, related to Table 2

Figure S64. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $3 \mathbf{t}$, related to Table 2

Figure S65. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3t, related to Table 2

Figure S66. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{u}$, related to Table 2

Figure S67. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3u, related to Table 2

Figure S68. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3u, related to Table 2

Figure S69. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 v$, related to Table 2

Figure S70. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 v , related to Table 2

Figure S71. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{v}$, related to Table 2

Figure S72. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3w, related to Table 2

Figure S73. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 w , related to Table 2

Figure S74. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3w, related to Table 2

Figure S75. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 x , related to Table 2

Figure S76. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 x}$, related to Table 2

Figure S77. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{x}$, related to Table 2

Figure S78. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3y, related to Table 2

Figure S79. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 y}$, related to Table 2

Figure S80. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{y}$, related to Table 2

Figure S81. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 z , related to Table 2
范発

Figure S82. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 z , related to Table 2

Figure S83. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 z , related to Table 2

Figure S84. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Table 2

Figure S85. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Table 2

Figure S86. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa, related to Table 2

Figure S87. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Table 2

Figure S88. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Table 2

Figure S89. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab, related to Table 2

Figure S90. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Table 2

Figure S91. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Table 2

Figure S92. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac, related to Table 2

Figure S93. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Table 2

Figure S94. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Table 2

Figure S95. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad, related to Table 2

Figure S96. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Table 2

Figure S97. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Table 2

Figure S98. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae, related to Table 2

Figure S99. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af, related to Table 2

Figure S100. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af, related to Table 2

Figure S101. ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3af, related to Table 2

Figure S102. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag, related to Table 2

Figure S103. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag, related to Table 2

Figure S104. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag, related to Table 2

Figure S105. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah, related to Table 2

Figure S106. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah, related to Table 2

Figure S107. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah, related to Table 2

Figure S108. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Table 2

Figure S109. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Table 2

Figure S110. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai, related to Table 2

Figure S111. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Table 2

Figure S112. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Table 2

Figure S113. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj, related to Table 2

Figure S114. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj’, related to Table 2

Figure S115. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj', related to Table 2

Figure S116. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj’, related to Table 2

Figure S117. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Table 2

Figure S118. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Table 2

Figure S119. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak, related to Table 2

Figure S120. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak', related to Table 2

Figure S121. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak', related to Table 2

Figure S122. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak', related to Table 2

Figure S123. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Table 2

Figure S124. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Table 2

Figure S125. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al, related to Table 2

Figure S126. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al', related to Table 2

Figure S127. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al', related to Table 2

Figure S128. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al', related to Table 2

Figure S129. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 a}$, related to Table 3

Figure S130. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5a, related to Table 3

Figure S131. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 b}$, related to Table 3

Figure S132. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{b}$, related to Table 3

Figure S133. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{b}$, related to Table 3

Figure S134. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 c , related to Table 3

Figure S135. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 c , related to Table 3

Figure S136. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 d}$, related to Table 3

Figure S137. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 d , related to Table 3

Figure S138. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5e, related to Table 3

Figure S139. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5e, related to Table 3

Figure S140. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{f}$, related to Table 3

Figure S141. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 f$, related to Table 3

Figure S142. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 g , related to Table 3

Figure S143. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 g , related to Table 3

Figure S144. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 h}$, related to Table 3

Figure S145. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{h}$, related to Table 3

Figure S146. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{k}$, related to Table 3

Figure S147. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{k}$, related to Table 3

Figure S148. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{k}$, related to Table 3

Figure S149. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{5 l}$, related to Table 3
Nㅡㅁ

Figure S150. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{5}$, related to Table 3

Figure S151. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5l, related to Table 3

Figure S152. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 n, related to Table 3

Figure S153. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 n, related to Table 3

Figure S154. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5o, related to Table 3

Figure S155. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 0}$, related to Table 3

Figure S156. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 p}$, related to Table 3

Figure S157. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{p}$, related to Table 3

Figure S158. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 q}$, related to Table 3

Figure S159. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{q}$, related to Table 3

Figure S160. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 r$, related to Table 3

Figure S161. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 5 r , related to Table 3

Figure S162. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{u}$, related to Table 3

Figure S163. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{u}$, related to Table 3

Figure S164. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 x}$, related to Table 3

Figure S165. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{x}$, related to Table 3

Figure S166. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{y}$, related to Table 3

Figure S167. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $5 \mathbf{y}$, related to Table 3

Figure S168. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 z , related to Table 3

Figure S169. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 zz , related to Table 3

Figure S170. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5aa, related to Table 3

Figure S171. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5aa, related to Table 3

Figure S172. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ad, related to Table 3

Figure S173. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ad, related to Table 3

Figure S174. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ae, related to Table 3

Figure S175. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ae, related to Table 3

Figure S176. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ah, related to Table 3

Figure S177. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ah, related to Table 3

Figure S178. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 ak, related to Table 3

Figure S179. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ak, related to Table 3

Figure S180. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ak', related to Table 3

Figure S181. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ak', related to Table 3

Figure S182. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5al, related to Table 3

Figure S183. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5al, related to Table 3

Figure S184. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5 al', related to Table 3

Figure S185. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5al', related to Table 3

Figure S186. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5am, related to Table 3

Figure S187. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5am, related to Table 3

Figure S188. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5an, related to Table 3

Figure S189. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5an, related to Table 3

Figure S190. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ao, related to Table 3

Figure S191. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ao, related to Table 3

Figure S192. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ap, related to Table 3

Figure S193. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ap, related to Table 3

Figure S194. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ap, related to Table 3

Figure S195. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5aq, related to Table 3

Figure S196. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5aq, related to Table 3

Figure S197. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ar, related to Table 3

Figure S198. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5ar, related to Table 3

Figure S199. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5as, related to Table 3

Figure S200. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5as, related to Table 3

Figure S201. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5at, related to Table 3

Figure S202. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5at, related to Table 3

Figure S203. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5au, related to Table 3

Figure S204. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5au, related to Table 3

Figure S205. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9, related to Scheme 3

Figure S206. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 , related to Scheme 3

Figure S207. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 9 , related to Scheme 3

Figure S208. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10, related to Scheme 3

Figure S209. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10, related to Scheme 3

Figure S210. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 10, related to Scheme 3

Figure S211. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11, related to Scheme 3

Figure S212. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 11, related to Scheme 3

Figure S213. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12, related to Scheme 3

Figure S214. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 12, related to Scheme 3

Figure S215. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14, related to Scheme 3

Figure S216. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 4}$, related to Scheme 3

Figure S217. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 15 , related to Scheme 3

Figure S218. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 15, related to Scheme 3

Figure S219. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16, related to Scheme 3

Figure S220. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 16, related to Scheme 3

Figure S221. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17, related to Scheme 3

Figure S222. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 17, related to Scheme 3

Figure S223. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 18, related to Scheme 3

Figure S224. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 18, related to Scheme 3

Figure S225. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 19, related to Scheme 3

Figure S226. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 19 , related to Scheme 3

Figure S227. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 19, related to Scheme 3

Figure S228. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 3

Figure S229. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 3

Figure S230. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 20, related to Scheme 3

Figure S231. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21, related to Scheme 3

Figure S232. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 21, related to Scheme 3

Figure S233. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 22, related to Scheme 3

Figure S234. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 22, related to Scheme 3

Figure S235. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23, related to Scheme 3

Figure S236. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 23, related to Scheme 3

Figure S237. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of yashabushidiol B, related to Scheme 3

Figure S238. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of yashabushidiol B, related to Scheme 3

Transparent Methods

All reagents were obtained commercially unless otherwise noted. Nuclear Magnetic Resonance (NMR) spectra were acquired on an Agilent 400 or Bruker 400 spectrometer. For ${ }^{1} \mathrm{H}$ NMR, chemical shifts were reported in δ ppm referenced to an internal SiMe_{4} standard. For ${ }^{19} \mathrm{~F}$ $\mathrm{NMR}, \mathrm{CFCl}_{3}$ was used as the reference with chemical shift at 0 ppm . For ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in the scale relative to NMR solvent $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$ as an internal reference. ${ }^{31} \mathrm{P}$ NMR spectra were referenced externally to phosphoric acid. Multiplicities are reported using the following abbreviations: $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet. Mass spectra (EI) were measured on Agilent Technologies 5973N GC-MS. High-resolution mass spectra (EI) were measured on Waters Micromass GCT Premier spectrometer. Mass spectra (ESI) were measured on Agilent Technologies 1100 Series LC-MS. High-resolution mass spectra (ESI) were measured on Thermo Scientific LTQ FT Ultra FT-MS. Mass spectra (DART) and high-resolution mass spectra (DART) were measured on Thermo Fisher Scienticfic LTQ FTICR-MS. Infrared (IR) spectra were recorded on Thermo Scientific Nicolet iS5 FT-IR. Optical rotation was measured using a 1 mL cell with 1.0 dm path length on a JASCO P-1030 polarimeter. HPLC analysis was conducted on a Shimadzu HPLC system equipped with Daicel chiral-stationary-phase columns ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$).

The procedure for preparation of 2ah: A solution of (triphenylphosphoranylidene)-acetaldehyde ($3.04 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) and dec-5-ynal ($1.52 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) in absolute chloroform (concentration of the aldehyde: 0.3 M) was refluxed until no further reaction progress was monitored by GC/MS. Then the reaction mixture was adsorbed on a small amount of silica gel and was purified by column chromatography (petroleum ether/ethyl acetate $=100 / 1$ to $80 / 1$) to afford the aldehyde 2ah ($0.54 \mathrm{~g}, 3 \mathrm{mmol}, 30 \%$ yield) as a pale green oil.

General procedure for catalytic asymmetric direct vinylogous aldol-type reaction of aldehydes and allyl phosphonate:

Procedure A:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(5.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv) and (R)-DTBM-SEGPHOS ($17.7 \mathrm{mg}, 0.15$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.15 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl phosphonate 1 ($160.4 \mathrm{mg}, 0.9 \mathrm{mmol}, 3.0$ equiv) and aldehyde 2 ($0.3 \mathrm{mmol}, 1.0$ equiv) were added sequentially. After the mixture was cooled to $-10^{\circ} \mathrm{C}$, Barton's Base ($12 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 0.20$ equiv) was added. The resulting reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 48 hours. Then, the reaction mixture was quenched by acetic acid $(300 \mu \mathrm{~L}$ (0.4 M in THF), $0.12 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-10^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol) to give the desired product.

Procedure B:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(5.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv) and (S)-DTBM-SEGPHOS (17.7 mg, 0.15
mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.15 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl phosphonate $\mathbf{1}(160.4 \mathrm{mg}, 0.9 \mathrm{mmol}, 3.0$ equiv) and aldehyde 2 ($0.3 \mathrm{mmol}, 1.0$ equiv) were added sequentially. After the mixture was cooled to $-10^{\circ} \mathrm{C}$, Barton's Base ($12 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 0.20$ equiv) was added. The resulting reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 48 hours. Then, the reaction mixture was quenched by acetic acid $(300 \mu \mathrm{~L}$ (0.4 M in THF), $0.12 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-10{ }^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol) to give the desired product.

General procedure for catalytic asymmetric direct vinylogous aldol-type reaction of aldehydes and allyl sulfone:

Procedure A:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(5.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv) and (R)-DTBM-SEGPHOS ($17.7 \mathrm{mg}, 0.15$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.15 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl sulfone $4(109.9 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) and aldehyde 2 ($0.3 \mathrm{mmol}, 1.0$ equiv) were added sequentially. After the mixture was cooled to $-40{ }^{\circ} \mathrm{C}$, Barton’s Base ($18 \mu \mathrm{~L}, 0.09 \mathrm{mmol}, 0.30$ equiv) was added. The resulting reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 36 hours. Then, the reaction mixture was quenched by acetic acid ($300 \mu \mathrm{~L}(0.4 \mathrm{M}$ in THF), 0.12 mmol, 0.40 equiv) and was stirred for additional 20 minutes at $-40^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to give the desired product.

Procedure B:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(5.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv) and (S)-DTBM-SEGPHOS ($17.7 \mathrm{mg}, 0.15$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.15 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl sulfone 4 ($109.9 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) and aldehyde 2 ($0.3 \mathrm{mmol}, 1.0$ equiv) were added sequentially. After the mixture was cooled to $-40{ }^{\circ} \mathrm{C}$, Barton's Base ($18 \mu \mathrm{~L}, 0.09 \mathrm{mmol}, 0.30$ equiv) was added. The resulting reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 36 hours. Then, the reaction mixture was quenched by acetic acid ($300 \mu \mathrm{~L}(0.4 \mathrm{M}$ in THF), $0.12 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-40^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to give the desired product.

The procedure for determination of the absolute configuration of 3a

Absolute configuration of $\mathbf{3 a}$ was determined by its transformation to (R)-1-phenylpropane-1,3-diol as shown below and the comparison of its optical rotation with the one reported in literature (Denmark et. al., 2004).

3a
99\% ee

2) $\mathrm{NaBH}_{4}, \mathrm{O}^{\circ} \mathrm{C}-\mathrm{rt}, 2 \mathrm{~h}$

${ }_{1 \mathrm{D}}{ }^{25}=64.7$ ($\mathrm{C}=1.0, \mathrm{CHCl}_{3}$)
lit. $\left[{ }^{[}\right]{ }_{D}{ }^{24}=61.8\left(c=1.0, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $\left.(R)\right)$
Figure S239, related to Table 2
Ozone was bubbled into a solution of $\mathbf{3 a}(110 \mathrm{mg}, 0.39 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until the appearance of a persistent blue color (about 30 min). The reaction solution was then allowed to warm up to $0^{\circ} \mathrm{C}$ and the mixture was subsequently treated with NaBH_{4} (73.8 mg , $1.95 \mathrm{mmol}, 5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and was stirred for additional 2 hours. Then, the reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to afford (R)-1-phenylpropane-1,3-diol $(39$ mg , colorless oil, 67% yield).

The procedure for determination of the absolute configuration of 5a

Absolute configuration of $\mathbf{5 a}$ was determined by its transformation to (R)-1-phenylpropane-1,3-diol as shown below and the comparison of its optical rotation with the one reported in literature (Denmark et. al., 2004).

Figure S240, related to Table 3
Ozone was bubbled into a solution of $\mathbf{5 a}(94 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until the appearance of a persistent blue color (about 30 min). The reaction solution was then allowed to warm up to $0^{\circ} \mathrm{C}$ and the mixture was subsequently treated with NaBH_{4} (62.4 mg , 1.65 mmol , 5 equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and was stirred for additional 2 hours. Then, the reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with DCM ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to afford (R)-1-phenylpropane-1,3-diol (21 mg , colorless oil, 42% yield).

The procedure for preparation of rac-3a:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(9.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv) and rac-DTBM-SEGPHOS ($29.5 \mathrm{mg}, 0.025$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.25 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl phosphonate $\mathbf{1}$ ($267.3 \mathrm{mg}, 1.5 \mathrm{mmol}, 3.0$ equiv) and
aldehyde 2a ($53.1 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv) were added sequentially. After the mixture was cooled to $-10{ }^{\circ} \mathrm{C}$, Barton’s Base ($17.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.20$ equiv) was added. The resulting reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 48 hours. Then, the reaction mixture was quenched by acetic acid $(500 \mu \mathrm{~L}(0.4 \mathrm{M}$ in THF), $0.20 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-10{ }^{\circ} \mathrm{C}$. Then the volatives wereremoved under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol $=30 / 15 / 1$) to give rac-3a(128.0 mg, 90\% yield) as a colorless oil.

The procedure for preparation of rac-5a:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(11.2 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.05$ equiv) and rac-DTBM-SEGPHOS (35.4 mg , $0.030 \mathrm{mmol}, 0.05$ equiv) in a glove box under Ar atmosphere. Anhydrous THF ($2.0 \mathrm{~mL}, 0.30 \mathrm{M}$) was added via a syringe. The mixture was stirred for 15 minutes to give a colorless catalyst solution. Then allyl sulfone $4(220.0 \mathrm{mg}, 1.2 \mathrm{mmol}, 2.0$ equiv) and aldehyde 2 a ($63.7 \mathrm{mg}, 0.6$ mmol, 1.0 equiv) were added sequentially. After the mixture was cooled to $-40^{\circ} \mathrm{C}$, Barton’s Base ($30.8 \mathrm{mg}, 0.18 \mathrm{mmol}, 0.30$ equiv) was added. The resulting reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 12 hours. Then, the reaction mixture was quenched by acetic acid ($600 \mu \mathrm{~L}(0.4 \mathrm{M}$ in THF), $0.20 \mathrm{mmol}, 0.40$ equiv), and was stirred for additional 20 minutes at $-40{ }^{\circ} \mathrm{C}$. Then the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=3 / 2$) to give rac-5a ($110.0 \mathrm{mg}, 63 \%$ yield) as pale green powders.

The procedure for preparation of $r a c-\alpha-3 a$:

rac-3a was prepared according to a reported procedure (Yuan et. al., 1991). A dried 50 mL round bottom flask equipped with a magnetic stirring bar was charged with allyl phosphonate $\mathbf{1}$ (534.5 mg , 3.0 mmol, 1.0 equiv) under N_{2} atmosphere. Anhydrous THF (10 mL) was added via a syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and was stirred for 10 minutes. Then ${ }^{n} \mathrm{BuLi}(1.3 \mathrm{~mL}$ (2.5 M solution in hexane), $3.15 \mathrm{mmol}, 1.05$ equiv) was added via a syringe. After 30 minutes, benzaldehyde 2a ($318.4 \mathrm{mg}, 3 \mathrm{mmol}, 1.0$ equiv) was added via a syringe and the mixture was stirred for 30 minutes. The reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The aqueous phase was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol $=14 / 7 / 1$) to give rac- $\boldsymbol{\alpha}-\mathbf{3 a}(724.9 \mathrm{mg}, 85 \%$ yield, $\mathrm{dr}=2.5 / 1$) as a colorless oil.

The procedure for preparation of rac- $\alpha-5 a$:

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with LDA (1.0 mL (2 M solution in hexane/THF), $2 \mathrm{mmol}, 1.0$ equiv) under N_{2} atmosphere. Anhydrous THF (2 mL) was added via a syringe. The mixture was cooled to $-78^{\circ} \mathrm{C}$ and HMPA ($358.4 \mathrm{mg}, 2 \mathrm{mmol}$, 1.0 equiv) was added via a syringe. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes and then allyl sulfone 5 ($439.8 \mathrm{mg}, 2.4 \mathrm{mmol}$, 1.2 equiv) was added. After 30 minutes, benzaldehyde 2a ($318.4 \mathrm{mg}, 3 \mathrm{mmol}$, 1.5 equiv) was added and the resulting mixture was stirred for 20 minutes. The reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The aqueous phase was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=3 / 1$) to give rac- $\boldsymbol{\alpha}-\mathbf{5 a}$ ($101.0 \mathrm{mg}, 15 \%$ yield, $\mathrm{dr}=1 / 1$) as pale green powders.
Proposed Mechanism for the Copper(I)-Catalyzed Asymmetric Aldol-Type Reaction:

Figure S241, Proposed Mechanism, related to Scheme 2
Based on these experimental observations and literature proposals, a postulated reaction pathway was given as shown above. In the presence of copper(I) complex \mathbf{U} and Barton's Base, the deprotonation of substrate $\mathbf{1 / 4}$ occurred smoothly to give allylcopper(I) species \mathbf{V}, which might form an equilibrium with allylcopper(I) species \mathbf{W}. The α-addition of \mathbf{V} with aldehyde 2produced copper(I) alkoxide complex \mathbf{X}, which afforded α-adduct after protonation with substrate $\mathbf{1} / \mathbf{4}$. As demonstrated by the experiments, the α-addition was a significantl yreversible process. It waspossible that the γ^{\prime}-addition of \mathbf{W} with aldehyde 2 also furnishedcopper(I) alkoxide complex \mathbf{X}. The γ-addition ofallylcopper(I) species \mathbf{V} generated copper(I) alkoxide complex \mathbf{Y} through a six-memberring transition state, which was identifiedas a slightlyreversible process. The protonation of \mathbf{Y} with additional substrate $\mathbf{1 / 4}$ led to γ-adduct.

The procedure for gram-scale preparation of vinylogous product 3a:

A dried 100 mL round bottom flaske quipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(74.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.05$ equiv) and (R)-DTBM-SEGPHOS ($235.9 \mathrm{mg}, 0.20$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($40 \mathrm{~mL}, 0.2 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl phosphonate $1(2.140 \mathrm{~g}, 12 \mathrm{mmol}, 3.0$ equiv) and benzaldehyde 2a ($424.5 \mathrm{mg}, 4.0 \mathrm{mmol}$, 1.0 equiv) were added sequentially. After the mixture was cooled to $-10{ }^{\circ} \mathrm{C}$, Barton's Base ($137.0 \mathrm{mg}, 0.80 \mathrm{mmol}, 0.20$ equiv) was added. The resulting reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 48 hours. Then, the reaction mixture was quenched by acetic acid (4 mL (0.4 M in THF), $1.6 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-10^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol $=30 / 15 / 1$) to give product $\mathbf{3 a}$ ($0.990 \mathrm{~g}, 85 \%$ yield, 99% ee) as a colorless oil.

The procedure for gram-scale preparation of vinylogous product 5a:

A dried 100 mL round bottom flaske quipped with a magnetic stirring bar was charged with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(74.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.05$ equiv) and (R)-DTBM-SEGPHOS ($235.9 \mathrm{mg}, 0.20$ mmol, 0.05 equiv) in a glove box under Ar atmosphere. Anhydrous THF ($40 \mathrm{~mL}, 0.1 \mathrm{M}$) was added via a syringe. The mixture was stirred at room temperature for 15 minutes to give a colorless catalyst solution. Then allyl sulfone $4(1.466 \mathrm{~g}, 12 \mathrm{mmol}, 3.0$ equiv) and benzaldehyde 2a ($424.5 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0$ equiv) were added sequentially. After the mixture was cooled to $-40{ }^{\circ} \mathrm{C}$, Barton’s Base ($205.5 \mathrm{mg}, 1.20 \mathrm{mmol}, 0.30$ equiv) was added. The resulting reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 36 hours. Then, the reaction mixture was quenched by acetic acid (4 mL (0.4 M in THF), $1.6 \mathrm{mmol}, 0.40$ equiv) and was stirred for additional 20 minutes at $-40^{\circ} \mathrm{C}$. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=3 / 2$) to give product $\mathbf{5 a}(1.100 \mathrm{~g}, 95 \%$ yield, 97% ee) as pale green powders.

Transformations of vinylogous product 3a:

Figure S242, Transformations, related to Scheme 3
A dried 50 mL round bottom flask equipped with a magnetic stirring bar was charged with 3a ($250 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.0$ equiv) and 2,6-lutidine ($189 \mathrm{mg}, 1.76 \mathrm{mmol}, 2.0$ equiv) under N_{2} atmosphere. After the mixture was cooled to $-10^{\circ} \mathrm{C}$, TBSOTf ($465 \mathrm{mg}, 1.76 \mathrm{mmol}, 2.0$ equiv) was added via a syringe. The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 7 hours. After removing the volatiles under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to give product 9 ($312 \mathrm{mg}, 90 \%$ yield) as a colorless oil.

Figure S243, Transformations, related to Scheme 3
A dried 25 mL round bottom flask equipped with a magnetic stirring bar was charged with 9 ($79.7 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv), $\mathrm{Pd} / \mathrm{C}(16 \mathrm{mg}, 5 \% \mathrm{w} / \mathrm{w}$) and EtOH (4 mL). The resulting mixture was stirred at room temperature for 3 hours with a ballon filled with H_{2}. The black solids were filtered off and washed thoroughly with EtOH. The filtrate was concentrated under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to give product $\mathbf{1 0}(78.5 \mathrm{mg}, 98 \%$ yield $)$ as a colorless oil.

Figure S244, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with LDA
(0.1 mL (2 M solution in hexane/THF), 2 mmol, 1.0 equiv) under N_{2} atmosphere. Anhydrous THF $(0.2 \mathrm{~mL})$ was added via a syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $10(38.1 \mathrm{mg}, 0.095 \mathrm{mmol}$, 1.0 equiv) in THF (0.5 mL) was added dropwise via a syringe. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 minutes and then EtOCOOEt ($11.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.05$ equiv) in THF (0.5 mL) was added dropwise via a syringe. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes and then was warmed to $0{ }^{\circ} \mathrm{C}$. Benzaldehyde 2a ($11.1 \mathrm{mg}, 0.105 \mathrm{mmol}, 1.1$ equiv) in THF (0.5 mL) was added dropwise via a syringe. The resulting mixture was stirred at room temperature overnight and then was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=100 / 1$) to give $\mathbf{1 1}(32.5 \mathrm{mg}, 81 \%$ yield, $E / Z>20 / 1$) as a colorless oil.

Figure S245, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with LDA (0.105 mL (2 M solution in hexane/THF), 2 mmol , 1.0 equiv) under N_{2} atmosphere. Anhydrous THF (0.2 mL) was added via a syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $10(40.1 \mathrm{mg}, 0.10$ mmol, 1.0 equiv) in THF (0.5 mL) was added dropwise via a syringe. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 minutes and then EtOCOOEt ($13.0 \mathrm{mg}, 0.105 \mathrm{mmol}, 1.05$ equiv) in THF $(0.5 \mathrm{~mL})$ was added dropwise via a syringe. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes and then was warmed to $0^{\circ} \mathrm{C}$. Cinnamaldehyde 2 y ($14.5 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) in THF (0.5 mL) was added dropwise via a syringe. The resulting mixture was stirred at room temperature overnight and then was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=100 / 1$) to give $\mathbf{1 1}$ ($32 \mathrm{mg}, 71 \%$ yield, $\mathrm{E} / \mathrm{Z}=5 / 1$) as a colorless oil.

Transformations of vinylogous product 5a:

Figure S246, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\mathbf{5 a}$ (57.9 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) under N_{2} atmosphere. SmI_{2} (10 mL (0.1 M solution in THF), 1 mmol , 5.0 equiv) was added via a syringe. The mixture was cooled to $-20^{\circ} \mathrm{C}$ and HMPA (0.8 mL) was added dropwise via a syringe. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hours, Then the reaction mixture was concentrated under reduced pressure to give the crude which was used in next step without further purification.

To the solution of above crude ($0.2 \mathrm{mmol}, 1.0$ equiv) in toluene (2 mL) were added DMAP ($4.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.10$ equiv) and benzoic anhydride ($136 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at room temperature for 10 hours. Then the reaction mixture was concentrated under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=50 / 1$) to give $13(26 \mathrm{mg}, 52 \%$ yield) as a pale yellow oil.

Figure S247, Transformations, related to Scheme 3
A dried 100 mL round bottom flask equipped with a magnetic stirring bar was charged with $\mathbf{5 a}\left(1.00 \mathrm{~g}, 3.46 \mathrm{mmol}, 1.0\right.$ equiv) under N_{2} atmosphere. THF (40 mL) was added via a syringe. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{LiBH}(\mathrm{Et})_{3}(4.5 \mathrm{~mL}(1 \mathrm{M}$ solution in THF), $4.50 \mathrm{mmol}, 1.3$ equiv) was added dropwise via a syringe. The resulting mixture was stirred at room temperature for 4 hours. Then the reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate =2/1) to give 14 (932 $\mathrm{mg}, 92 \%$ yield) as white powders.

Figure S248, Transformations, related to Scheme 3
A dried 50 mL round bottom flask equipped with a magnetic stirring bar was charged with 14 ($697 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.0$ equiv) and 2,6-lutidine ($514 \mathrm{mg}, 4.80 \mathrm{mmol}, 2.0$ equiv) under N_{2} atmosphere. After cooling to $-10^{\circ} \mathrm{C}$, TBSOTf ($1.27 \mathrm{~g}, 4.80 \mathrm{mmol}, 2.0$ equiv) was added via a syringe. The resulting mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 12 hours. After removing the volatiles under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=3 / 1$) to give product 15 ($908 \mathrm{mg}, 93 \%$ yield) as a colorless oil.

Figure S249, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 15 (81.2 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) under N_{2} atmosphere. Anhydrous DME (5 mL) was added via a syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and KHMDS ($0.40 \mathrm{~mL}(1 \mathrm{M}$ solution in THF), 0.40 mmol, 2.0 equiv) was added via a syringe. After 3 minutes, benzaldehyde 2a ($31.8 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.5 equiv) was added via a syringe and the resulting mixture was stirred for 2 hours. Then the reaction mixture was warm to room temperature and stirred for 12 hours. The reaction was
quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=100 / 1$) to give 16 ($47 \mathrm{mg}, 67 \%$ yield) as a colorless oil.

Figure S250, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 15 (40.6 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) under N_{2} atmosphere. Anhydrous THF (3 mL) was added via a syringe. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and was stirred for 10 minutes. Then ${ }^{n} \mathrm{BuLi}(0.08 \mathrm{~mL}(1 \mathrm{M}$ solution in THF), 0.20 mmol , 2.0 equiv) was added via a syringe. After 30 minutes, PhCOCl (21.1 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) was added and the resulting mixture was stirred for 2 hours. Then the reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude which was used in next step without further purification.

The solution of above crude ($0.1 \mathrm{mmol}, 1.0$ equiv) in THF (2 mL) was added to a mixture of activated Zn powder $(180 \mathrm{mg})$, THF $(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 4 hours. The solids were filtered off and washed thoroughly with DCM. The filtrate was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=$ 20/1) to give 17 ($25 \mathrm{mg}, 68 \%$ yield) as a colorless oil.

Figure S251, Transformations, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 5a (63.1 $\mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv) under N_{2} atmosphere. Anhydrous THF (2 mL) was added via a syringe. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and was stirred for 10 minutes. Then benzaldehyde $\mathbf{2 a}$ (23.4 mg , 0.22 mmol, 1.1 equiv) and LiHMDS (0.2 mL (1 M solution in THF), $0.20 \mathrm{mmol}, 1.0$ equiv) were added via a syringe. After 15 minutes, benzaldehyde $2 \mathrm{a}(23.4 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv) and LiHMDS ($0.2 \mathrm{~mL}(1 \mathrm{M}$ solution in THF), 0.20 mmol , 1.0 equiv) was added again. This procedure was repeated twice. Then the resulting reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude which was used in next step without further purification.

The above crude ($0.2 \mathrm{mmol}, 1.0$ equiv) was added to HOAc ($4 \mathrm{~mL}, 80 \%$ in water). The resulting reaction mixture was heating to $80^{\circ} \mathrm{C}$ and stirred at this temperature overnight. Then the
resulting reaction mixture was quenched by saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether ($20 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=1 / 2$) to give 18 ($45.5 \mathrm{mg}, 74 \%$ yield) as white powders.

Synthetic Application of the Methodology:

Figure S252, Synthetic application, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with ent-3y ($93.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and 2,6-lutidine ($64.3 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.0$ equiv) under N_{2} atmosphere. After the mixture was cooled to $-10^{\circ} \mathrm{C}$, TBSOTf ($158.6 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.0$ equiv) was added. The resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 4 hours. After removing the volatiles under reduced pressure, the crude was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to give product $19(105.7 \mathrm{mg}, 83 \%$ yield $)$ as a colorless oil.

Figure S253, Synthetic application, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with CuCl ($3.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.10$ equiv), rac-BINAP ($22.5 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.12$ equiv) and $\mathrm{NaO}^{t} \mathrm{Bu}$ (4.3 $\mathrm{mg}, 0.045 \mathrm{mmol}, 0.15$ eqiv) in a glove box under Ar atmosphere. 19 ($127.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{B}_{2}(\mathrm{Pin})_{2}\left(152.4 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0\right.$ equiv) were added under N_{2} atmosphere. Anhydrous THF (3.0 mL) was added via a syringe. The mixture was stirred at room temperature for 15 minutes. Then $\mathrm{MeOH}(19.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) was added. The resulting reaction mixture was stirred at room temperature for 24 hours. Then, water (3 ml) and $\mathrm{NaBO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(138.6$ $\mathrm{mg}, 0.90 \mathrm{mmol}, 3.0$ equiv) were added sequentially. The mixture was stirred at room temperature for additional 3 hours. Then the resulting reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude which was used in next step without further purification.

To the solution of above crude ($0.30 \mathrm{mmol}, 1.0$ equiv) in DCM (18 mL) was added $4 \AA$ molecular sieves (350 mg) and PCC ($516 \mathrm{mg}, 2.40 \mathrm{mmol}, 8.0$ equiv). The resulting mixture was stirred at room temperature for 12 hours. The solids were filtered off and washed thoroughly with ethyl acetate. The filtrate was concentrated under reduced pressure to give the crude which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=3 / 1$) to give product 20 ($97.8 \mathrm{mg}, 74 \%$ yield) as a colorless oil.

Figure S254, Synthetic application, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 20 (61 $\mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv) under N_{2} atmosphere. THF (2.0 mL) was added via a syringe. Then $\mathrm{Ba}(\mathrm{OH})_{2}(29.5 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.25$ equiv) was added. The resulting mixture was stirred for 30 minutes at room temperature and then benzaldehyde $\mathbf{2 a}(15.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.05$ equiv) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ ($2 \mathrm{~mL}, 40 / 1$) was added dropwise via a syringe. The resulting mixture was stirred at room temperature for 2 hours. Then the reaction was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3$ $\mathrm{mL})$. The aqueous phase was extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 100/1) to give product 21 ($46.1 \mathrm{mg}, 85 \%$ yield) as a colorless oil.

Figure S255, Synthetic application, related to Scheme 3
A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 21 (42 mg , $0.107 \mathrm{mmol}, 1.0$ equiv) and THF (2.0 mL). Then $\mathrm{HCl}(0.21 \mathrm{~mL}(3 \mathrm{M}$ solution in water), 0.63 mmol, 6.0 equiv) was added. The resulting mixture was stirred at room temperature for 4 hours. Then the reaction was quenched by saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=6 / 1$) to give product 22 ($21.1 \mathrm{mg}, 71 \%$ yield) as white powders.

Figure S256, Synthetic application, related to Scheme 3
A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with $\mathrm{MeBH}(\mathrm{OAc})_{3}\left(157.9 \mathrm{mg}, 0.60 \mathrm{mmol}, 6.0\right.$ equiv) under N_{2} atmosphere. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(0.5$ mL) and $\mathrm{HOAc}(0.5 \mathrm{~mL})$ were added via syringes. The resulting mixture was stirred at room temperature for 30 minutes. Then the resulting mixture was cooled to $-20^{\circ} \mathrm{C} .22(27.8 \mathrm{mg}, 0.10$ mmol, 1.0 equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added dropwise via a syringe. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 4 hours. Then the reaction was quenched by saturated aqueous sodium potassium tartarate and saturated aqueous NaHCO_{3}. The aqueous phase was extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatives were removed under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to give product 23 (25.2 $\mathrm{mg}, 90 \%$ yield, $\mathrm{dr}=8 / 1$) as white powders (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR
analysis of reaction crude mixture).

Figure S257, Synthetic application, related to Scheme 3
A dried 25 mL round bottom flask equipped with a magnetic stirring bar was charged with 23 ($25 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd} / \mathrm{C}(27.4 \mathrm{mg}, 5 \% \mathrm{w} / \mathrm{w}$) and EtOH (2 mL). The resulting mixture was stirred for 2 hours at room temperature with a ballon filled with H_{2}. The black solids were filtered off and washed thoroughly with EtOH. The filtrate was concentrated under reduced pressure to give the crude, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $=2 / 1$) to give product yashabushidiol B $(23 \mathrm{mg}, 88 \%$ yield $)$ as white powders.

Characterization of all compounds:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.6$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.24(\mathrm{~m}$, $4 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.88,157.83,133.26,81.35,78.64,31.59,31.08,27.11,21.87,18.32$, 18.21, 13.54 ppm.

MS(EI) m/z [M-H] ${ }^{+}: 177.00$.
HRMS(EI) m/z [M] ${ }^{+}$: calcd. 178.1358, found 178.1359.
IR (film):2933, 2320, 1698, 1652, $1286 \mathrm{~cm}^{-1}$.

3a: Procedure A, 78 mg, colorless liquid, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{ddt}, J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=$ $21.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, \mathrm{J}=7.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.80-2.50(\mathrm{~m}, 2 \mathrm{H})$, 1.26 (td, $J=7.0,5.4 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 149.89(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 143.80,128.36,127.50,125.78,119.28(\mathrm{~d}, \mathrm{~J}=$ $186.6 \mathrm{~Hz}), 72.50,61.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 43.94(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 16.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 18.05 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 285.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 285.1250, found 285.1250.
IR (film): 3361, 2984, 1632, 1259, 1020, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+19.72\left(c=1.780, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=13 / 3$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=11.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=13.4 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S258, the HPLC spectrum of compound 3a, related to Table 2

3b: Procedure A, 73 mg , colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{ddt}, \mathrm{J}=22.0$, $17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{td}, J=7.1,3.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.09(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 149.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 139.59(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, 127.42 ($d, J=8.1 \mathrm{~Hz}$), 119.58 ($d, J=186.6 \mathrm{~Hz}$), $115.17(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 71.88(\mathrm{~d}, J=0.7 \mathrm{~Hz}), 61.70(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}), 44.01(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 16.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.10~-115.18(m) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.88 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 303.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 303.1154, found 303.1155 .
IR (film): 3354, 2984, 1633, 1510, 1260, $1026 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+20.98\left(c=2.070, \mathrm{CHCl}_{3}, 99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=18.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=19.9 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S259, the HPLC spectrum of compound 3b, related to Table 2

3c: Procedure A, 71 mg , colorless liquid, 74% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{ddt}, J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=$ $21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.51(\mathrm{~m}, 2 \mathrm{H})$, 1.26 (td, J = 7.1, 2.7 Hz, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.49(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 142.37,133.11,128.48,127.19,119.63(\mathrm{~d}, \mathrm{~J}=$ $186.6 \mathrm{~Hz}), 71.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 43.93(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 16.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 17.83 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 319.05.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 319.0860, found 319.0863.
IR (film): 3354, 2988, 1632, 1260, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+18.26\left(c=2.470, \mathrm{CHCl}_{3}, 99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=18.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=19.9 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S260, the HPLC spectrum of compound 3c, related to Table 2

3d: Procedure A, 84 mg , colorless liquid, 77% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ ($\mathrm{ddt}, J=22.0,17.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=21.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H})$, 2.72-2.54 (m, 2H), 1.27 (td, $J=7.1,2.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.28(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$), 142.76, 131.48, 127.52, 121.32, $119.84(\mathrm{~d}, \mathrm{~J}=$ $186.5 \mathrm{~Hz}), 71.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 43.87(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 16.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 17.75 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 363.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 363.0353, found 363.0353.
IR (film): 3352, 2988, 1630, 1260, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+16.74\left(c=1.450, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=19.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.8 \mathrm{~min}, \mathrm{ee}=98 \%$.

Figure S261, the HPLC spectrum of compound 3d, related to Table 2

3e: Procedure A, 113 mg , colorless liquid, 92% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{ddt}, J=22.1,17.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=20.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H})$, 2.79-2.21 (m, 2H), 1.27 (td, $J=7.1,2.8 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.27(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 143.42,137.46,127.78,119.86$ ($\mathrm{d}, \mathrm{J}=186.4 \mathrm{~Hz}$), $92.91,72.02(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.75(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 43.85(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 16.30(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 17.77 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 411.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 411.0217, found 411.0215.
IR (film): 3354, 2986, 1634, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{28}=+16.00\left(c=2.60, \mathrm{CHCl}_{3}, 99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=39 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=64.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=70.9 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S262, the HPLC spectrum of compound 3e, related to Table 2

3f: Procedure A, 72 mg, colorless liquid, 80% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{ddt}, \mathrm{J}=22.0,17.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=21.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{q}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 149.79(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 140.69,137.28,129.09,125.72,119.41(\mathrm{~d}, \mathrm{~J}=$ $186.3 \mathrm{~Hz}), 72.51(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}), 61.64(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 43.87(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 21.06,16.26(\mathrm{~d}, J=6.6 \mathrm{~Hz})$ ppm.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.01 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 341.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 341.1876, found 341.1879.
IR (film): 3371, 2985, 1635, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+15.25\left(c=1.510, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=19.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=23.9 \mathrm{~min}, \mathrm{ee}=98 \%$.

Figure S263, the HPLC spectrum of compound 3f, related to Table 2

3g

3 g : Procedure A, 92 mg , colorless liquid, 90% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ ($\mathrm{ddt}, J=22.1,17.1$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=21.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}$, 1H), 2.83-2.53 (m, 2H), 1.40-1.15 (m, 15H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.52,149.98(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 140.66,125.52,125.30,119.26(\mathrm{~d}, \mathrm{~J}=$ $186.3 \mathrm{~Hz}), 72.39,61.65(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}), 43.77(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 34.46,31.31,16.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 18.09 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 299.15.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 299.1407, found 299.1405.
IR (film): 3366, 2963, 1635, 1230, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+16.03\left(c=3.325, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=37 / 3$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=23.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.7 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S264, the HPLC spectrum of compound 3g, related to Table 2

3h: Procedure A, 84 mg , colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{ddt}, J=22.0,17.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{td}, \mathrm{J}=7.0,5.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 149.52(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}), 140.54,137.75,126.59,126.33,119.65(\mathrm{~d}, \mathrm{~J}=$ $186.3 \mathrm{~Hz}), 72.26(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 61.70(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}), 43.82(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 15.83$ ppm.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.88 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 331.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 331.1127, found 331.1126.
IR (film): 3366, 2988, 1635, 1260, 1025, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+15.85$ ($c=1.485, \mathrm{CHCl}_{3},>99 \%$ ee).
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=27.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.4 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S265, the HPLC spectrum of compound 3h, related to Table 2

3i: Procedure $\mathrm{A}, 76 \mathrm{mg}$, colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ ($\mathrm{ddt}, \mathrm{J}=22.0,17.1$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, \mathrm{J}=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{q}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.11,149.66(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 135.73,127.02,119.53(\mathrm{~d}, \mathrm{~J}=186.5 \mathrm{~Hz})$, $113.82,72.34(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.66(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 55.25,43.82(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 16.27(\mathrm{~d}, J=6.5 \mathrm{~Hz})$ ppm.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.95 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 315.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 315.1356, found 315.1355.
IR (film): 3368, 2988, 1612, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+16.00\left(c=1.600, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ \mathrm{i}-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $29.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=33.3 \mathrm{~min}$, ee $=97 \%$.

Figure S266, the HPLC spectrum of compound 3i, related to Table 2

3j: Procedure A, 88 mg , colorless liquid, 83% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ ($\mathrm{ddt}, J=22.0,17.2$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=20.9,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{td}, \mathrm{J}=7.1,3.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.13(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 148.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 142.38,127.18,120.92$, $120.40(\mathrm{~d}, \mathrm{~J}=257.0 \mathrm{~Hz}), 119.07,71.85(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}), 61.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 43.93(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 16.23$ (d, $J=6.5 \mathrm{~Hz}$) ppm.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-57.96 ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.71 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}: 369.10$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 369.1073, found 369.1071.
IR (film): 3361, 2989, 1636, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+14.54\left(c=1.100, \mathrm{CHCl}_{3}, 99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=19 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=20.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=22.8 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S267, the HPLC spectrum of compound 3j, related to Table 2

3k
3k: Procedure A, 82 mg , colorless liquid, 90% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{ddt}, J=24.0,17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=21.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=$ $10.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.39(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 149.63(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 130.88(\mathrm{~d}, J=13.4 \mathrm{~Hz})$, 128.79 (d, $J=8.2 \mathrm{~Hz}$), 127.29 (d, $J=4.4 \mathrm{~Hz}$), 124.23 (d, J = 3.4 Hz), 119.43 (d, $J=186.4 \mathrm{~Hz}$), 115.06 (d, J $=21.7 \mathrm{~Hz}), 66.33,61.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 42.72(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 16.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-119.42~-119.56 (m) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.97 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 303.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 303.1156, found 303.1155.
IR (film): 3353, 2986, 1634, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+23.86\left(c=2.480, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $12.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=16.7 \mathrm{~min}$, ee $=98 \%$.

Figure S268, the HPLC spectrum of compound 3k, related to Table 2

31: Procedure A, 96 mg , colorless liquid, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=14.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 1 H), 6.88 (ddt, $J=22.0,17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (dd, $J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.94$ $(\mathrm{m}, 4 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{td}, J=7.1,2.3 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 149.81(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 143.29,132.23,127.63,127.39,126.42(\mathrm{q}, \mathrm{J}=$ $30.6 \mathrm{~Hz}), 125.32(\mathrm{q}, J=5.9 \mathrm{~Hz}), 124.30(\mathrm{q}, J=273.9 \mathrm{~Hz}), 119.39(\mathrm{~d}, J=186.8 \mathrm{~Hz}), 67.86,61.70(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 44.13(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 16.22(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.23 \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.97$ ppm.
MS(ESI) m/z [M+Na] ${ }^{+}$: 375.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 353.1124, found 353.1122.
IR (film): 3342, 2985, 1632, 1259, 1056, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+28.63\left(c=2.655, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $9.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.9 \mathrm{~min}$, ee $=95 \%$.

Figure S269, the HPLC spectrum of compound 31, related to Table 2

3m
3m: Procedure A, 86 mg , colorless liquid, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.71(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=21.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=12.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{td}, J=7.1,4.2 \mathrm{~Hz}$, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.17,150.25(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 131.30,128.49,126.68,120.72,118.96(\mathrm{~d}$, $J=186.4 \mathrm{~Hz}), 110.35,68.94(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 61.59(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 55.21,42.08(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 16.29(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}$) ppm.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.20 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 337.10.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 315.1356, found 315.1354.
IR (film): 3365, 2982, 1632, 1239, 1026, $756 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+22.46\left(c=2.095, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $27.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=34.0 \mathrm{~min}$, ee $=98 \%$.

Figure S270, the HPLC spectrum of compound 3m, related to Table 2

3n: Procedure A, 77 mg , colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{ddt}, J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.66 (dd, J = 21.1, 17.1 Hz, 1H), 4.87-4.69 (m, 1H), 4.07-3.90 (m, 5H), 2.73-2.53 (m, 2H), $1.27(\mathrm{td}, \mathrm{J}=$ $7.1,3.0 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.54(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 146.12,134.21,129.65,127.49,125.97$, 123.95, 119.53 (d, $J=186.6 \mathrm{~Hz}$), $71.78(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 61.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 43.88(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 16.23(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.89 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}: 319.05$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 319.0860, found 319.0863.
IR (film): 3346, 2984, 1635, 1259, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+18.19\left(c=2.420, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $14.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=18.4 \mathrm{~min}$, ee $=98 \%$.

Figure S271, the HPLC spectrum of compound 3n, related to Table 2

30: Procedure A, 96 mg , colorless liquid, 88% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{ddt}, J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{td}, J=7.1,3.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.37(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 146.30,130.51,129.99,128.89,124.42,122.52$, 119.71 (d, $J=186.5 \mathrm{~Hz}), 71.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.78(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 43.90(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.83 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 363.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 363.0355, found 363.0353.
IR (film): 3352, 2986, 1630, 1260, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+14.69\left(c=2.265, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $15.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=20.3 \mathrm{~min}, \mathrm{ee}=97 \%$.

Figure S272, the HPLC spectrum of compound 3o, related to Table 2

$3 p$
3p: Procedure A, 94 mg, pale yellow liquid, 94% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, J = 7.1 Hz, 1H), 7.56-7.42 (m, 3H), 6.89 (ddt, J = 22.0, 17.1, 6.9 Hz, 1H), 5.69 (dd, J = 21.1, 17.1 Hz , $1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{dt}, J=12.9$, $7.1 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.95(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 139.28,133.72,130.04,128.95,128.05,126.13$, $125.55,125.42,123.00,122.80,119.34(\mathrm{~d}, \mathrm{~J}=186.5 \mathrm{~Hz}), 69.39,61.68(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 43.01(\mathrm{~d}, J=22.0$ Hz), 16.26 ($\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.02 \mathrm{ppm}$.
MS(ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{H}]^{+}: 335.15$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 335.1407, found 335.1406.
IR (film): 3356, 2983, 1635, 1259, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+38.34\left(c=1.620, \mathrm{CHCl}_{3}, 99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $22.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=24.6 \mathrm{~min}$, ee $=99 \%$.

Figure S273, the HPLC spectrum of compound 3p, related to Table 2

$3 q$
3q: Procedure $\mathrm{A}, 70 \mathrm{mg}$, colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{ddt}, J=22.1,17.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=$ $3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=21.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{td}, J=7.1,1.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
$\left.{ }^{13} \mathbf{C N M R}^{(100 ~ M H z}, \mathrm{CDCl}_{3}\right) \delta 155.87,149.22(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 141.84,119.45(\mathrm{~d}, \mathrm{~J}=186.7 \mathrm{~Hz}), 110.09$, $106.16,66.01(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.75(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 40.39(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 16.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.96 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 7 5 . 1 0 .}$
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 275.1043, found 275.1045.
IR (film): 3361, 2985, 1635, 1226, 1020, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+9.75$ ($c=3.005, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}$).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=37 / 3$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=34.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.4 \mathrm{~min}$, $\mathrm{ee}=>99 \%$.

Figure S274, the HPLC spectrum of compound 3q, related to Table 2

$3 r$
3r: Procedure A, 79 mg , colorless liquid, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ (ddt, $J=$ 22.1, 17.1, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71(\mathrm{dd}, J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-3.70(\mathrm{~m}, 5 \mathrm{H})$, 2.91-2.59 (m, 2H), 1.27 (td, $J=7.1,3.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.34(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 147.97,126.54,124.42,123.59,119.53(\mathrm{~d}, \mathrm{~J}=$ $186.4 \mathrm{~Hz}), 68.40,61.75(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 44.02(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 16.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.94 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 291.05.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 291.0814, found 291.0813.
IR (film): 3342, 2984, 1634, 1259, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+9.24$ ($\left.c=2.640, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $18.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=20.3 \mathrm{~min}$, ee $=>99 \%$.

Figure S275, the HPLC spectrum of compound 3r, related to Table 2

3s
3s: Procedure A, 63 mg , colorless liquid, 76% yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{ddt}, J=22.0,17.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H})$, $5.81-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.89(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.57(\mathrm{~m}$, 2 H), 1.30 (td, $J=7.1,1.6 \mathrm{~Hz}, 6 \mathrm{H}$) ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.22(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}), 143.39,139.07,128.25,119.88$ ($\mathrm{d}, \mathrm{J}=186.6 \mathrm{~Hz}$), $108.37,65.37(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 61.71(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 42.62(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 18.97 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 275.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 275.1043, found 275.1041.
IR (film): 3368, 2989, 1631, 1260, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+10.84\left(c=1.070, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=21.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.1 \mathrm{~min}, \mathrm{ee}=98 \%$.

Figure S276, the HPLC spectrum of compound 3s, related to Table 2

3t: Procedure A, 47 mg , colorless liquid, 55% yield.
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.81 (ddt, $J=24.1,17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=20.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=7.4,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13-3.81(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.17(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}$), 148.59, 147.55, 139.53, 133.73, 123.46, 120.00 (d , $J=186.8 \mathrm{~Hz}), 70.13,61.77(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 43.81(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.62 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 308.05.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 286.1203, found 286.1203.
IR (film): 3355, 2983, 1634, 1229, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+34.45\left(c=4.000, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $49.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=56.1 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S277, the HPLC spectrum of compound 3t, related to Table 2

3u: Procedure A, 87 mg , pale yellow liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{ddt}, J=22.0,17.1,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{dd}, J=21.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.93-2.66 (m, 2H), 1.30-1.18 (m, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.57(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 140.92,138.75,136.93,124.43,124.07,122.94$, $122.51,122.06,119.56(\mathrm{~d}, J=186.5 \mathrm{~Hz}), 68.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.72(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 42.05(\mathrm{~d}, J=22.1$ Hz), 16.27 ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.89 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 341.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 341.0971, found 341.0972.
IR (film): 3351, 2988, 1630, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+32.45$ ($c=1.465, \mathrm{CHCl}_{3},>99 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $21.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=23.3 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S278, the HPLC spectrum of compound 3u, related to Table 2

3v: Procedure A, 79 mg , colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.82$ (ddt, J = 24.0, 17.1, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=20.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.00-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{td}, J=7.0,1.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.66(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}), 154.70,149.02,128.03,124.08,122.75,120.99$, 119.75 (d, $J=181.9 \mathrm{~Hz}), 111.11,102.88,66.58,61.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 40.45(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 16.17(\mathrm{~d}, \mathrm{~J}=$ 6.5 Hz) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.85 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}: 325.10$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 325.1199, found 325.1200.
IR (film): 3341, 2988, 1632, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+16.59\left(c=2.590, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $19.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=20.3 \mathrm{~min}$, ee $=97 \%$.

Figure S279, the HPLC spectrum of compound 3v, related to Table 2

3w: Procedure A, 92 mg , colorless liquid, 90% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15$ (s, 1H), 6.79 (ddt, J = 24.0, 17.1, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.70(\mathrm{dd}, \mathrm{J}=21.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.75(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.87(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 148.44,139.39,139.26,124.27,124.16,123.43$, $122.39,120.18,119.98(\mathrm{~d}, J=186.0 \mathrm{~Hz}), 69.05,61.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 43.67(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 16.17(\mathrm{dd}, J$ $=6.5,3.6 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.78 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 341.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 341.0971, found 341.0972.
IR (film): 3336, 2988, 1635, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+11.64$ ($c=1.760, \mathrm{CHCl}_{3},>99 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=60.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=64.5 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S280, the HPLC spectrum of compound 3w, related to Table 2

3x: Procedure A, 70 mg , colorless liquid, 58% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=20.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.03-3.80 (m, 4H), 2.91-2.69 (m, 2H), 1.90-1.70 (br, 1H), 1.42 (t, J = 7.2 Hz, 3H), 1.30-1.10 (m, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.76(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 140.24,139.60,133.97,125.80,123.58,122.86$, $122.69,120.39,119.58$ (d, $J=186.1 \mathrm{~Hz}$), 118.89, 117.82, 108.51, 108.49, $73.50(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}), 61.65$ (d, $J=5.3 \mathrm{~Hz}), 44.27(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 37.57,16.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 13.78 \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.97 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 424.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 402.1829, found 402.1829.
IR (film): 3361, 2985, 1635, 1260, 1025, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+14.31$ ($\left.c=0.460, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IF-3, hexane $/ i-\mathrm{PrOH}=8 / 1$, flow rate: $0.9 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=47.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=53.7 \mathrm{~min}, \mathrm{ee}=>99 \%$.

Figure S281, the HPLC spectrum of compound 3x, related to Table 2

3y: Procedure A, 71 mg , colorless liquid, 76% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{ddt}, \mathrm{J}=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=21.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.11-3.92(\mathrm{~m}$, $4 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.33(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 136.33,131.12,130.78,128.55,127.78,126.46$, $119.82(\mathrm{~d}, J=186.4 \mathrm{~Hz}), 71.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.74(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 42.18(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 16.27(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.89 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 333.10.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 311.1407, found 311.1405.
IR (film): 3361, 2983, 1631, 1228, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+1.10\left(c=1.150, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=23.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.6 \mathrm{~min}, \mathrm{ee}=97 \%$.

Figure S282, the HPLC spectrum of compound 3y, related to Table 2

$3 z$
3z: Procedure A, 76 mg, colorless liquid, 78% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{ddt}, J=21.9,17.1,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{dd}, \mathrm{J}=21.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.93(\mathrm{~m}, 4 \mathrm{H}), 2.68-2.49$ $(\mathrm{m}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.58(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}), 139.07,137.15,128.92,128.10,126.57$, 126.19, 119.43 (d, $J=186.7 \mathrm{~Hz}), 76.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.71(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 40.13(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 16.29(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}), 13.49 \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.90 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 347.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 325.1562, found 325.1562.
IR (film): 3366, 2985, 1634, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=-11.16\left(c=1.260, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=19.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=22.4 \mathrm{~min}$, ee $=98 \%$.

Figure S283, the HPLC spectrum of compound 3z, related to Table 2

3aa
3aa: Procedure A, 81 mg , colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{dd}, \mathrm{J}=$ $15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=21.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.98(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.45(\mathrm{~m}$, 2H), 2.34-2.10 (br, 1H), $1.29(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.28(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 141.44,130.61,127.36,126.09,124.48,123.97$, $119.85(\mathrm{~d}, J=186.4 \mathrm{~Hz}), 70.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.80(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 42.10(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 16.27(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.89 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 317.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 317.0971, found 317.0970.
IR (film): 3358, 2986, 1631, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+3.05$ ($c=0.680, \mathrm{CHCl}_{3}, 98 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $22.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=27.4 \mathrm{~min}$, ee $=98 \%$.

Figure S284, the HPLC spectrum of compound 3aa, related to Table 2

3ab
3ab: Procedure A, 48 mg , colorless liquid, 68% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ (ddt, $J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.67(\mathrm{~m}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.97(\mathrm{~m}, 4 \mathrm{H}), 2.64$ $(\mathrm{s}, 1 \mathrm{H}), 2.58-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.33(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 139.90,119.66(\mathrm{~d}, \mathrm{~J}=186.9 \mathrm{~Hz}), 115.28,71.22(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}), 61.72(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 41.78(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 16.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.96 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 257.05.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 235.1094, found 235.1094.
IR (film): 3379, 2985, 1633, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+2.52$ ($c=1.060, \mathrm{CHCl}_{3}, 93 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $13.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=14.9 \mathrm{~min}$, ee $=93 \%$.

Figure S285, the HPLC spectrum of compound 3ab, related to Table 2

3ac
3ac: Procedure A, 48 mg , colorless liquid, 58% yield, $E / Z=6 / 1$ (2ac was used as a mixture $(E / Z=$ 6/1)).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76$ (ddt, $\left.J=21.9,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.19(\mathrm{dd}, J=15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.82-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{dd}, \mathrm{J}=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.98$ ($\mathrm{m}, 4 \mathrm{H}$), $2.56(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.20(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 149.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 131.88,131.26,130.53,130.34,119.46(\mathrm{~d}, \mathrm{~J}=$ $186.6 \mathrm{~Hz}), 70.87(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.71(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 42.15(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 18.05,16.28(\mathrm{~d}, J=6.5 \mathrm{~Hz})$ ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.06 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 297.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 275.1407, found 275.1407.
IR (film): 3363, 2962, 1634, 1260, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+8.32\left(c=0.510, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}, E / Z=6 / 1\right)$.
HPLC: DAICEL CHIRALPAK IC, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $16.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=19.6 \mathrm{~min}$, ee $=97 \%$.

Figure S286, the HPLC spectrum of compound 3ac, related to Table 2

3ad

3ad: Procedure A, 51 mg , colorless liquid, 68% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{ddt}, J=24.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{dd}, J=$ $15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=12.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.95(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H})$, $1.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 132.95,127.57,119.50(\mathrm{~d}, J=185.8 \mathrm{~Hz}), 71.25$, 61.69 (d, $J=5.5 \mathrm{~Hz}$), 42.06 (d, $J=21.9 \mathrm{~Hz}), 17.61,16.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 18.02 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 249.10.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 249.1250, found 249.1251.
IR (film): 3386, 2985, 1633, 1259, 1020, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+5.38$ ($c=1.155, \mathrm{CHCl}_{3}, 95 \% \mathrm{ee}$).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $14.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=15.9 \mathrm{~min}$, ee $=95 \%$.

Figure S287, the HPLC spectrum of compound 3ad, related to Table 2

$3 a e$
3ae: Procedure A, 59 mg , colorless liquid, 71% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{ddt}, J=24.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=$ $15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.96(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 2.10-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 132.59,131.81,119.42(\mathrm{~d}, \mathrm{~J}=187.0 \mathrm{~Hz}), 71.24$, $61.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 42.17(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 34.16,22.17,16.29(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 13.61 \mathrm{ppm}$.
${ }^{31}$ P NMR ($\mathbf{1 6 2 ~ M H z , ~} \mathrm{CDCl}_{3}$) $\delta 18.03 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 277.15$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 277.1563, found 277.1563.
IR (film): 3384, 2960, 1635, 1230, 1098, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+5.67$ ($c=1.510, \mathrm{CHCl}_{3}, 93 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $12.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.8 \mathrm{~min}$, ee $=93 \%$.

Figure S288, the HPLC spectrum of compound 3ae, related to Table 2

3af: Procedure A, 69 mg , colorless liquid, 71% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{ddt}, J=24.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=$ $15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.09(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.41(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 132.29,131.79,119.62(\mathrm{~d}, J=187.1 \mathrm{~Hz}), 71.10(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}), 61.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 44.83,42.14(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 31.94,31.28,26.20,16.32(\mathrm{~d}, J=6.5 \mathrm{~Hz})$ ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.97 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 347.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 325.1330, found 325.1332.
IR (film): 3379, 2987, 1635, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+5.66$ ($c=0.940, \mathrm{CHCl}_{3}, 97 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 7/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $18.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=20.0 \mathrm{~min}$, ee $=97 \%$.

Figure S289, the HPLC spectrum of compound 3af, related to Table 2

3ag
3ag: Procedure A, 59 mg , colorless liquid, 47% yield.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{ddt}, J=24.1,17.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, \mathrm{J}=$ $15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.14-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.89$ ($\mathrm{s}, 9 \mathrm{H}$), 0.05 ($\mathrm{s}, 6 \mathrm{H}$) ppm.
 $J=1.3 \mathrm{~Hz}), 62.94,61.70(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 42.15(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 32.26,31.86,29.66,25.93,25.29,18.33$, 16.31 (d, $J=6.4 \mathrm{~Hz}$), -5.31 ppm .
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.03 \mathrm{ppm}$.
MS(ESI) $\mathbf{m} / \mathbf{z}[\mathrm{M}+\mathrm{Na}]^{+}: 443.15$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 421.2534, found 421.2534.
IR (film): 3381, 2930, 1633, 1255, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+3.45$ ($c=1.100, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}$).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=7 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $19.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=20.9 \mathrm{~min}$, ee $=98 \%$.

Figure S290, the HPLC spectrum of compound 3ag, related to Table 2

3ah
3ah: Procedure A, 91 mg , colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{ddt}, J=22.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=$ $15.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.98(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.01(\mathrm{~m}, 7 \mathrm{H})$, $1.62-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.43,132.29,131.85(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 119.58(\mathrm{~d}, J=187.0 \mathrm{~Hz}), 80.66$, $79.47,71.19,61.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 42.11(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 31.18,31.13,28.42,21.89,18.38,18.18$, 16.32 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}$), 13.59 ppm .
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.97 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 357.15$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 357.2189, found 357.2191.
IR (film): 3379, 2932, 1634, 1275, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=+3.32$ ($c=1.110, \mathrm{CHCl}_{3}, 98 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=15 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=28.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=30.6 \mathrm{~min}, \mathrm{ee}=98 \%$.

Figure S291, the HPLC spectrum of compound 3ah, related to Table 2

3ai: Procedure A, 80 mg , colorless liquid, 68% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76$ ($\left.\mathrm{ddt}, J=22.0,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74(\mathrm{dd}, J=21.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (dd, $J=8.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=14.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 4 \mathrm{H})$, 2.55-2.33 (m, 2H), $2.28(\mathrm{~s}, 1 \mathrm{H}), 2.13-1.93(\mathrm{~m}, 8 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.74(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 139.24,135.37,131.29,126.56,124.21,123.58$, 119.31 (d, $J=187.0 \mathrm{~Hz}), 67.04(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 61.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 42.42(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 39.62,39.45$, 26.66, 26.29, 25.64, 17.63, 16.68, 16.29 ($d, J=6.5 \mathrm{~Hz}$), 15.96 ppm .
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.11 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 421.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 399.2659, found 399.2659.
IR (film): 3385, 2927, 1633, 1270, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+2.53$ ($c=2.675, \mathrm{CHCl}_{3}, 99 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=37 / 3$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=207 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=19.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=23.1 \mathrm{~min}, \mathrm{ee}=99 \%$.

Figure S292, the HPLC spectrum of compound 3ai, related to Table 2

3aj: Procedure A, 56 mg , colorless liquid, 52\% yield, 15/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77(\mathrm{ddt}, J=22.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.60(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=$ $15.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.17-3.95(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 1 \mathrm{H}), 2.11-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.07$ $(\mathrm{m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.58(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 132.97,131.15,124.64,119.47(\mathrm{~d}, \mathrm{~J}=187.1 \mathrm{~Hz})$, $109.99,71.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 61.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 42.21(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 39.48,36.62,32.43,25.67$, $25.48,19.32,17.61,16.31(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.04 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 381.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 359.2346, found 359.2346.
IR (film): 3381, 2912, 1633, 1231, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+6.51\left(c=2.205, \mathrm{CHCl}_{3}, 15 / 1 \mathrm{dr}\right)$.

3aj': Procedure B, 65 mg , colorless liquid, 60\% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77(\mathrm{ddt}, J=22.1,17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=$ $15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.38$ $(\mathrm{s}, 1 \mathrm{H}), 2.12-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.08$ $(\mathrm{m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.56(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 132.96,131.30,131.18,124.64,119.46(\mathrm{~d}, \mathrm{~J}=$ $187.1 \mathrm{~Hz}), 71.27(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.69(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 42.22(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 39.53,36.67,32.40,25.67$, $25.48,19.30,17.61,16.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}) \mathrm{ppm}$.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.03 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 381.15$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 359.2346, found 359.2347.
IR (film): 3380, 2964, 1633, 1231, $1028 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=-5.73\left(c=1.875, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

3ak: Procedure A, 57 mg , colorless liquid, 58% yield, $>20 / 1 \mathrm{dr}$ (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73$ ($\left.\mathrm{ddt}, J=24.1,17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83-5.64(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.30-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.82(\mathrm{~m}$, 1H), 1.73 (s, 3H), 1.55-1.37 (m, 1H), 1.38-1.21 (m, 7H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.92(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 149.54,138.71,123.61,119.09(\mathrm{~d}, \mathrm{~J}=186.7 \mathrm{~Hz})$, $108.71,74.40,61.68(d, J=5.4 \mathrm{~Hz}), 41.19,39.82(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 30.39,27.42,23.81,20.69,16.32(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}$) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.06 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 329.15$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 329.1876, found 329.1877.
IR (film): 3379, 2988, 1636, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=-25.80\left(c=1.330, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

3ak': Procedure B, 78 mg , colorless liquid, 79% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{ddt}, J=24.1,17.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=12.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.59-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}$, 1H), 1.89-1.75 (m, 1H), 1.73 (s, 3H), 1.56-1.49 (m, 1H), 1.36-1.20 (m, 7H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.03(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 149.5,138.49,122.37,119.08(\mathrm{~d}, \mathrm{~J}=187.0 \mathrm{~Hz}$), $108.68,74.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 61.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 41.05,40.12(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 30.27,27.30,24.50$, 20.73, 16.31 (d, J = 6.3 Hz) ppm.
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.10 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 329.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 329.1876, found 329.1876.
IR (film): 3379, 2985, 1642, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=-38.08\left(c=1.735, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

3al
3al: Procedure A, 87 mg , colorless liquid, 88% yield, $>20 / 1 \mathrm{dr}$ (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{ddt}, J=23.9,17.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=21.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ $(\mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-3.96(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.00(\mathrm{~m}$, 2H), 1.37-1.24 (m, 9H), 1.16 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.97(\mathrm{~d}, J=4.9 \mathrm{~Hz}$), $149.51,119.20(\mathrm{~d}, \mathrm{~J}=187.0 \mathrm{~Hz}), 118.07,73.05(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}), 61.63(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 42.05,40.83,39.64(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 37.79,31.66,31.01,26.11,21.39$, 16.31 (d, J=6.5 Hz) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.03 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}$: 329.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 329.1876, found 329.1876.
IR (film): 3384, 2914, 1635, 1260, 1027, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=-9.99\left(c=1.540, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

3al': Procedure B, 60 mg , colorless liquid, 61\% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74$ (ddt, $\left.J=24.0,17.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.72(\mathrm{dd}, J=21.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ $(\mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.48-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.00(\mathrm{~m}$, 2H), 1.37-1.24 (m, 9H), 1.12 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}$), 149.02, $119.10(\mathrm{~d}, \mathrm{~J}=187.0 \mathrm{~Hz}$), 118.53, 72.99 (d , $J=0.9 \mathrm{~Hz}), 61.64(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}), 41.82,40.84,39.57(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 37.77,31.60,31.03,26.04,21.35$, 16.30 (d, J = 6.5 Hz) ppm.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.11 \mathrm{ppm}$.
MS(ESI) m/z [M+H] ${ }^{+}: 329.15$.
HRMS(ESI) m/z [M+H] ${ }^{+}$:calcd. 329.1876, found 329.1875.
IR (film): 3379, 2988, 1631, 1260, 1028, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{29}=-24.74\left(c=1.870, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

$5 a$
5a: Procedure A, 83 mg , pale green solid, 96% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-4.49(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (d, J=3.2 Hz, 1H), 2.76-2.66 (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.21,150.15,146.36,142.95,138.25,129.96,128.61,127.96,127.13$, 125.63, 121.91, 72.36, 41.34 ppm.

MS(ESI) m/z [M+H] ${ }^{+}$: 290.00.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 290.0845, found 290.0846.
IR (film): 3502, 2914, 1630, 1428, 1170, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+32.29\left(c=1.050, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $31.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=36.1 \mathrm{~min}, \mathrm{ee}=97 \%$.

Figure S293, the HPLC spectrum of compound 5a, related to Table 3

5b
5b: Procedure A, 81 mg , colorless crystal, 88% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.53$ (dd, $J=7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (dd, $J=8.5,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.60(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.31(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 158.24,150.15,145.86,138.61(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz})$, $138.25,130.25,127.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.13,121.81,115.48(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 71.78,41.43 \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.86 ~ -117.88 (m) ppm.
MS(ESI) m/z [M+Na] ${ }^{+}$: 329.95.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 308.0751, found 308.0752.
IR (film): 3405, 2921, 1428, $1276 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+21.10\left(c=0.250, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $41.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=47.7 \mathrm{~min}$, ee $=97 \%$.

Figure S294, the HPLC spectrum of compound 5b, related to Table 3

5c: Procedure A, 90 mg , colorless crystal, 93% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.53 (dd, $J=7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.14,150.15,145.78,141.34,138.28,133.59,130.31,128.73,127.18$, 127.01, 121.84, 71.69, 41.34 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 345.95 .
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 324.0456, found 324.0455 .
IR (film): 3494, 2919, 1630, 1453, $1163 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+27.84\left(c=0.625, \mathrm{CHCl}_{3}, 97 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $27.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=29.7 \mathrm{~min}$, ee $=97 \%$.

Figure S295, the HPLC spectrum of compound 5c, related to Table 3

5d: Procedure A, 94 mg , white powder, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), $7.54(\mathrm{dd}, J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dt}, J=15.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.21,150.16,145.61,141.80,138.25,131.69,130.41,127.33,127.15$, 121.79, 121.76, 71.78, 41.27 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 389.90.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 367.9951, found 367.9951.
IR (film): 3490, 2924, 1428, $1262 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+30.84\left(c=0.335, \mathrm{CHCl}_{3}, 92 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 3/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $29.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=31.7 \mathrm{~min}$, ee $=92 \%$.

Figure S296, the HPLC spectrum of compound 5d, related to Table 3

5e: Procedure A, 102 mg , white powder, 82% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}$, 1 H), 7.61 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (ddd, $J=7.5,4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.19-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.56(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.99,150.18,145.93,142.67,138.35,137.55,130.21,127.63,127.26$, 121.92, 93.26, 71.69, 41.25 ppm .

MS(ESI) m/z [M+Na] ${ }^{+}$: 437.70.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 415.9812, found 415.9812.
IR (film): 3493, 2919, 1630, 1427, $1163 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+28.57\left(c=1.835, \mathrm{CHCl}_{3}, 91 \%\right.$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=5 / 1$, flow rate: $0.72 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=70.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=75.0 \mathrm{~min}, \mathrm{ee}=91 \%$.

Figure S297, the HPLC spectrum of compound 5e, related to Table 3

5f: Procedure A, 87 mg , white powder, 96% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.51 (ddd, J = 7.5, 4.7, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.75(\mathrm{~m}, 1 \mathrm{H})$, 2.84-2.58 (m, 3H), $2.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.20,150.16,146.53,140.00,138.25,137.64,129.84,129.25,127.11$, 125.57, 121.90, 72.21, 41.32, 21.09 ppm .

MS(ESI) m/z [M+Na] ${ }^{+}$: 326.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 304.1002, found 304.1002.
IR (film): 3514, 2921, 1630, 1428, $1270 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+35.05$ ($c=1.165, \mathrm{CHCl}_{3}, 97 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 3/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $36.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.0 \mathrm{~min}$, ee $=97 \%$.

Figure S298, the HPLC spectrum of compound 5f, related to Table 3

$5 g$
5 g : Procedure A, 94 mg , colorless liquid, 91% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.51 (ddd, $J=7.6,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.78(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.59(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.19,150.92,150.18,146.67,139.99,138.28,129.78,127.14,125.50$, 125.40, 121.94, 72.13, 41.24, 34.52, 31.30 ppm .

MS(ESI) m/z [M+Na] ${ }^{+}$: 368.05.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 346.1471, found 346.1469.
IR (film): 3507, 2989, 1461, 1260, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+28.35\left(c=1.790, \mathrm{CHCl}_{3}, 95 \%\right.$ ee).
HPLC: DAICEL CHIRALPAK IG-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=41.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=38.7 \mathrm{~min}$, ee $=95 \%$.

Figure S299, the HPLC spectrum of compound 5g, related to Table 3

5h
5h: Procedure A, 91 mg , pale green liquid, 90% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, \mathrm{J}=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 157.86,150.15,146.45,139.97,138.40,137.82,129.86,127.29,126.45$, $126.27,121.97,71.73,41.16,15.68 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 357.95 .
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 336.0723, found 336.0723.
IR (film): 3393, 2921, 1428, $1270 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+23.63\left(c=0.420, \mathrm{CHCl}_{3}, 97 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\mathrm{PrOH}=11 / 5$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=48.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=52.8 \mathrm{~min}, \mathrm{ee}=97 \%$.

Figure S300, the HPLC spectrum of compound 5h, related to Table 3

5am
5am: Procedure A, 79 mg , colorless liquid, 76% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.51$ (dd, $J=6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.81,157.87,150.13,148.20,146.01,138.39,130.15,129.76,129.35$, $127.28,125.62,121.96,71.68,52.14,41.21 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 369.95 .
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 348.0900, found 348.0900.
IR (film): 3493, 2952, 1717, 1429, 1026, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+28.54\left(c=0.289, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $53.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=59.7 \mathrm{~min}$, ee $=98 \%$.

Figure S301, the HPLC spectrum of compound 5am, related to Table 3

5k
5k: Procedure A, 88 mg, colorless liquid, 95% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.24-5.18 (m, 1H), 2.86-2.66 (m, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.59,158.18(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 150.16,145.98,138.26,130.20,129.87$ (d , $J=13.2 \mathrm{~Hz}), 129.31(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 127.13,127.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 124.43(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 121.87,115.34$ ($\mathrm{d}, J=21.6 \mathrm{~Hz}$), $66.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 40.03 \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-119.29~-119.40 (m) ppm.
MS(ESI) m/z [M+Na] ${ }^{+}$: 329.95.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 308.0751, found 308.0751.
IR (film): 3490, 2989, 1456, 1275, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+35.66\left(c=0.670, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\operatorname{PrOH}=11 / 5$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=30.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.7 \mathrm{~min}, \mathrm{ee}=98 \%$.

Figure S302, the HPLC spectrum of compound 5k, related to Table 3

5an

5an: Procedure A, 94 mg , colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.33-5.18 (m, 1H), 2.96 (s, 1H), 2.86-2.77 (m, 1H), 2.66-2.55 (m, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.21,150.17,146.21,141.85,138.28,132.68,130.08,129.20,127.84$, $127.18,127.15,121.91,121.47,71.07,39.61 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 389.85.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 367.9951, found 367.9951.
IR (film): 3493, 2960, 1632, 1428, $1198 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+69.81$ ($c=1.070, \mathrm{CHCl}_{3}, 92 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $28.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=30.3 \mathrm{~min}$, ee $=92 \%$.

Figure S303, the HPLC spectrum of compound 5an, related to Table 3

$5 a 0$
5ao: Procedure A, 89 mg , colorless liquid, 98% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.30,150.18,146.49,140.97,138.23,134.13,130.55,129.94,127.71$, $127.10,126.48,124.99,121.84,68.79,40.16,18.99 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 326.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 304.1002, found 304.1003.
IR (film): 3405, 2918, 1462, 1276, cm^{-1}.
Optical rotation: $[\alpha]_{D}{ }^{27}=+40.80\left(c=0.345, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $32.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=40.8 \mathrm{~min}$, ee $=99 \%$.

Figure S304, the HPLC spectrum of compound 5ao, related to Table 3

51
5I: Procedure A, 87 mg , colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=15.2,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.25(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.56(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.29,150.16,145.91,141.98,138.25,132.42,130.28,127.93,127.40$, $127.13,125.61,125.55,122.82,121.83,67.73,41.33 \mathrm{ppm}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-58.23 ppm.
MS(ESI) m/z [M+Na] ${ }^{+}$: 379.95.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 358.0719, found 358.0718.
IR (film): 3494, 2925, $1132 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+54.75\left(c=2.750, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $19.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=21.4 \mathrm{~min}$, ee $=97 \%$.

Figure S305, the HPLC spectrum of compound 5l, related to Table 3

5ap
5ap: Procedure $A, 74 \mathrm{mg}$, colorless liquid, 80% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{td}, \mathrm{J}=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96-4.86 (m, 1H), 3.20 (d, J=3.7 Hz, 1H), 2.80-2.62 (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.87(\mathrm{~d}, \mathrm{~J}=246.5 \mathrm{~Hz}), 158.09,150.15,145.91,145.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz})$, $138.32,130.24,130.13(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 127.19,121.89,121.22(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 114.69(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz})$, 112.60 ($d, J=22.0 \mathrm{~Hz}$), 71.66, 41.27 ppm .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.27~-112.39 (m) ppm.
MS(ESI) m/z [M+Na] ${ }^{+}$: 330.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 308.0751, found 308.0751.
IR (film): 3316, 2915, 1428, 1232, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+36.50\left(c=1.355, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $40.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=43.0 \mathrm{~min}$, ee $=97 \%$.

Figure S306, the HPLC spectrum of compound 5ap, related to Table 3

5n
5n: Procedure A, 79 mg , colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.85(\mathrm{~m}, 1 \mathrm{H})$, $2.71(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.21,150.16,145.67,144.92,138.28,134.56,130.39,129.91,128.09$, $127.14,125.79,123.77,121.81,71.75,41.28 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 323.95$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 324.0456, found 324.0457.
IR (film): 3396, 2924, 1428, $1270 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+37.10\left(c=0.300, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $26.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=31.1 \mathrm{~min}$, ee $=98 \%$.

Figure S307, the HPLC spectrum of compound 5n, related to Table 3

50
50: Procedure A, 84 mg , colorless liquid, 76% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.23,150.16,145.63,145.15,138.28,131.05,130.41,130.20,128.71$, 127.14, 124.25, 122.76, 121.80, 71.71, 41.30 ppm.

MS(ESI) m/z [M+H] ${ }^{+}: 367.90$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 367.9951, found 367.9951.
IR (film): 3485, 2961, 1428, 1261, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+33.07\left(c=1.850, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $30.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=35.5 \mathrm{~min}$, ee $=98 \%$.

Figure S308, the HPLC spectrum of compound 50, related to Table 3

5aq
5aq: Procedure A, 90 mg , colorless liquid, 88% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.74(\mathrm{~m}, 5 \mathrm{H})$, $7.52-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 1 \mathrm{H})$, 2.91-2.73 (m, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.24,150.08,146.04,140.15,138.10,133.15,133.05,130.18,128.57$, $127.98,127.67,127.00,126.33,126.10,124.51,123.45,121.70,72.59,41.23 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 361.95.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 340.1002, found 340.1002.
IR (film): 3494, 2925, 1427, $1162 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+30.68\left(c=2.200, \mathrm{CHCl}_{3}, 97 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane/i-PrOH = 3/1, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $46.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=50.4 \mathrm{~min}$, ee $=97 \%$.

Figure S309, the HPLC spectrum of compound 5aq, related to Table 3

5p: Procedure A, 99 mg , colorless liquid, 97% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.58(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.67(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.06,150.14,146.79,138.58,138.29,133.69,129.83,129.74,129.00$, $128.27,127.16,126.30,125.66,125.42,122.96,122.62,121.92,69.02,40.37 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}: 362.00$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 340.1002, found 340.1003.
IR (film): 3493, 2989, 1427, $1275 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+60.65\left(c=2.035, \mathrm{CHCl}_{3}, 95 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IG-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=108.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=92.3 \mathrm{~min}, \mathrm{ee}=95 \%$.

Figure S310, the HPLC spectrum of compound 5p, related to Table 3

$5 q$
5q: Procedure $A, 70 \mathrm{mg}$, colorless liquid, 81% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, 1 H), 7.53 (dd, $J=7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.21-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.00$ $(\mathrm{m}, 2 \mathrm{H}), 4.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.18,154.82,150.15,145.47,142.28,138.26,130.22,127.15,121.89$, 110.27, 106.62, 65.89, 37.80 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 301.95.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 280.0638, found 280.0639.
IR (film): 3349, 2924, 1631, 1429, $1163 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+21.31\left(c=0.535, \mathrm{CHCl}_{3}, 98 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $61.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=67.4 \mathrm{~min}$, ee $=98 \%$.

Figure S311, the HPLC spectrum of compound 5q, related to Table 3

$5 r$
5r: Procedure A, 74 mg , colorless liquid, 84% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, 1 H), $7.56-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.89-2.71(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.13,150.16,146.71,145.61,138.29,130.30,127.16,126.79,124.96$, 124.03, 121.91, 68.34, 41.39 ppm .

MS(ESI) m/z [M+Na] ${ }^{+}$: 317.95.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 296.0410, found 296.0410.
IR (film): 3392, 2922, 1630, 1428, $1238 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+21.45$ ($c=0.735, \mathrm{CHCl}_{3}, 98 \%$ ee).
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $60.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=70.8 \mathrm{~min}$, ee $=98 \%$.

Figure S312, the HPLC spectrum of compound 5r, related to Table 3

5ar: Procedure A, 67 mg , colorless liquid, 76% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.14,150.16,146.19,144.41,138.30,130.03,127.18,126.52,125.30$, 121.91, 121.20, 68.56, 40.64 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 317.95 .
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 296.0410, found 296.0410 .
IR (film): 3493, 3005, 1427, $1276 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+30.34$ ($c=1.115, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}$).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $40.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=48.1 \mathrm{~min}$, ee $=>99 \%$.

Figure S313, the HPLC spectrum of compound 5ar, related to Table 3

5u
5u: Procedure A, 88 mg , colorless liquid, 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$, 1H), 5.31-5.20 (m, 1H), $3.25(\mathrm{~s}, 1 \mathrm{H}), 2.96-2.76(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.04,150.14,146.24,140.89,138.30,137.95,136.68,130.04,127.18$, $124.56,124.20,122.99,122.85,121.95,121.91,67.87,39.40 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 367.95 .
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 346.0566, found 346.0568 .
IR (film): 3493, 3054, 1428, 1276, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+44.56\left(c=1.435, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK IE, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $76.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=72.0 \mathrm{~min}$, ee $=95 \%$.

Figure S314, the HPLC spectrum of compound 5u, related to Table 3

5as: Procedure A, 100 mg , colorless liquid, 78% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77$ ($\mathrm{s}, 1 \mathrm{H}$), 1.66 ($\mathrm{s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, CDCl ${ }_{3}$) $\delta 158.16,150.15,149.52,146.18,138.23,135.79,130.03,127.98,127.11$, 124.70, 122.70, 122.67, 122.46, 121.80, 119.48, 115.44, 83.96, 66.21, 39.56, 28.16 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 451.00.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 429.1479, found 429.1479.
IR (film): 3507, 2979, 1731, 1428, $1254 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+23.31\left(c=1.225, \mathrm{CHCl}_{3}, 97 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IG-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=82.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=67.5 \mathrm{~min}, \mathrm{ee}=97 \%$.

Figure S315, the HPLC spectrum of compound 5as, related to Table 3

5x

5x: Procedure A, 56 mg , colorless liquid, 46% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (td, J = 7.8, 1.6 Hz, 1H), $7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.10(\mathrm{~m}$, $2 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.88-2.68(\mathrm{~m}, 2 \mathrm{H})$, $1.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.09,150.01,146.73,140.22,139.56,138.09,133.57,129.76,126.94$, $125.84,123.49,122.78,122.69,121.76,120.48,118.91,117.67,109.99,108.55,72.93,41.76,37.56$, 13.82 ppm .

MS(ESI) m/z [M+Na] ${ }^{+}$: 429.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 407.1351, found 407.1352.
IR (film): 3506, 2977, 1427, 1233, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+29.12\left(c=2.140, \mathrm{CHCl}_{3}, 93 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $98.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=89.8 \mathrm{~min}$, ee $=93 \%$.

Figure S316, the HPLC spectrum of compound $\mathbf{5 x}$, related to Table 3

$5 \mathbf{5}$: Procedure A, 79 mg , pale green solid, 84% yield.
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{MR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.45 (ddd, $J=7.6,4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.09(\mathrm{~m}, 6 \mathrm{H}), 6.71-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.68-2.52(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.09,150.15,146.29,138.28,136.17,131.10,130.50,129.97,128.56$, $127.87,127.16,126.53,121.90,70.75,39.59 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 338.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 316.1002, found 316.1003.
IR (film): 3494, 2922, 1428, $1276 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+14.38\left(c=1.910, \mathrm{CHCl}_{3}, 94 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $37.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=42.1 \mathrm{~min}$, ee $=94 \%$.

Figure S317, the HPLC spectrum of compound 5y, related to Table 3

5z: Procedure A, 50 mg , pale green solid, 51% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47$ (dd, $J=6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ $(\mathrm{s}, 1 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.35,150.15,146.37,138.47,138.15,136.92,129.80,128.92,128.12$, $127.03,126.69,126.58,121.77,75.69,37.65,13.54 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 352.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 330.1158, found 330.1159.
IR (film): 3305, 2921, 1427, $1163 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=-1.98\left(c=0.250, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK IG-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=48.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.7 \mathrm{~min}, \mathrm{ee}=95 \%$.

Figure S318, the HPLC spectrum of compound $\mathbf{5 z}$, related to Table 3

5aa: Procedure A, 77 mg , yellow liquid, 80% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, 1 H), 7.47 (dd, J = 7.2, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23-7.07 (m, 2H), 7.02-6.86 (m, 2H), 6.75-6.59 (m, 2H), $6.00(\mathrm{dd}, J$ $=15.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.47(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.07,150.17,146.13,141.22,138.28,130.03,129.93,127.40,127.17$, 126.32, 124.64, 124.32, 121.91, 70.47, 39.50 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 343.95.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 322.0566, found 322.0566.
IR (film): 3494, 2923, 1428, $1249 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+14.19\left(c=1.445, \mathrm{CHCl}_{3}, 92 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $39.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=49.5 \mathrm{~min}$, ee $=92 \%$.

Figure S319, the HPLC spectrum of compound 5aa, related to Table 3

5ad: Procedure A, 38 mg , colorless liquid, 50% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.53 (dd, $J=6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.62(\mathrm{~m}$, $1 \mathrm{H}), 5.55-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.33,150.17,146.40,138.24,132.37,129.73,128.19,127.10,121.83$, 70.91, 39.50, 17.61 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 276.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 254.0845, found 254.0846.
IR (film): 3514, 2918, 1428, 1276, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+10.63\left(c=0.600, \mathrm{CHCl}_{3}, 93 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $37.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=43.2 \mathrm{~min}$, ee $=93 \%$.

Figure S320, the HPLC spectrum of compound 5ad, related to Table 3

5ae: Procedure A, 59 mg , colorless liquid, 70% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52$ (ddd, $J=7.6,4.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.78-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.93(\mathrm{~m}$, $3 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.38,150.17,146.34,138.21,133.31,131.20,129.73,127.07,121.80$, 70.97, 39.57, 34.12, 22.11, 13.61 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 304.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 282.1158, found 282.1160.
IR (film): 3405, 2957, 1428, 1170, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=+8.41$ ($c=0.560, \mathrm{CHCl}_{3}, 97 \%$ ee).
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.6 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $30.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=34.8 \mathrm{~min}$, ee $=97 \%$.

Figure S321, the HPLC spectrum of compound 5ae, related to Table 3

5at: Procedure A, 90 mg , colorless liquid, 88% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.51-7.45 (m, 1H), 7.42-7.36 (m, 2H), 7.34-7.30 (m, 2H), 7.28-7.21 (m, 1H), 7.16 (dt, J=15.2, 7.3 $\mathrm{Hz}, 1 \mathrm{H}), 6.77-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, \mathrm{J}=15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=15.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.36(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.29,150.18,145.97,138.24,136.85,134.13,133.61,131.70,130.09$, $128.62,127.79,127.58,127.10,126.41,121.84,70.59,39.53 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}: 364.00$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 342.1158, found 342.1158.
IR (film): 3492, 2924, 1630, 1450, $1162 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{28}=+13.92\left(c=1.930, \mathrm{CHCl}_{3}, 96 \% \mathrm{ee}\right)$.
HPLC: DAICEL CHIRALPAK IBN-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, t_{R} (major) $=44.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=80.0 \mathrm{~min}, \mathrm{ee}=96 \%$.

Figure S322, the HPLC spectrum of compound 5at, related to Table 3

5au: Procedure A, 88 mg , colorless liquid, 80% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.53 (ddd, J = 7.6, 4.7, 1.0 Hz, 1H), 7.47-7.37 (m, 2H), 7.36-7.29 (m, 3H), $7.14(\mathrm{dt}, J=15.2,7.3 \mathrm{~Hz}$, 1 H), 6.71-6.53 (m, 2H), 6.34 (dd, $J=15.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=15.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.36(\mathrm{~m}$, 1H), 2.66-2.20 (m, 3H) ppm.
${ }^{13} \mathbf{C N}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.17,150.20,145.89,140.28,138.33,136.38,131.44,130.40,130.15$, 128.33, 128.27, 127.21, 123.17, 121.90, 112.41, 92.64, 88.51, 70.17, 39.41 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}: 388.00$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 366.1158, found 366.1158.
IR (film): 3493, 2989, 1428, 1275, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+33.73\left(c=0.900, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$.
HPLC: DAICEL CHIRALPAK ID, hexane $/ i-\operatorname{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=$ $35.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=38.9 \mathrm{~min}$, ee $=94 \%$.

Figure S323, the HPLC spectrum of compound 5au, related to Table 3

5ah: Procedure A, 76 mg , colorless liquid, 70% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.53 (dd, $J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.62(\mathrm{~m}$, $1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.05$ (m, 6H), 1.61-1.32 (m, 6H), $0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.27,150.17,146.42,138.27,132.30,131.76,129.69,127.13,121.85$, $80.71,79.46,70.80,39.57,31.17,31.08,28.31,21.89,18.38,18.16,13.60 \mathrm{ppm}$.

MS(ESI) m/z [M+Na] ${ }^{+}$: 384.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 362.1784, found 362.1784.
IR (film): 3514, 2931, 1428, $1276 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=+7.74$ ($c=1.625, \mathrm{CHCl}_{3}, 95 \%$ ee).
HPLC: DAICEL CHIRALPAK IG-3, hexane $/ i-\mathrm{PrOH}=3 / 1$, flow rate: $0.8 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=22.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.8 \mathrm{~min}, \mathrm{ee}=95 \%$.

Figure S324, the HPLC spectrum of compound 5ah, related to Table 3

5ak: Procedure A, 56 mg , colorless liquid, 56\% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.52 (ddd, $J=7.6,4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.80(\mathrm{~m}, 7 \mathrm{H})$, 1.72 (s, 3H), 1.41 (m, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.37,150.17,149.42,146.76,138.28,138.22,129.40,127.09,123.97$, 121.81, 108.78, 73.91, 41.00, 37.40, 30.28, 27.32, 23.87, 20.73 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 356.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 334.1471, found 334.1471.
IR (film): 3513, 2920, 1642, 1453, $1163 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{26}=-25.34\left(c=1.025, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

5ak': Procedure B, 60 mg , colorless liquid, 60\% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), $7.56-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.80-4.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.21-1.79(\mathrm{~m}, 7 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.43,150.17,149.31,146.67,138.20,137.98,129.55,127.06,123.02$, $121.78,108.80,73.84,40.89,37.64,30.17,27.17,24.50,20.79 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 356.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 334.1471, found 334.1472.
IR (film): 3514, 2921, 1642, 1428, $1270 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-33.51\left(c=0.480, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

5al

5al: Procedure A, 68 mg , colorless liquid, 68% yield, > 20/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 158.34,150.16,148.99,146.89,138.23,129.46,127.08,121.81,118.62$, $72.66,41.96,40.77,37.78,37.18,31.61,30.98,26.07,21.34$ ppm.
MS(ESI) m/z [M+H] ${ }^{+}: 334.05$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 334.1473, found 334.1473.
IR (film): 3508, 2984, 1630, 1428, $1204 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=-9.72\left(c=1.995, \mathrm{CHCl}_{3},>20 / 1 \mathrm{dr}\right)$.

5al': Procedure B, 53 mg , colorless liquid, 53\% yield, 10/1 dr (Diastereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR analysis of reaction crude mixture).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, 1 H), 7.52 (dd, $J=7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H})$, $4.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.32,150.18,148.56,146.72,138.22,129.47,127.08,121.83,119.00$, $72.56,41.84,40.77,37.77,37.08,31.56,31.00,26.01,21.35 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 356.05.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 334.1471 , found 334.1472.
IR (film): 3515, 2986, 1428, $1276 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{27}=-31.50\left(c=1.470, \mathrm{CHCl}_{3}, 10 / 1 \mathrm{dr}\right)$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=8.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 2.11-1.87(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,128.6,127.7,125.7,74.6,61.6,40.5 \mathrm{ppm}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+64.7$ ($c=1.000, \mathrm{CHCl}_{3}, 99 \%$ ee).

9
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{ddt}, J=21.9,17.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=$ $21.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=6.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.91(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{td}, J=7.1$, $3.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 149.54(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 144.08,128.14,127.23,125.69,119.41(\mathrm{~d}, \mathrm{~J}=$ $186.8 \mathrm{~Hz}), 73.72(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 61.53(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 45.62(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 25.75,18.13,16.29(\mathrm{~d}, J=$ 6.8 Hz), -4.74, -5.04 ppm.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.79 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 399.20$.
HRMS(ESI) m/z [M+H] ${ }^{+}$: calcd. 399.2115, found 399.2116.
IR (film): 2982, 1634, 1259, 1029, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+28.54\left(c=1.580, \mathrm{CHCl}_{3}\right)$.

10
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=7.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15-3.94(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{td}, J=7.0,4.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}$, 3H) ppm.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 145.17,128.02,126.92,125.75,74.48(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}), 61.34$ (d, $J=6.5$ $\mathrm{Hz}), 41.63(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 25.80,25.61(\mathrm{~d}, J=140.6 \mathrm{~Hz}), 18.65(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 18.15,16.41(\mathrm{~d}, J=6.1$ $\mathrm{Hz}),-4.65,-5.04 \mathrm{ppm}$.
${ }^{31}$ P NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.07 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}: 401.20$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 401.2271, found 401.2271.
IR (film): 2929, 1454, 1270, 1030, $836 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+38.26\left(c=0.855, \mathrm{CHCl}_{3}\right)$.

11
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.38,145.06,138.65,135.47,132.85,129.45,128.42,128.26,128.00$, $126.93,125.89,74.96,60.70,39.68,25.86,23.83,18.20,14.29,-4.70,-4.96 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$447.20.
HRMS(ESI) m/z [M+Na] ${ }^{+}$: calcd. 447.2332, found 447.2332.
IR (film): 2956, 1709, $1630 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+106.96\left(c=0.915, \mathrm{CHCl}_{3}\right)$.

12
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.17(\mathrm{~m}, 11 \mathrm{H}), 6.90-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.63-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.97,145.09,139.06,138.18,136.51,132.12,128.65,128.63,128.05$, 127.08, 126.87, 125.92, 123.61, 74.67, 60.50, 40.65, 25.89, 23.19, 18.24, 14.31, -4.65, -4.94 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}$: 473.25.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 473.2488, found 473.2488.
IR (film): 2927, 1704, 1621, 1452, $1228 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+102.52\left(c=0.890, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}$, 1 H), 5.12 ($\mathrm{dd}, J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.07(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.42,165.68,133.21,132.92,129.61,128.43,128.32,127.93,126.43$,
118.18 ppm .

MS(ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: \mathbf{2 7 0 . 1 0}$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 270.1489, found 270.1488.
IR (film): 2960, 1723, 1494, 1270, $1026 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-2.676\left(c=0.275, \mathrm{CHCl}_{3}\right)$.

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.77-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}$, 1H), 1.95-1.77 (m, 4H) ppm.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.05,150.21,144.01,138.17,128.53,127.72,127.35,125.67,122.19$, 73.69, 51.65, $37.25,18.84 \mathrm{ppm}$.

MS(ESI) m/z [M+Na] ${ }^{+}$: 314.00.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 314.0821, found 314.0821.
IR (film): 3506, 2997, 1579, 1428, 1270, $750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+27.68\left(c=1.210, \mathrm{CHCl}_{3}\right)$.

15
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}$, 1 H), $7.54(\mathrm{dd}, \mathrm{J}=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.03(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.28(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.65(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.04,150.23,144.52,138.04,128.10,127.24,127.09,125.65,122.25$, 74.17, 51.94, 39.11, 25.76, 18.58, 18.09, -4.70, -5.11 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}: 428.15$.
HRMS(ESI) m/z [M+Na] ${ }^{+}$: calcd. 428.1686, found 428.1686.
IR (film): 2955, 1578, 1257, 1164, $777 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+52.64\left(c=1.520, \mathrm{CHCl}_{3}\right)$.

16
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-6.89(\mathrm{~m}, 10 \mathrm{H}), 6.37(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J=15.8,6.7 \mathrm{~Hz}$, 1 H), 4.70 ($\mathrm{dd}, \mathrm{J}=7.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41-2.07 (m, 2H), 1.98-1.65 (m, 2H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.15$
(s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.46,137.81,130.58,129.91,128.43,128.01,126.89,126.77,125.88$, 125.86, 74.45, 40.41, 29.03, 25.86, 18.22, -4.59, -4.92 ppm.

MS(DART) $\mathbf{m} / \mathbf{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 370.20$.
HRMS(DART) $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 370.2561, found 370.2557.
IR (film): 2928, 1600, 1257, 1092, $777 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+27.29\left(c=0.920, \mathrm{CHCl}_{3}\right)$.

17
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.65(\mathrm{~m}, 4 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, CDCl ${ }_{3}$) $\delta 200.17,145.38,136.97,132.83,128.49,128.00,127.97,126.86,125.82$, 74.87, 40.37, 38.48, 25.83, 20.44, 18.19, -4.65, -4.97 ppm.

MS(ESI) m/z [M+Na] ${ }^{+}: 391.15$.
HRMS(ESI) m/z [M+Na] ${ }^{+}$: calcd. 391.2070, found 391.2072.
IR (film): 2927, 1690, 1450, 1270, 1097, $837 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+36.41\left(c=0.425, \mathrm{CHCl}_{3}\right)$.

18
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}$, 1 H), 7.60 (ddd, $J=7.6,4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.22$ (m, 5 H), 4.98 (dd, J = 9.5, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (s, 1H), $4.61(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=14.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=14.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dt}, J=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 157.43,149.89,143.71,138.70,128.50,127.74,127.69,125.64,122.04$, 73.74, 66.54, 59.66, 44.67 ppm.

MS(ESI) m/z [M+H] ${ }^{+}$: 308.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 308.0951, found 308.0953 .
IR (film): 3444, 2924, 1580, 1428, 1308, $793 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=+27.58\left(c=0.710, \mathrm{CHCl}_{3}\right)$.

19
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{ddt}, J=21.8,17.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=15.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=21.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11-3.87(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$ ppm.
$\left.{ }^{13} \mathbf{C N M R}^{(100 ~ M H z}, \mathrm{CDCl}_{3}\right) \delta 149.41(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 136.57,131.83,129.88,128.53,127.57,126.38$, $119.54(\mathrm{~d}, \mathrm{~J}=186.7 \mathrm{~Hz}), 72.22(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 61.59(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 43.39(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 25.82,18.18$, 16.28 ($d, J=6.5 \mathrm{~Hz}$), $-4.33,-4.84 \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.83 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 447.15.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 425.2271, found 425.2273.
IR (film): 2958, 1635, 1252, $1029 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-19.61\left(c=1.145, \mathrm{CHCl}_{3}\right)$.

20
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}$, 1 H), 4.79 (dd, $J=12.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.13(\mathrm{dq}, J=22.6,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.99$ (dd, $J=15.6$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.29,136.55,131.53,129.86,128.53,127.60,126.42,70.16,62.50$ (d , $J=6.4 \mathrm{~Hz}$), $52.13,43.81(\mathrm{~d}, J=126.7 \mathrm{~Hz}), 25.80,18.09,16.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}),-4.29,-4.99 \mathrm{ppm}$.
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.63 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 463.20.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 441.2221, found 441.2223.
IR (film): 2929, 1716, 1472, 1249, 1026, $780 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-46.06\left(c=1.000, \mathrm{CHCl}_{3}\right)$.

21
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, J = 14.7, 7.8 Hz, 1H), 2.76 (dd, J = 14.7, 4.9 Hz, 1H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.50, 143.22, 136.74, 134.52, 132.19, 130.46, 129.50, 128.91, 128.54, $128.31,127.53,127.30,126.44,70.75,49.25,25.83,18.15,-4.34,-4.94 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{+}$: 415.15.
HRMS(ESI) m/z [M+Na] ${ }^{+}$: calcd. 415.2064, found 415.2061.
IR (film): 2955, 1689, 1609, 1471, 1249, 836, $779 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-104.50\left(c=1.000, \mathrm{CHCl}_{3}\right)$.

22
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.04(\mathrm{~m}, 8 \mathrm{H}), 6.70-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=$ $15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 3.07-2.77(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) $\delta 200.00,143.92,136.56,134.12,130.85,130.40,130.27,129.01,128.55$, 128.43, 127.69, 126.49, 126.23, 68.74, 46.88 ppm.

MS(ESI) m/z [M+Li] ${ }^{+}$: 285.10.
HRMS(ESI) m/z [M+Li] ${ }^{+}$: calcd. 285.1463, found 285.1462.
IR (film): 3385, 2924, 1458, 1275, 1260, $749 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{D}{ }^{25}=-10.78\left(c=0.615, \mathrm{CHCl}_{3}\right)$.

23
${ }^{1}{ }^{1} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{dd}, J=15.8,5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.79-4.58(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.55,131.62,130.21,128.59,127.70,126.47,70.47,42.64 \mathrm{ppm}$.
MS(ESI) m/z [M+Na] ${ }^{\dagger}: 303.10$.
HRMS(ESI) m/z [M+Na] ${ }^{+}$: calcd. 303.1356, found 303.1356 .
IR (film): 3358, 2954, 2924, 1260, $963,750 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=+46.20\left(c=0.260, \mathrm{CHCl}_{3}\right)$.

yashabushidiol B
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 6 \mathrm{H}), 4.05-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.73(\mathrm{~m}$, $2 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.82,128.43,128.35,125.89,68.93,42.52,39.08,32.16 \mathrm{ppm}$.
MS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{\dagger}: 307.10$.
HRMS(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 307.1674, found 307.1672.
IR (film): 3285, 2923, 1453, 1061, 919, $727 \mathrm{~cm}^{-1}$.
Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{25}=+5.66\left(c=0.250, \mathrm{CHCl}_{3}\right)$. \{literature (Hashimoto et. al., 1986), $[\alpha]_{\mathrm{D}}=$ $+7.2\left(\mathrm{CHCl}_{3}\right)$ \}.

Supplemental References

Denmark, S. E., and Heemstra, J. R. Jr. (2004). Lewis base activation of lewis acids: vinylogous aldol additions of silyl dienol ethers to aldehydes. Synlett 2411-2416.
Yuan, C., Yao, J., and Li, S. (1991). Studies on organophosphorus compounds XLV structure effects of ester alkyl group of dialkyl allylphosphonate carbanion on the regioselectivity of electrophilic addition. Phosphorus, Sulfur Silicon Relat. Elem. 55, 125-131.

Hashimoto, T., Tori, M., and Asakawa, Y. (1986). Five new diarylheptanoids from the male flowers of alnus sieboldiana. Chem. Pharm. Bull. 34, 1846-1849.

