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Abstract: Breast cancer (BC) patients experience increased stress with elevated cortisol levels,
increasing risk of cancer recurrence. Cortisol binds to a cytoplasmic receptor, glucocorticoid receptor
(GR) encoded by GR gene (NR3C1). We hypothesized that not only cancer cells, but even immune
cells in the tumor microenvironment (TME) may contribute to GR expression in bulk tumor and
influence prognosis. To test this, mRNA expression data was accessed from METABRIC and TCGA.
“High” and “low” expression was based on highest and lowest quartiles of NR3C1 gene expression,
respectively. Single-cell sequencing data were obtained from GSE75688 and GSE114725 cohorts.
Computer algorithms CIBERSORT, Gene Set Enrichment Analysis and TIMER were used. GR-high BC
has better median disease-free and disease-specific survival. Single cell sequencing data showed
higher GR expression on immune cells compared to cancer and stromal cells. Positive correlation
between GR-high BC and CD8+ T-cells was noted. In GR-high tumors, higher cytolytic activity
(CYT) with decreased T-regulatory and T-follicular helper cells was observed. High GR expression
was associated with lower proliferation index Ki67, enriched in IL-2_STAT5, apoptosis, KRAS,
TGF-β signaling, and epithelial-to-mesenchymal transition. Immune cells significantly contribute to
GR expression of bulk BC. GR-high BC has a favorable TME with higher CYT with favorable outcomes.

Keywords: glucocorticoid receptor; breast cancer; NR3C1; immune cells; TCGA; METABRIC; CIBERSORT

1. Introduction

Although often ignored and under-appreciated, breast cancer patients suffer from potentially
debilitating stress, anxiety, depression, and impaired cognitive function [1,2]. Stress has been
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demonstrated to result in an increased incidence of cancer recurrence [3]. On the contrary, breast cancer
patients with no stressful or traumatic life events have significantly longer disease-free intervals
compared to patients who have experienced these events [3].

Stress activates the hypothalamic–pituitary–adrenal axis with corticotropin-releasing factor
produced in the hypothalamus, which stimulates the release of adrenocorticotrophic hormone (ACTH)
from the anterior pituitary. ACTH signals the adrenal cortex to produce glucocorticoids—the stress
hormone ‘cortisol’ secreted by the zona fasciculata of the adrenal glands. Cortisol levels are elevated in
patients with breast cancer and the diurnal cortisol rhythm is a predictor of breast cancer survival [4].
Cortisol generates physical response to stress by binding to its cytoplasmic receptor, glucocorticoid
receptor (GR), which is the transcription factor encoded by the NR3C1 gene [5], thus promoting “stress
response” [6,7].

The role of GR activation has been reported to be different between breast cancer subtypes, namely,
estrogen receptor (ER)-negative and ER-positive breast cancer. Activation of GR in ER-negative human
breast cancer cell lines has been shown to promote cancer cell survival, chemotherapy resistance,
and increased tumor growth in a pre-clinical xenograft model [8,9]. A retrospective meta-analysis
in primary breast tumors showed that high gene expression of GR (NR3C1) in the bulk tumor was
associated with significantly worse relapse-free survival (RFS) among ER-negative early stage breast
cancer, but better survival in ER-positive breast cancer. It was speculated that this difference is due to
an interaction of the GR and ER [10].

The levels of stress hormones, cortisol and corticosterone, were higher in the plasma of mice
with metastatic breast cancer than in healthy controls. Obradovic et al. showed that increase in stress
hormones during breast cancer progression results in activation of GR at distant metastatic sites,
increased colonization and reduced survival [11]. Studies have shown that strategies to antagonize
GR signaling can sensitize ovarian, prostate and triple negative breast cancer (TNBC) cell lines to
chemotherapy. Therefore, inhibition of the GR pathway is being investigated in clinical trials combining
GR/PR antagonist mifepristone with nab-paclitaxel [12].

Although the role of GR activation in chemoresistance and enhanced aggressive phenotype have
been studied both in vitro [13] and in vivo [13], both models lack immune cells. It is well known that
TNBC have more immune cell infiltration than ER-positive tumors [14]. Immune cells, including
T-cells, B-cells, monocytes, neutrophils, and macrophages, also express the GR, in addition to cancer
cells in the bulk tumor [15]. In addition to the downstream effects of GR activation on tumor cells,
over the last few years, there has been interest in understanding GR expression on immune cells in the
bulk tumor [16] and the impact of its activation [17,18].

Recent computational biological analyses of transcriptomic data of bulk tumors allow us to
investigate human tumor immune microenvironment (TME) in large cohorts. Here, we hypothesized
that not only cancer cells, but immune cells in the TME also contribute to the GR expression of the bulk
tumor, which may contribute to differences in outcome.

2. Results

2.1. Demographic and Clinical Characteristics

There were 1390 and 1022 patients with stage I–III breast cancer with clinical and genomic data
available in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The
Cancer Genome Atlas (TCGA), respectively. High and low tumor GR expression was defined as
the highest and lowest quartile (25%) of NR3C1 expression, respectively (Figure S1). Table 1 shows
the distribution of demographic (age at diagnosis) and clinical characteristics (stage at diagnosis,
clinical subtypes, PAM50 subtypes) among GR-high and GR-low breast cancer based on GR expression
in METABRIC and TCGA. There were 696 (METABRIC) and 512 patients (TCGA) in the top and bottom
quartiles from the entire cohort of 1390 and 1022 patients, respectively. No statistically significant
distribution in age at diagnosis was observed. Clinical subtypes were equally distributed between
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GR-high vs. GR-low cohorts except HER2-positive subtype, which was higher in GR low cohort
in METABRIC. There were more patients with hormone receptor positive subtype in GR-high vs.
more triple negative subtype (65.1%) in GR-low cohorts in TCGA. There were more stage 1 patients
observed in GR high cohort vs. more stage 2 patients in GR low cohort. Hence, there was a difference
in stage distribution noted. Differences in clinical subtypes were observed in both cohorts and
hence, subgroup analyses for receptor subtypes has been performed to understand the influence of
GR expression in breast cancer subtypes. Both METABRIC and TCGA datasets are limited by the
unavailability of treatment information.

Table 1. Demographic and clinical characteristics of the GR High and GR low breast cancer patients in
METABRIC and TCGA in the entire cohort.

Demographic and
Clinical Characteristics METABRIC TCGA

Clinical Variables
(percent per GR status)

GR-LOW
n = 348

GR-HIGH
n = 348 p-value GR-LOW

n = 256
GR-HIGH

n = 256 p-value

Age at diagnosis 0.063 0.376

Median 63 61 59 60

IQR 53–71 52–69 50–69 50–66

Stage at diagnosis 0.017 0.019

I 104 (29.9%) 140 (40.2%) 36 (14.0%) 56 (21.9%)

II 215 (61.8%) 182 (52.3%) 165 (64.5%) 135 (52.7%)

III 29 (8.3%) 26 (7.5%) 55 (21.5%) 65 (25.4%)

Clinical Subtypes

ER Positive 257 (48.1%) 277 (51.9%) 0.088 183 (47.2%) 205 (52.8%) 0.020

PR Positive 188 (51.8%) 175 (48.2%) 0.363 152 (45%) 186 (55%) 0.001

HER2 Positive 59 (71.1%) 24 (28.9%) <0.001 54 (65.1%) 29 (34.9%) <0.001

Triple Negative 55 (49.1%) 57 (50.9%) 0.918 28 (65.1%) 15 (34.9%) 0.033

PAM50 Subtypes <0.001 <0.001

Luminal A 117 (33.6%) 137 (39.4%) 65 (25.4%) 149 (58.2%)

Luminal B 102 (29.3%) 64 (18.4%) 45 (17.6%) 34 (13.3%)

HER2 59 (17%) 24 (6.9%) 21 (8.2%) 7 (2.7%)

Basal 57 (16.4%) 47 (13.5%) 30 (11.7%) 27 (10.5%)

Differences between GR-low and GR-high groups were tested for statistical significance using Fisher’s exact test.
IQR = Interquartile range, HER2 = human epidermal growth factor receptor2.

2.2. GR-high Breast Cancer has Better Survival

Survival characteristics of GR expression in METABRIC and TCGA cohorts are shown in Figure 1.
GR-high tumors have better median disease-free survival (mDFS) 21.7 vs. 19.3yrs {HR 0.60 (0.46–0.77),
p < 0.001} and better median disease-specific survival (mDSS) NR vs. 19.9yrs {HR 0.55 (0.42–0.72),
p < 0.001} in METABRIC. This survival difference was consistent in TCGA cohort, but more significant
in the METABRIC cohort, which had a larger cohort size. GR-high tumors were also noted to have
better median overall survival (mOS) 16.6 vs. 10.1yrs {HR 0.63 (0.52–0.77), p < 0.001} in METABRIC.
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survival between GR high and GR low breast cancer. 
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Figure 1. GR expression and survival outcomes in breast cancer. Kaplan–Meier survival plots
comparing patients with high and low GR expression along with logrank test p values and hazard ratios
(HR) with confidence intervals are shown for disease-free (DFS), disease-specific (DSS) and overall
survival (OS) for the entire cohort (Whole), or its sub-groups of estrogen receptor(ER)-positive/human
epidermal growth factor receptor (HER2)-negative and triple negative (TNBC) breast cancer. The cut-off

of top and bottom quartile of NR3C1 expression was considered as GR high and GR low in the whole
cohort and the respective subtypes. Log-rank test was used to compare the survival between GR high
and GR low breast cancer.

Due to a previously reported notion on the interaction between GR and ER, and different survival
of GR-high vs. GR-low groups in ER-positive and TNBC subtypes as described previously [10],
the influence of receptor subtype on survival characteristics was also analyzed. Estrogen receptor
(ER)-positive/human epidermal growth factor receptor (HER2)-negative subtype had better mDSS
(p < 0.05) and mOS (p < 0.05) in GR-high compared with GR-low tumors in both cohorts. TNBC subtype
was associated with better mDFS {HR 0.50 (0.26–0.99), p = 0.044}, mDSS {HR 0.45 (0.23–0.86),
p = 0.013} and mOS {HR 0.59 (0.35–0.98), p = 0.041} in GR-high compared with GR-low tumors in
METABRIC, but only a trend towards better survival without statistical significance in TCGA (Figure 1).
Survival difference between GR-high vs. GR-low breast cancer for the entire ER-positive breast cancer
and HER2-positive breast cancer subtypes has been shown in Figure S2. Among ER-positive subtype,
GR-high breast cancer was associated only with better mDFS validated in TCGA as has been shown
before. Among HER-2 positive subtype, GR-high breast cancer was associated with better survival
in METABRIC, but not validated in TCGA. Thus, our data shows that GR expression in the bulk
tumor is associated with an improvement in survival, mostly in ER-positive/HER2-negative breast
cancer subtype.

2.3. Immune Cells have High GR Expression than Tumor and Stromal Cells

Single cell sequencing technology provides a higher resolution of the cellular differences and
a better understanding of the function of an individual cell [19]. Since published literature shows
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differences in survival analyses of GR-high vs. GR-low groups between ER-positive and TNBC
subtypes [10], hence, we hypothesized that there could be some contribution of non-tumor cells to GR
expression. Therefore, single cell sequencing dataset was used to analyze GR expression differences
between immune and tumor cells. Interestingly, higher GR expression was observed on immune
cells (T-cells, B-cells and myeloid cells) compared to stromal or cancer cells (p < 0.001) (GSE75688)
(Figure 2A), with the highest GR expression on CD8+ T-cells compared to other immune cell subsets
including regulatory T-cells (T-regs), CD4+ T-cells, neutrophils, monocytes, dendritic cells, mast cells,
and macrophages (p < 0.001) (GSE114725) (Figure 2B).

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 17 

 

immune cells (T-cells, B-cells and myeloid cells) compared to stromal or cancer cells (p < 0.001) 
(GSE75688) (Figure 2A), with the highest GR expression on CD8+ T-cells compared to other immune 
cell subsets including regulatory T-cells (T-regs), CD4+ T-cells, neutrophils, monocytes, dendritic 
cells, mast cells, and macrophages (p < 0.001) (GSE114725) (Figure 2B). 

 
Figure 2. Single cell sequencing data of primary breast cancer. (A) GSE75688 shows that immune cells 
have higher GR expression than tumor and stromal cells. Data compiled from GSE cited was used to 
perform one-way ANOVA across all cell subsets. The p value is for the F statistic within ANOVA. (B) 
GSE114725 shows that CD8+ T-cells have higher GR expression than other immune cell subsets. Data 
compiled from GSE cited was used to perform one-way ANOVA across immune cell subsets. The p 
value is for the F statistic within ANOVA. Bonferroni correction was used to compare CD8+ T-cells to 
other immune cell subsets with higher average mean in post-hoc analysis. 

2.4. CD8+ T-cells Significantly Correlate with GR Expression 

We observed that immune cells contribute to GR expression, hence, it was of interest to 
investigate if immune cell markers correlated with GR expression in the bulk tumor. We ran TCGA 
data through TIMER to quantify immune cell composition across GR gene expression. There was 
significant correlation between GR (Log-value) and absolute CD8+ T-cell fraction (as calculated by 
TIMER) as well as absolute macrophages and GR expression (Spearman r = 0.485 and 0.346 
respectively; p < 0.01). There were weak correlations between GR expression and B-Cells, dendritic 
cells, CD4+ T-cells, and neutrophils (Figure 3). Since we observed minimal GR expression on 
macrophages but a moderate positive correlation between GR expression and macrophages, we 
analyzed the correlation between GR expression and macrophages across different immune cell 
composition algorithms as shown in Figure S3. No correlation between GR expression and 
macrophages was observed with the other algorithms. TIMER is designed to analyze exclusively 
RNA-sequence data, thus METABRIC cohort, which utilized gene expression microarray, was not 
analyzed. 

Figure 2. Single cell sequencing data of primary breast cancer. (A) GSE75688 shows that immune cells
have higher GR expression than tumor and stromal cells. Data compiled from GSE cited was used
to perform one-way ANOVA across all cell subsets. The p value is for the F statistic within ANOVA.
(B) GSE114725 shows that CD8+ T-cells have higher GR expression than other immune cell subsets.
Data compiled from GSE cited was used to perform one-way ANOVA across immune cell subsets.
The p value is for the F statistic within ANOVA. Bonferroni correction was used to compare CD8+

T-cells to other immune cell subsets with higher average mean in post-hoc analysis.

2.4. CD8+ T-cells Significantly Correlate with GR Expression

We observed that immune cells contribute to GR expression, hence, it was of interest to investigate
if immune cell markers correlated with GR expression in the bulk tumor. We ran TCGA data through
TIMER to quantify immune cell composition across GR gene expression. There was significant
correlation between GR (Log-value) and absolute CD8+ T-cell fraction (as calculated by TIMER) as
well as absolute macrophages and GR expression (Spearman r = 0.485 and 0.346 respectively; p < 0.01).
There were weak correlations between GR expression and B-Cells, dendritic cells, CD4+ T-cells,
and neutrophils (Figure 3). Since we observed minimal GR expression on macrophages but a moderate
positive correlation between GR expression and macrophages, we analyzed the correlation between
GR expression and macrophages across different immune cell composition algorithms as shown in
Figure S3. No correlation between GR expression and macrophages was observed with the other
algorithms. TIMER is designed to analyze exclusively RNA-sequence data, thus METABRIC cohort,
which utilized gene expression microarray, was not analyzed.
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Figure 3. Spearman rho correlation was used to assess correlation between GR expression and immune
cells. Correlation is quantified as weak (absolute value < 0.3), moderate (absolute value between 0.3
and 0.5) and strong (absolute value > 0.5) in either direction. Moderate correlation observed between
CD8+ T-cells and macrophages and GR expression in breast cancer using TIMER. This moderate
positive correlation between GR expression and macrophages was not, however, validated using other
deconvolution algorithms.

2.5. GR-high Breast Cancer has Higher Cytolytic Activity

Since we observed higher GR expression on the immune cells compared to stromal and tumor
cells in single cell sequencing dataset and positive correlation of CD8+ T-cells with GR expression,
we investigated the relative distribution of individual immune cell subpopulation in bulk cancer
between GR-high vs. GR-low groups in METABRIC using CIBERSORT algorithm. Immune cell
subpopulations, including anti- and pro-cancerous immunosuppressive cells, were compared between
the two groups. GR-high tumors had a significantly lower number of immunosuppressive T-regs
(p < 0.001) (Figure 4A) but at the same time, GR-high cohort also had a lower number of anti-cancerous
T-follicular helper cells (p < 0.001). In addition, we also examined the differences in cytolytic activity
(CYT) defined as the expression of granzyme A (GZMA) and perforin (PRF1) as described in Materials
and Methods. Overall, GR-high cohort had higher CYT (p < 0.001), which could explain the higher
DFS and DSS observed in this group (Figure 4A). Strikingly consistent results were seen within the
TCGA cohort. Due to known differences in survival between GR-high vs. GR-low breast cancer in
ER-positive and TNBC subtypes, we analyzed the contribution of immune cells and CYT in these
subtypes. Figure 4B shows the distribution of these immune cells between GR-high and GR-low groups
in ER-positive/HER2-negative breast cancer and TNBC subtypes. We observed similar findings with
the lower number of T-follicular helper cells (p < 0.01) in the GR-high group in both METABRIC and
TCGA in the two subtypes. In ER-positive/HER2-negative subtype, lower T-regs were observed in
GR-high breast cancer (p < 0.001); this finding was validated in TNBC in METABRIC, but not in TCGA.
The subtype analyses further validated that there is higher CYT in the GR-high group.
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Figure 4. Tukey boxplots of immune cells CD8+ T-cells, Natural Killer (NK) activated cells, M1 and M2
macrophages, T-follicular helper cells, T-regulatory cells, and cytolytic activity (CYT) in GR-high and
GR-low breast cancer using CIBERSORT algorithm in METABRIC and TCGA cohorts (A) in the entire
cohort (Whole) and (B) in estrogen receptor (ER)-positive/human epidermal growth factor receptor
(HER2)-negative and triple negative (TNBC) subtypes. The cut-off of top and bottom quartile of NR3C1
expression was considered as GR high and GR low in the entire cohort and also in the respective
subtypes. Y-axis shows the fraction of cells with GR-low or GR-high expression. Boxes depict medians
and interquartile ranges. Depicted p values are calculated using one-way ANOVA.
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2.6. GR-high Breast Cancer has More T-cell Exhaustion Markers

Due to differences in immune cells and CYT between GR-high and GR-low breast cancer,
we explored the distribution of immune exhaustion gene expression markers. Based on the results
from CIBERSORT and TIMER, we hypothesized that T-cell exhaustion markers should be elevated
in GR-high tumors due to the higher presence of immune cells. T-cell exhaustion gene expressions
were analyzed in GR-high vs. GR-low tumors. We observed a significantly higher expression of T-cell
exhaustion genes PD-1, PD-L1, CTLA-4, IDO1, and TIGIT in GR-high tumors (p < 0.01) (Figure 5).
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Figure 5. Immune exhaustion gene markers in GR-high and GR-low groups using CIBERSORT
algorithm in the entire cohort. The cut-off of top and bottom quartile of NR3C1 expression was
considered as GR high and GR low in the entire cohort. Y-axis shows the fraction of cells with GR-low
or GR-high expression. All boxplots are of Tukey type, and the boxes depict medians and interquartile
ranges. Depicted p values are calculated using one-way ANOVA. PD-1, programmed death-1; PD-L1,
programmed death ligand 1/2; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; IDO, indoleamine
2,3-dioxygenase; LAG3, lymphocyte activation gene 3; TIGIT, T cell immunoreceptor with Ig and
ITIM domains.

2.7. GR-high Breast Cancer is Enriched in IL2 STAT5, Apoptosis, KRAS, TGF-β, EMT Pathways and GR-low
Breast Cancer has Higher Proliferation Markers

Given our findings, we hypothesized that immune-related gene sets would be enriched in GR-high
tumors. In order to examine the different immunological pathways to explain the disparities, we ran
GSEA on METABRIC and TCGA cohorts. Most notably, IL-2_STAT5 and apoptosis pathways were
enriched in GR-high compared to GR-low breast cancer explaining higher inflammatory response and
better survival. However, to our surprise, enrichment of TGF-β, KRAS and epithelial-to-mesenchymal
transition (EMT) pathways were also noted in the same group as well which are associated with worse
prognosis and relative immune-resistance (other clinically insignificant pathways which are enriched
include UV response, and complement pathways) (FDR < 0.25) (Figure 6A).

We also hypothesized that GR-low breast cancer would be associated with more proliferation and
worse outcomes due to lower anti-tumor response with lower CYT. Strikingly, we observed that GR-low
breast cancer was significantly enriched in gene sets related to cell proliferation MYC_TARGETS_v2.
Furthermore, GR-low breast cancer was also significantly enriched in gene sets related to cell cycle,
such as E2F TARGETS and G2M_CHECKPOINT (Figure 6B).

This notion was further confirmed by the transcriptome analysis of Ki67, which is one of the
most commonly used markers for cell proliferation. GR-high breast cancers were associated with
significantly lower Ki67 expression (Figure 6C). Hence, GR-high tumors are enriched in gene sets for
immune response and apoptosis with lower proliferation consistent with better survival. Figure S4
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Figure 6. Hallmark gene sets with significant enrichment in GR high and low breast cancer in both
METABRIC and TCGA cohorts. Gene set enrichment (GSEA) plots along with normalized enrichment
score (NES) and false discovery rate (FDR) are shown for the gene sets for which enrichment was seen in
(A) GR high and (B) GR low tumors in both METABRIC and TCGA in the entire cohort. NES and FDR
were determined with the classical GSEA method. The cut-off of highest and lowest quartiles (25%) of
NR3C1 expression was considered as GR high and GR low. The statistical significance of GSEA was
determined using FDR of 0.25. Nominal p-value estimates the significance of the observed enrichment
score for a single gene set. However, FDR is the estimated probability that a gene set within a given
enrichment score (normalized for gene set size) represents a false positive finding as recommended by
Broad Institute. (C) GR low tumors were associated with high MKI67 transcriptome analysis in both
METABRIC and TCGA in the entire cohort. Depicted p values are calculated using one-way ANOVA.

3. Discussion

In this study, we examined the tumor microenvironment differences between GR-high and GR-low
breast cancer and explored role of immune cells in GR expression of the bulk tumor to explain the
disparities in outcomes in the two cohorts. This is in addition to the well-known direct transcriptional
role of GR on tumor cells which plays a critical role in clinical outcomes.

Our study shows that GR-high breast cancer has better survival compared to GR-low breast
cancer, particularly in ER-positive/HER2-negative breast cancer. This is consistent with previous
retrospective studies showing that GR expression in ER-positive breast cancer is associated with better
outcomes [10,13,20]. On the contrary, previous studies have shown that GR expression in ER-negative
breast cancer was associated with worse RFS. Our analysis showed that high GR expression was
associated with better outcomes in TNBC in METABRIC but not validated in TCGA where only a
trend towards improved survival was seen with no statistical significance. Our findings in TNBC
subtype did not replicate results from previous publications probably due to the different data cohort
(TCGA and METABRIC) and methodology for ER-positivity used here [10,13,20]. As published by
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Conzen et al. in Cancer Research, 8 Gene Expression Omnibus (GEO) studies were combined and
expression of ESR1 was used to categorize samples into specific subtypes with 1378 patients (1024 ESR1
positive and 354 ESR1 negative) [10]. A combination of studies is less ideal than using a single cohort
that has been curated and standardized in uniform manner, because of different sequencing techniques
used (variable standardization). In addition to these differences, we investigated the contribution of
immune cells to explain this discrepancy in outcomes.

It is well known in literature that the presence of T-regs is associated with poor RFS and worse
outcomes in breast cancer [21]. To our knowledge, this is the first study to find significant differences in
the immune cell landscape in the GR-high vs. GR-low breast cancer. In our current study, we observed
that there are a lesser number of immunosuppressive T-regs in GR-high tumors. On the other hand,
we also found lower anti-tumor T-follicular helper cells [22] in the GR high tumors. Although there are
both lower immunosuppressive and anti-tumor cells, overall we observed a higher cytolytic activity in
GR-high tumors. It is interesting to note that although we observed enrichment of TGFβ signaling in
GR-high breast cancer, there were lower Tregs in this group. Prior studies have shown that in addition to
TGFβ, other cytokines such as IL-10, IL-4 and IL-13 are also involved in Treg generation and induction,
and it is possible that these other cytokines could be implicated in regulating Tregs in our study [23].
In addition, we found that GR-high breast cancers have a higher immune response with higher IL-2
pathway and apoptosis and lower proliferation, explaining improved survival. However, this is in
addition to higher TGF-β score, KRAS and EMT pathways. TGF-β may promote or inhibit tumor
progression [24,25], whereas KRAS and EMT pathways are associated with worse prognosis, though
there is still a lack of data for the role of KRAS in breast cancer [26,27]. It is interesting to note that
while KRAS and EMT pathways that result in aggressive tumor biology are enriched in the GR-high
group, immune pathways IL2 and apoptosis are also enriched, which may play a role in influencing
overall survival. The importance of anti-tumor immune response in influencing overall prognosis
and outcomes in breast cancer is evident from literature [28]. Prior studies have also shown a similar
GR-associated modulation of immune response pathway genes [10] in ER-negative subtype, but we
observed a difference in TME both in ER+/HER2 negative and TNBC subtypes. As is published in the
literature, in addition to a direct transcriptional role of GR on the tumor cells, which could be mediated
by EMT pathways elevated in the GR-high group, the contribution of immune cells to outcomes should
also be acknowledged because of a potential interaction of GR activity with the TME.

Breast cancer patients suffering from stress have shorter survival compared to patients who do
not report stress [3]. Stress mediated cortisol release in peripheral blood acts on the cytoplasmic GR
resulting in cancer cell survival, chemotherapy resistance, and increased tumor growth in pre-clinical
models as well as plays a role in regulation of immune system [8,11,29,30]. Studies have investigated
the variation in the expression of GR on immune cells [15] with stress and have shown different
findings. Even among the immune cells, the relative expression of GR varies among different
cells, with higher expression in eosinophils, followed by granulocytes, T lymphocytes and NK cells
(p < 0.05) [31], however, no correlation was observed between serum cortisol and GR expression on
the leucocyte subpopulations [31]. On the other hand, another study showed reduced peripheral
expression of the GRα isoform on the peripheral blood cells in individuals with post-traumatic stress
disorder: a cumulative effect of trauma burden [32]. Although our study showed that CD8+ T cells
have higher GR expression, however, we did not see any difference in their distribution between
GR-high and GR-low breast cancer. Similarly, although macrophages have minimal GR expression,
a moderate positive correlation of GR expression with macrophages was observed using TIMER,
however, this correlation was not validated in more robust deconvolution algorithms. At the same
time, we did not see any difference in macrophage distribution between GR-high and GR-low breast
cancer. This leads us to hypothesize that immune cells in addition to macrophages and CD8+ T-cells
are likely to be contributing to the GR signature of the bulk tumor, though none of the immune cells
were independently elevated in GR-high breast cancer. It is well known that GR signaling influences
functions of different immune cells. Glucocorticoids exert anti-inflammatory activity by inhibiting
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neutrophil rolling, adhesion and activation; they inhibit dendritic cells to activate T-cells; favor T-cell
apoptosis by acting on T-helper 1 (Th1) cell by decreasing T-bet transcriptional activity and suppressing
the production of pro-inflammatory molecules IL-2 and IFN-γ that favors T-reg expansion [33].

Single-cell RNA sequencing provides a new platform to understand the dynamic ecosystem that
comprises of tumor cells, fibroblasts and immune cells. Gene expression data from bulk tumors is
indispensable and continues to dominate the clinical and translational settings, however, TCGA designs
have been focused on the cancer cells (high amount of cancer cells were one of the criteria of the
sampling of the tissue), whereas single-cell RNA sequencing data can capture the gene expressions of
cells in the surrounding stroma such as immune cells [34,35]. Single-cell sequencing technologies hold
the potential to revolutionize the field of cancer [36]. We pursued analysis of single cell sequencing
data in order to analyze the contribution of GR expression on the immune cells (contributing to the
bulk genomic and transcriptomic signature). Interestingly, our single-cell sequencing data show that
immune cells express significantly higher GR compared to other tumor and stromal cells, and thus,
contribute to the GR expression of the bulk tumor.

Since immune cells also express GR, we speculate that modulation of GR signaling in the
presence of cortisol may cause their activation/suppression, which may additionally contribute to the
different outcomes in GR-high versus GR-low groups. Our observation that there are lesser number of
immunosuppressive pro-cancerous T-regs in GR-high tumors may consolidate the findings from a
previous study [32] as patients with less stress (less cortisol) may have higher GR expression with lower
number of T-regs, thus higher CYT and hence, improved survival. This provides a hypothesis that in
addition to a direct transcriptional role of GR on tumor cells and interaction with ER, there may be an
additional role of immune cells in GR-high vs. GR-low tumors in influencing prognosis and potentially
as a therapeutic strategy in addition to targeting the GR expression on tumor cells. Our hypothesis is
further strengthened by the recent approval of checkpoint inhibitors in breast cancer with high PD-L1
expression on immune cells [37], further highlighting that immune-mediated pathways are crucial and
present an excellent opportunity for targeted approaches to overcome underlying immunosuppression
in breast cancer and improve outcomes.

Our study limitations include analysis from a publicly available database and also limited data
interpretation by lack of a mechanistic approach and causality association as this study does not
contain in vitro and in vivo data. The finding of different immune cell subpopulations in GR-high and
GR-low groups and the contribution to outcomes is hypothesis-generating and needs mechanistic
validation. Future work needed to advance this field further should focus on investigating if GR
expression correlates with GR signaling by analyzing downstream pathways in different subtypes of
breast cancer, especially receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) signaling, which has
been shown to be associated with aggressive disease and decreased survival in breast cancer [11,38].
In addition, this would also help elucidate if higher GR expression on immune cells corresponds to
increased or decreased sensitivity towards GR signaling/activation and immunosuppression.

4. Materials and Methods

4.1. Obtaining Data of METABRIC and TCGA

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset [39] was
accessed from cBioPortal [40–44]. Annotated clinical and outcome data as well as gene expression data
for 1903 breast cancer patients were downloaded and analyzed as we described previously [45,46].
The Cancer Genome Atlas (TCGA) was also accessed from cBioPortal [47]. RNA-Sequencing data of
1093 breast cancer patients were downloaded. Of these, we selected patients with American Joint
Committee on Cancer (AJCC) staging I, II and III, and used them for the study. Clinical data, outcome
data and immune composition data were downloaded from PANCAN publications and outcome
measures reported as we have described previously [46,48–56]. Disease-free survival (DFS) was defined
from the time of completion of primary treatment until clinical confirmation of tumor recurrence.
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Overall survival (OS) was defined as the time from treatment completion until death. Disease-specific
survival (DSS) was defined as the time from treatment completion until death, however, patients who
die of causes other than the disease were excluded. We classified the patients into two groups based on
GR expression. Highest and lowest quartile (25%) of NR3C1 expression was used as a cutoff to identify
“high” and “low” GR (NR3C1) tumor expression, respectively. This study was deemed exempt from
Institutional Review Board because all information within TCGA and METABRIC is publicly accessible
and de-identified [50,54,55,57].

4.2. Immune Analysis Using CIBEROSRT Algorithm

Immune composition data were downloaded from PANCAN Immune landscape project [58].
The project used CIBERSORT, a bioinformatics algorithm [59], to predict immune composition
among METABRIC and TCGA samples, utilizing a set of 22 immune cell reference profiles and
developing a signature matrix to predict their absolute levels within each sample, as we described
previously [45–47,60–62]. Cytolytic activity ‘CYT’ is defined as an algorithm calculated using the
expression of granzyme A (GZMA) and perforin (PRF1) by Rooney et al. published in Cell 2015 [63].
Data for CYT has been described in previous work and appended into the analysis [47,61,63–67].
This is a simple and quantitative measure of immune cytolytic activity ‘CYT’ based on the transcript
levels of two key cytolytic activity-related genes, GZMA and PRF1, which have been observed to be
dramatically upregulated upon CD8+ T-cell activation. Tumor IMmune Estimation Resource (TIMER)
online portal was accessed for independent validation of results [68].

4.3. Gene Set Expression Analysis

Publicly available software provided by the Broad Institute was used to perform gene set
enrichment analysis (GSEA) [69] as we have described previously [46,48,50,54,70–74]. In GSEA,
the nominal p value estimates the significance of the observed enrichment score for a single gene
set. For evaluation of multiple gene sets, false discovery rate (FDR) is used to correct for multiple
hypothesis testing. The FDR is the estimated probability that a gene set within a given enrichment
score (normalized for gene set size) represents a false positive finding. As recommended by the Broad
Institute (that developed GSEA), FDR of less than 0.25 was used to define statistical significance of
GSEA. An FDR of 25% indicated that the result is likely to be valid three out of four times, which is
reasonable in the setting of exploratory discovery where one is interested in finding a candidate
hypothesis to be further validated as a result of future research. Given the lack of coherence in most
expression datasets and the relatively small number of gene sets being analyzed, using a more stringent
FDR cutoff could lead us to overlook potentially significant results. Hallmark gene sets were used for
this study.

4.4. Statistical Analysis

Clinical characteristics between groups were analyzed by χ squared distribution (for categorical
variables) and student T-test, Wilcox rank sum and Kruskal Wallis (for continuous variables).
Survival statistics were obtained using Kaplan–Meier method with log-rank test. Cumulative incidence
of recurrence was calculated based on DFS, with death handled as a competing risk event.
CIBERSORT immune cell composition was compared between the two cohorts via one-way ANOVA.
Single cell sequencing data were obtained from primary breast cancer GSE75688 and GSE114725 datasets.
All statistical analyses were performed using STATA software (version 15.1; STATA, College Station,
TX), R software (version 3.6.2). In all analysis, a two-sided p < 0.05 was considered as statistically
significant. All boxplots are of Tukey type, and the boxes depict medians and inter-quartile ranges.
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5. Conclusions

Our study shows that GR-high tumors have favorable outcomes, mostly in ER positive breast
cancer subtype, which is consistent with previous results. Immune cells significantly contribute to GR
expression of the bulk breast tumor in addition to tumor cells. GR expression correlated with higher
CD8+ T-cells. GR-high tumors have a favorable tumor microenvironment with higher cytolytic activity.
Additional work exploring the relative contribution and factors influencing the activation/inactivation
of these immune cells with GR signaling in the tumor microenvironment is warranted.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/13/4635/s1.
Figure S1: Highest and lowest quartiles (25%) of NR3C1 RNA-seq expression as a cutoff to identify “High” and
“Low” GR (NR3C1) tumor expression, respectively, Figure S2: GR expression and survival outcomes in breast
cancer. Kaplan-Meier survival plots comparing patients with high and low GR expression along with logrank test
p values and hazard ratios (HR) with confidence intervals are shown for disease-free (DFS), disease-specific (DSS)
and overall survival (OS) for sub-groups of (A) estrogen receptor (ER)-positive and (B) human epidermal growth
factor receptor (HER2)-positive breast cancer. The cut-off of top and bottom quartile of NR3C1 expression was
considered as GR high and GR low in the respective subtypes. Log-rank test was used to compare the survival
between GR high and GR low breast cancer, Figure S3: Correlation between GR expression and macrophages across
different immune cell composition algorithms (EPIC, TIMER, CIBERSORT, xCELL), Figure S4: Hallmark gene sets
with significant enrichment in GR high and low breast cancer with FDR < 0.25.
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