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Over the years, MR systems have evolved from imaging modalities to advanced computational systems producing a variety of
numerical parameters that can be used for the noninvasive preoperative assessment of breast pathology. Furthermore, the
combination with state-of-the-art image analysis methods provides a plethora of quantifiable imaging features, termed radiomics
that increases diagnostic accuracy towards individualized therapy planning. More importantly, radiomics can now be com-
plemented by the emerging deep learning techniques for further process automation and correlation with other clinical data which
facilitate the monitoring of treatment response, as well as the prediction of patient’s outcome, by means of unravelling of the
complex underlying pathophysiological mechanisms which are reflected in tissue phenotype.*e scope of this review is to provide
applications and limitations of radiomics towards the development of clinical decision support systems for breast cancer diagnosis
and prognosis.

1. Introduction

Breast cancer is the most common female cancer and the
first cause of cancer death in women population. Breast
cancer is categorized into benign and malignant lesions.
Benign lesions consist of noncancerous cells, including
intralobular papillomas, (fibro/neuro) adenomas, phyllodes
tumors, inflammatory tumors, cysts, etc. Malignant breast
lesions are characterized as invasive or noninvasive,
depending on the tumor corresponding growth pattern.
Generally, invasive lesions are more aggressive and spread
outside the breast. On the contrary, noninvasive breast le-
sions do not exceed breast tissue boundaries, and they are
also known as carcinomas in situ. Also breast lesions are
divided into ductal or lobular, considering the primary
breast’s anatomical region of cancer cell’s arisen, i.e., ducts
or lobules. In summary, the four major malignant breast
lesion categories are invasive ductal carcinomas (IDCs),

invasive lobular carcinomas (ILCs), ductal carcinomas in
situ (DCIS), and lobular carcinomas in situ (LCIS). Invasive
ductal carcinomas (IDCs) are the most common type of
breast cancer with many thousand new cases diagnosed
every year.

Nowadays, the so-called personalized approach to
medical care is based on the large-scale data synthesis from
different sources, such as the new generation molecular
biology “-omics” tools (e.g., genomics (DNA), proteomics
(proteins), metabolomics (metabolites), and transcriptomics
(RNA)), as well as other factors (heredity and lifestyle) so
that a holistic description of the pathology for each patient
is created. *e ultimate goal of this process is to classify
patients into subgroups with common biological charac-
teristics (e.g., expression of specific genes or predicted
response to treatment), hypothesizing that different pop-
ulation groups may present different susceptibility to
disease, and as a result, a requirement for more specialized
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diagnostic, prognostic, and therapeutic tools. Especially in
cancerous tumors, the very important contribution of the
above technologies, which aim at characterizing the bi-
ological heterogeneity of the lesions, by identifying the
molecular phenotypes of the mutations of the disease, is
already evident [1].

However, malignant tumor spatiotemporal biological
heterogeneity is prone to underestimation errors as all these
techniques are usually based on the analysis of small invasive
biopsy tissue samples, hence presenting limitations in
mapping the biological variations within the whole tumor
site [2]. Nevertheless, it has to be noted that whole-mount
breast biopsy methods have also been adapted in the clinical
practice; however, there is still a need for utilizing large size
tissue sample for techniques validation, as well as mini-
mizing the cost-effectiveness for assessing the histopathol-
ogy in the future [3].

Towards this direction, medical imaging has become
a very valuable component of medical science contributing
to the assessment of a variety of pathological conditions.
Especially magnetic resonance imaging (MRI) has now
evolved from simple imaging modality to an advanced
computational system producing a variety of numerical
parameters and can be used for the noninvasive preoperative
assessment of pathology [4]. In terms of personalized cancer
treatment, advanced imaging analysis aims at the unraveling
of tumor heterogeneity, guiding cancer diagnosis, staging
and planning interventions for treating patients, monitoring
therapeutic approaches, predicting treatment response, and
determining outcomes [5].

In addition, this promising field of research based on the
quantitative study of imaging phenotypes, termed “Radio-
mics”, has been integrated to clinical practice for breast
diagnosis and treatment management.

2. Breast Imaging and MRI

In clinical routine, several imaging modalities for breast
cancer screening prior to treatment are used, including
mammography, ultrasonography (US), digital breast
tomosynthesis (DBT), and magnetic resonance imaging
(MRI). MRI holds a leading role in screening the particular
group of high-risk women, due to its advantages regarding
spatial resolution, generation of high-contrast images for
soft tissue, and the lack of ionizing radiation. Nevertheless,
conventional MR imaging findings in a number of breast
masses are sometimes nonspecific, and despite the recent
technological advancements, breast tumor diagnosis (de-
tection or characterization) and prognosis (response to
therapy, morbidity, and mortality) can be very challenging
processes [6]. *erefore, continual efforts are being made to
assess the utility of advanced MR imaging techniques and
enable the extraction of quantifiable features for the as-
sessment of malignant breast tumors aggressiveness in
a reliable manner.

*e parameters extracted from the various advancedMR
imaging techniques, such as diffusion weighted/tensor im-
aging (DWI/DTI), perfusion weighted imaging (PWI), MR
spectroscopy (MRS), and MR elastography (MRE), provide

significant structural and functional information in a mi-
croscopic and cellular level, highlighting aspects of the
underlying breast pathophysiology, regarding cellularity,
neovascularization, and tumor biochemical processes.
Usually, the most critical elements in the determination of
tumor grade and prognosis are tumor cellularity and vas-
cularity. *ese elements can be quantified using diffusion
and perfusion techniques, respectively.

In the past decade, numerous studies have reported the
value of DWI for differentiation between benign and ma-
lignant breast tumors, by means of apparent diffusion co-
efficient (ADC) parametric maps [7–9]. Choi et al. [10]
showed that malignant tumors have decreased the ADC
value proportional to their increased cellularity. However,
the same study concludes that lower ADC values of ma-
lignant tumors may be due to tumor angiogenesis, as DWI
parameters are influenced by perfusion effects. In addition,
recent studies have supported the correlation of ADC values
with several prognostic factors of biological markers, in-
cluding ER, PR, HER2, and Ki-67 statuses [11–13].

Perfusion weighted MR imaging, on the contrary,
presents an equivalent contribution by means of assessing
tumor angiogenesis, vascularity, and vessel permeability
mainly utilizing dynamic contrast-enhanced (DCE) im-
aging techniques. *e high gadolinium uptake by tumors
helps the clinicians in the accurate differentiation of breast
lesions compared to normal tissue. Furthermore, DCE-
MRI signal time-series evaluation through empirical or
pharmacokinetic models has presented robust results for
tumor characterization [14, 15], as well as monitoring
response to therapy parameters [16, 17]. For example,
benign and malignant breast lesions differ in the char-
acteristics of their microvessels, and hence in their be-
havior of gadolinium uptake in the lesion which can be
measured with the pharmacokinetic parameters of vas-
cular permeability, such as the transfer constant Ktrans,
Ktrans measures the transit of contrast agent through the
vascular bed at the capillary level and reflects qualita-
tive changes of tumor vessels (i.e., increased porosity/
permeability), a surrogate of neoangiogenesis. In addi-
tion to Ktrans, several tissue specific kinetic parameters may
be estimated including the volume fraction of the extra-
vascular extracellular space (ve) in tissue, the volume
fraction of plasma in tissue (vp), and the rate constant for
efflux of gadolinium contrast back into plasma from the
tissue extracellular space (kep) [14].

In addition, in vivo 1H-MRS is a noninvasive method for
characterizing the cellular biochemistry which underlies
breast pathologies, by monitoring the choline concentration.
As choline complexes are believed to be precursors of the
phospholipids that compose cell membranes, increases in
choline signals are thought to reflect increased membrane
synthesis. It can be considered as a bridge between meta-
bolism and the anatomic and physiological studies available
from MRI. Breast 1H-MRS is proposed to be used as an
adjunct tool to MRI examination for the improvement of
specificity. 1H-MRS can provide a qualitative and/or
a quantitative analysis of a number of metabolites within
the tissue under study [18–21].
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Nevertheless, tumor biological processes are closely
correlated; their accurate interpretation is not always
straightforward and becomes difficult on the basis of indi-
vidual numeric parameters, as similarities may exist between
pathologies, and one should be very careful in correctly
evaluating all available MR data [22]. Recently, multi-
parametric approaches are proposed for improving the di-
agnostic accuracy through the correlation of the results
between different MR imaging techniques [23–25].

At this point however, it should also be realized that the
vast amounts of data and numerical parameters produced by
the advanced MRI techniques may pose more of a problem
rather than a solution. Why? Because the endogenous
complexity of the sophisticated imaging methods and big
datasets, as well as the nature of the imaging features, trouble
radiologists in collecting and rationalizing the abundance of
these important quantitative metrics, as well as accurately
evaluating them during the clinical routine.

Hence, despite the indisputable, contribution of ad-
vanced techniques to the preoperative assessment of breast
pathology, the often-contradictory character of individual
diagnostic results, which is a consequence of the complex
biological correlations they reflect, requires the overcoming
of the classical qualitative assessment methods. For that
reason, the advances in information technology have led
state-of-the-art image analysis methods to be implemented
in the field of medical imaging, in terms of improving and
managing the diagnostic outcome, introducing the rapidly
evolving field of radiomics.

3. Radiomics and Decision Support in
Breast MRI

*e development of radiomics, which is the conversion of
medical images into quantifiable data which facilitate the
clinical decision support for improving diagnostic, prog-
nostic, and predictive accuracy, is motivated by the concept
that images are more than pictures and contain valuable
information about the tissue underlying pathophysiological
characteristics, which can be extracted with advanced
computational tools [5, 6, 26].

Radiomics can be considered as an extension of
computer-aided diagnosis (CAD) systems which have been
successfully used until recently, especially applied in breast
cancer detection (CADe) and diagnosis (CADx) [26]. In fact,
the feasibility for implementing automated techniques for
breast cancer imaging, by means of CAD systems, arises
from the challenging clinical questions regarding lesion
delineation from breast’s diffusive parenchyma
(e.g., detection of masses, microcalcifications, and archi-
tectural distortions), as also breast lesion biological char-
acterization (e.g., benign vs malignant, tumor grading, and
BIRADS categorization).

More specifically, CAD algorithms are composed of two
stages, that is, detection and classification of suspicious
regions into cancerous and normal tissues. Firstly, detection
is performed using basic image enhancement methods,
descriptors of statistical distribution of intensity values, and
decomposition of the image through wavelet transforms, in

order to investigate differences between tumorous areas and
background. Subsequently, CAD systems use a set of
quantitative image features describing the geometrical
structure, intensity distribution, and texture of a region of
interest (ROI), automatically or manually contoured. Since
many features can be extracted, CAD systems frequently
incorporate feature selection algorithms to obtain the fea-
tures contributing the most to diagnostic accuracy. Finally,
the abovementioned systems may include statistical or
machine learning classifiers in order to distinguish can-
cerous lesions from normal breast tissue [27].

*erefore, CAD systems constitute supplementary tools
to radiologists, for evaluating the results from different
imaging modalities, towards detecting lesions and making
diagnostic decisions.

Obviously CAD can be considered part of radiomics,
but in contrast to CAD’s simplicity and ability for an-
swering only simple clinical questions, radiomic analysis
considers more complex computational processes aiding
decision support, by utilizing a plethora of quantita-
tive imaging features—potential imaging biomarkers,
extracted from digital images [26, 28]. Furthermore, the
correlation of these large-scale radiological phenotypic
characteristics with the rich breast histopathological data
available, e.g., the expression statuses of estrogen re-
ceptor (ER), progesterone receptor (PR), human epi-
dermal growth factor 2 receptor (HER2), and triple
negative (lack of expression of ER, PR, and HER2), fa-
cilitates their strong association with molecular subtypes,
which eventually results in the generation of pathology
prognostic and predictive models [4, 26, 27, 29].

*e central hypothesis of radiomic analysis is that these
libraries of quantitative individual voxel-based variables are
more sensitively associated with various clinical endpoints
compared with the more qualitative radiologic, histopath-
ologic, and clinical data more commonly utilized today [30],
especially taking into account that the aforementioned key
information originating from routine clinical imaging
usually remains unexploited.

*erefore, the knowledge about these deep biological
mechanisms which are reflected into tissue phenotype,
obtained from radiomic analysis, and potentially enhanced
by the combination with other -omics (e.g., radiogenomics
[31]), is a very important step towards individualized
therapy planning and building of models for predicting
patient outcome [5].

However, radiomic analysis is still a very challenging
process, facing complex technical difficulties (medical data
collection and development of novel computational
methods) and methodological challenges (poor study de-
sign, data overfitting, and lack of standards for results
validating), and will be analyzed below [6, 32].

4. Radiomics Analysis Workflow

4.1. Segmentation. Image segmentation is usually the first
step, after data preprocessing (noise reduction, correction of
artifacts, normalization, etc.), in the radiomic analysis
workflow towards lesion evaluation for diagnosis and
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selection of appropriate treatment plan. *e precise defi-
nition of breast lesion boundaries is a very important
procedure, as it affects the subsequent qualitative analysis of
the radiomic descriptors extracted from the corresponding
regions or volumes of interest (ROI/VOI). In daily clinical
routine, ROIs are manually segmented by expert radiolo-
gists, but besides its time-consuming nature, this approach
induces intra-/interobserver variability and reproducibility
errors, as many tumors present indistinct and blurring
boundaries [33]. *e development and validation of novel
semiautomated or automated segmentation algorithms is an
open research field which presents interesting and sophis-
ticated results. However, the semiautomated approaches are
mandatory so that the final choice remains user-dependent
since fully automated methods are feasible only if there are
strong signal differences between the lesion and the back-
ground [34]. In addition, time-cost minimization for seg-
menting all tumor slices in tomographic imaging modalities,
such as MRI, enables the reconstruction of three-
dimensional (3D) tumor models, which further facilitate
the global assessment of the pathology.

*e initial approaches towards automated breast tumor
delineation methods for CAD systems included intensity-
based methods utilizing histogram thresholding for edge
enhancement in mammographic data [35]. However, the
main disadvantage of the thresholding methods is the spatial
incoherence (scattering) presented in segmented regions, as
this method does not take into account pixels’ neighborhood
information. Region growing methods are an evolution,
where segment’s coherence is obtained from application of
conditions by the user, such as homogeneity criteria between
neighboring voxels and mostly the inclusion of manually
induced seed pixels in the final segment [36]. Classification
and clustering methods have been developed for classifying
image pixels into different groups of similar intensities, thus
properties, utilizing sophisticated algorithms such as k-NN,
k-means, and fuzzy c-means [37–40]. Furthermore, this kind
of segmentation method performed on fused MR images
(T1, T2, DWI, and DCE) enables tumor separation into
subregions (habitat imaging), which contributes in the
revelation of tumor heterogeneity and potential selected
region-based feature extraction for adaptive analyses [41].
Lately, several free and widely accepted software packages
exist providing semiautomated segmentation tools, based on
a variety of algorithms (e.g., watershed and active contours/
surfaces), such as 3DSlicer (www.slicer.org) and ITK-SNAP
(www.itksnap.org/).

4.2. Radiomic Descriptors. After tumor delineation,
radiomic features are extracted from the information
contained in the segmented ROIs that can be used to
qualitatively assess tumor phenotype, aggressiveness,
treatment response, and cancer genetics, and differentiate
between benign and malignant tumors [5]. *e further
processing and selection between the varieties of radiomic
features derived leads to the potential definition of qual-
itative imaging biomarkers (QIB) that holds prognostic
and predictive values for cancer outcome [28]. *erefore,

when found to have significant correlation with tumor’s
biological properties, these parameters may possibly serve
as useful endpoints for the assessment of the severity,
degree of change, or status of a cancer lesion, relative to
normal [22].

Besides various metrics derived from advanced MR
techniques, novel approaches such as texture analysis
seems to overcome limitations regarding diagnostic ac-
curacy and reproducibility [42]. Texture features provide
more detailed structural and dimensional information of
pixel intensity values distribution, which facilitates a more
effective intercomparison between images by means of the
upgraded quantitative perception of tissue imaging
characteristics.

Radiomic features may be divided into several categories
depending on their characteristics, such as shape- and size-
based, histogram-based, textural and transform-based fea-
tures [2, 27]. Shape- and size-based features provide in-
formation about tumor location and different size
parameters, like surface, volume, diameter, sphericity, and
surface-to-volume ratio. First-order histogram parameters,
such as mean value, standard deviation, percentiles, skew-
ness, kurtosis, and entropy, enable the rough assessment of
pixel intensity global distribution without considering
spatial variations. Different reported studies supported that
histogram analysis of ADC parametric maps in breast DWI
may serve as a prognostic biomarker [10, 13].

Higher order statistics derived features, referred to as
textural features, have been widely utilized in breast tumor
DCE-MRI parametric maps in the past, for improving
characterization of breast lesions and their response to
treatment [43–47]. Second-order histograms such as gray-
level co-occurrence matrices (GLCMs) [28, 48] and gray-
level run-length matrices (GLRLMs) [29, 49] characterize
spatial relationships between pixel intensities in different 2D
or 3D directions and thus are robust in quantifying tumor
structural properties and various patterns of heterogeneity.
In particular, GLCM analysis of DCE MR data has been
proved to be robust in differentiating between benign and
malignant breast lesions [50]. Finally, additional high-order
textural features, such as Gabor textures, temporal kinetics,
and fractal-based textures, have been employed for classi-
fying malignant from benign breast tumors, by means of
identifying texture-related signal variations [51, 52].

To date, several studies have focused on the correlation
and integration of radiomic features with breast genomics
and proteomics data, and their results continue to support
the notion that radiomic metrics may perform well for better
understanding of molecular and genetic variability, protein
expression and predicting prognosis, and response to
therapy [41, 53]. Considering breast tumors, recent studies
have reported the potential prediction of tumor subtypes
[54], as well as clinical phenotypes through the association of
breast tumor MR imaging data with ER, PR, and HER2
statuses [55].

In the past, various reliable texture analysis software
tools have been developed, such as the open access MaZda
(http://www.eletel.p.lodz.pl/programy/mazda/) and the
commercially available TexRAD (http://texrad.com/).
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5. Pattern Recognition and Decision Support

Despite the indisputable contribution of the advanced MR
techniques and image analysis methods to the preoperative
assessment of breast tumors, unfortunately, the immense
numbers of imaging and clinical features involved still
challenge current methods of qualitative analysis. On the
contrary, data analysis using conventional methods such as
statistical significances correlations of the related parameters
between different tumor groups may be efficient in a limited
number of cases. However, in more demanding diagnostic
problems like pathologies mimicking tumors or lesions with
identical pathophysiological profiles, where data ranges are
overlapping, the statistically significant correlations might
be limited [22]. *us, innovative computer-assisted di-
agnostic tools are required to analyze multidimensional data
and to illustrate the above relationships in intelligible and
measurable quantities.

In the past, several advanced methods of data analysis
have been evaluated, such as logistic regression (LR) [56, 57]
and Bayesian classifiers [58] aiming in the incremental of
MRI diagnostic accuracy. However, the abovementioned
computational processes proved quite demanding and time-
consuming and moreover presented limitations in evalu-
ating the big amount of radiomic descriptors generated.

It is interesting to note that recently, research and clinical
interest have been focused on the incremental of diagnostic
and predictive value of breast MR multiparametric ap-
proaches using advanced machine learning classifiers, like
support vector machine (SVM) and k-nearest neighbor (k-
NN) classifiers [58–62]. *ese techniques present huge
potential to improve the understanding of complex path-
ological conditions, through identifying robust associations
between morphological or functional changes in imaging
and clinical variants linked to the diseases. *erefore, this
holistic imaging biomarker-based description of the pa-
thology, also called radiomic signature [62, 63], can be used
towards the personalized patient care.

Machine learning techniques have been widely utilized for
overcoming the limitations of data unilateral evaluation ap-
proaches, which are usually not robust enough to be used for
high-precision diagnostic outcomes. Based on their ability to
learn information from the provided training datasets, these
sophisticated algorithms have demonstrated a superior effi-
ciency in making accurate classifications of the features
extracted from radiological images, achieving higher diagnostic
accuracy of multiparametric MRI [62, 64].

Recent research studies have also reported that the
implementation of deep learning classification techniques,
such as artificial neural networks (ANNs), may be used as an
automated computer analysis tool providing further process
automation, in order to aid radiomic analysis with potential
application to breast tumor diagnosis [65].

Deep learning, a class of machine learning algorithms,
performs supervised classification tasks mimicking the way
that the nervous system defines relationships between var-
ious stimuli and corresponding neuronal responses. It is an
emerging field of data science, getting attention due to its
promising applications in various science fields, as it has

been shown to excel at learning a hierarchy of increasingly
complex imaging features directly from raw data. Hence, it
can be considered the alternative to the quite demanding and
time-consuming conventional machine learning methods
which involve segmentation, feature extraction, and classi-
fication steps. [66].

*e use of such techniques in medical imaging allows the
manipulation and evaluation of a large amount of quanti-
tative data (also called big data) during clinical practice.
Also, except for computational cost minimization, the main
advantage of implementing deep learning classification
schemes over radiomics workflow is their ability for
extracting a large number of self-taught features in a totally
automated way from raw imaging data. In addition, in two
recent studies, Dalmis et al [67, 68] have shown the value of
convolutional neural networks (CNN) and U-net for au-
tomated segmenting of breast lesions and whole breast and
fibroglandular tissue, respectively.

However, the most important aspect of deep learning
utilization is its advantage in performing multiparametric
clinical big data associations (e.g., radiogenomic data), which
facilitates the provision of pathology predictive outcomes and
the development of intelligent clinical decision support sys-
tems (CDSS), for implementing individualized patient-specific
diagnosis and prognosis approaches.*erefore, diagnostic and
predictive results ascending from complex correlations will
potentially accelerate the process of directly characterizing the
aggressiveness of disease in an accurate way, leading to the
robust evaluation and individual treatment planning of the
pathology, in contrast with conventional statistical methods
that are limited to producing diagnostic results retrospectively.

6. Limitations

Although the future of radiomic analysis seems promising,
to date there are several limitations and challenges that must
be overcome, mainly related to technical complexities in
different aspects of the radiomic workflow.More specifically,
radiomic features quantification is very sensitive to data
acquisition parameters (medical image artifacts, re-
construction methods, and sampling) and variations of
feature extraction methods [69]. Also, several limitations are
related to lesion segmentation and feature extraction algo-
rithms in terms of user dependency; thus the subjective
selection of initial criteria finally affect accuracy, stability,
and reproducibility of the proposed methods.

However, the main drawback of radiomics remains that
the link between the imaged properties of tumors, and tumor
biology is not straightforward; even though most radiomics
studies show statistical correlation between radiomic fea-
tures and genetic phenotype, this correlation does not imply
causation [22]. Hence, there is a need for further systematic
studies with proper design for results validation and es-
tablishment of standards.

7. Conclusion

In conclusion, it seems that the field of biomarker dis-
covery has evolved rapidly over the past few years aiming
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to individualize medical care with personalized diagnosis
and prognosis towards precision oncology. Figure 1 is an
attempt to evidentiary describe the “where do we stand?”
rhetoric question arising from this review paper, specif-
ically for breast cancer. It is evident that with the dawn of
21st century, breast medical imaging has evolved, taking
advantage of the new powerful modalities and advanced
techniques such as MRI, as well as the promising era of
implementing machine learning techniques in medical
imaging. Obviously, the key to diagnosis and prognosis of
breast tumors lies in a multiparametric evaluation scheme
combining radiomics and biomarker analysis. *erefore,
there is a need to utilize sophisticated computational
methods in the clinical routine in order to develop and
standardize specialized management and quantitative
assessment procedures to maximize the diagnostic benefit
(early detection, prognosis, and differential diagnosis) and
to integrate the individualized medical act into the more
general context.
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