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Abstract

Streamflow duration is used to differentiate reaches into discrete classes (e.g., perennial, 

intermittent, and ephemeral) for water resource management. Because the depiction of the extent 

and flow duration of streams via existing maps, remote sensing, and gauging is constrained, field-

based tools are needed for use by practitioners and to validate hydrography and modeling 

advances. Streamflow Duration Assessment Methods (SDAMs) are rapid, reach-scale indices or 

models that use physical and biological indicators to predict flow duration class. We review the 

scientific basis for indicators and present conceptual and operational frameworks for SDAM 

development. Indicators can be responses to or controls of flow duration. Aquatic and terrestrial 

responses can be integrated into SDAMs, reflecting concurrent increases and decreases along the 

flow duration gradient. The conceptual framework for data-driven SDAM development shows 

interrelationships among the key components: study reaches, hydrologic data, and indicators. We 

present a generalized operational framework for SDAM development that integrates the data-

driven components through five process steps: preparation, data collection, data analysis, 

evaluation, and implementation. We highlight priorities for the advancement of SDAMs, including 

expansion of gauging of nonperennial reaches, use of citizen science data, adjusting for stressor 

gradients, and statistical and monitoring advances to improve indicator effectiveness.
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1. Introduction

Because streamflow influences patterns and processes in streams and adjacent riparian areas, 

streamflow classification is often used to support environmental management and restoration 

decisions. While gauging stations provide direct hydrological data for streamflow 

classification, the cost of maintaining gauging networks limits their lifespan and 

geographical extent [1]. For instance, gauges tend to be located on large, generally 

perennially flowing streams and rivers, so most of the stream miles in the United States 

(U.S.) are underrepresented by the gauge network [2]. Being less expensive, the deployment 

of data loggers [3,4] can fill gaps missed by gauge networks, but these approaches still 

require substantial effort and have a time lag in supplying data for classification. The 

National Hydrographic Dataset (NHD) is the most comprehensive source on stream extent 

and streamflow classification in the U.S.; however, the NHD is a static characterization that 

also tends to more accurately characterize larger streams and rivers than the more abundant 

headwater streams [5,6]. Unlike gauges, remote sensing approaches have the potential to 

characterize hydrology across landscapes [7,8]. Nonetheless, the coarse temporal resolution 

and constrained ability to differentiate water surface from the bed surface in shallow flowing 

water in networks through dense tree canopies are limitations of current remote sensing 

technology to inform comprehensive streamflow classification. Consequently, reliable 

hydrography information (i.e., channel extent, flow duration class) is not always available 

where needed to support management decisions.

Streamflow duration indicators are rapid, cost-effective alternatives to gauging and remote 

sensing that provide reach-specific classifications. Our objective is to provide the scientific 

basis and an operational framework to use environmental indicators for streamflow duration 

classification at the reach scale (101–102 m). First, we describe streamflow duration 

classification and provide an overview of environmental indicators that can be used to infer 

flow duration because they serve as measures of either responses to, or controls of, flow 

duration. Next, we provide both conceptual and operational frameworks for the development 

of Streamflow Duration Assessment Methods (SDAMs), which are rapid assessments that 

use indicators to classify streamflow duration at the reach-scale. An SDAM includes the 

protocols for measuring indicators and an index or model to predict or draw a conclusion 

regarding the streamflow duration class of the targeted reach. We highlight the primary 

components and process steps needed for SDAM development, as well as alternative 

approaches, and key considerations. We close by highlighting future advances to further 

improve SDAMs and their application.

2. Streamflow Duration

The presence of surface flow is a fundamental basis for stream classification. The presence 

and absence of surface flow represents a break along a gradient of hydrologic conditions 
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(Figure 1). Surface flow can range from interstitial flow, where surface flow is visibly 

limited to flow between stones or organic material in shallow habitats or visible only at the 

tails and heads of pools; to overbank flooding, where the entire channel and adjacent 

floodplain may be submerged under flowing water [9,10]. The lack of surface flow can be 

reflected in one or more of the following conditions: pools of standing water; moist 

streambed sediment; completely dry sediment [11].

Classification of flow presence has historically focused on the temporal dimension, 

specifically on flow duration or continuity of flow through time. Perennial describes channel 

lengths having continuous surface flow that do not experience drying outside of extreme 

drought [9,12]. In contrast, channels that experience recurrent loss of surface flow are called 

nonperennial [13]. These can be further subdivided into intermittent and ephemeral. 

Intermittent channels are typically defined as having continuous surface flow for part of the 

year that is sustained by snowmelt and/or groundwater. In contrast, ephemeral channels are 

typically defined as flowing only during and immediately following precipitation or 

snowmelt [9,12]. Although there is not a universally accepted duration that separates 

intermittent and ephemeral flow, the timing of streamflow becomes more predictable going 

from ephemeral to intermittent to perennial within a given geographic area. Similarly, while 

there is not a universally accepted length of record needed to classify streamflow duration, it 

is generally accepted that streamflow duration classes represent the typical regime at a reach 

over many years. While a reach may change streamflow duration classes in the long term 

due to any number of factors (e.g., long-term water withdrawal or augmentation, channel 

headcutting, changing climatic conditions), the streamflow duration classification of a reach 

represents the typical regime and, therefore, does not change year to year.

To appropriately apply such a classification scheme based on gauge, survey, or indicator 

data, it is important to understand what streamflow duration classifications do not represent. 

For example, these flow classes do not describe the magnitude of streamflow, either in terms 

of individual events or cumulatively over longer periods. Although groundwater commonly 

supplies more consistent base flow to perennial and intermittent reaches [14], streamflow 

duration classes are not exclusively defined by the sources of streamflow. Previous studies 

have used the classification terminology to describe the spatial dimension of surface flow or 

connectivity through space. For instance, intermittent has been used to describe channels 

with pools interspersed along an otherwise dry channel [15,16]. A mosaic of such conditions 

can occur across a stream network at a given point in time, and these patterns are spatially 

controlled by natural and anthropogenic factors [17,18]. Because of recurrent drying of 

varying frequency, duration, and predictability, nonperennial streams can be considered 

transitional, representing a continuum between strictly aquatic and strictly terrestrial 

habitats.

3. Scientific Basis of SDAM Indicators

Environmental indicators are measurable properties that provide inference regarding a more 

complex phenomenon of interest [19]. Such surrogate measures are used because direct 

measurement of flow over time is either too difficult or resource intensive. These indicators 

may be environmental characteristics that control or govern streamflow duration (e.g., 
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catchment features or climate), as well as those that respond (e.g., presence of long-lived 

taxa that depend on year-round flow) (Table 1). We note that control and response indicators 

are not necessarily mutually exclusive. However, we provide examples of indicators that 

could fall within each category, and we discuss the mechanisms governing the relationship 

between indicators and hydrology, as well as factors that mediate those relationships.

The environmental filter concept [42,43] portrays environmental conditions as selective 

filters on the distribution and abundance of species. Without the combination of traits (i.e., 

measurable properties of organisms that reflect behavior, life history, physio-morphological 

adaptation, resource use, and mobility) allowing persistence under certain environmental 

conditions, species are eliminated. We apply the environmental filter concept to illustrate 

streamflow duration classes as a series of designated filters along an environmental gradient 

with indicators represented as responses to, and controls of, flow duration (Figure 2). 

Therefore, our application also expands the environmental filter concept to include physical 

as well as biological responses and their relationships with control indicators acting on 

filters along the flow duration gradient. While our illustration of environmental filters 

represents perennial, intermittent, and ephemeral classes, a different number and positioning 

of filters along the flow duration gradient could be used to represent different flow duration 

classifications for SDAM development (see Table 2).

Aquatic and terrestrial responses are diametrically opposed along the gradient of flow 

duration, such that as the strength of one signal increases, the other decreases. Therefore, a 

suite of indicators that quantify aquatic and terrestrial responses to flow duration can be 

integrated into SDAMs and reflect the signals that concurrently increase and decrease along 

the flow duration gradient. Contraction from surface water-connected habitats to isolated 

pools, loss of all surface water, and drying of shallow subsurface sediments represents 

progressive reductions in the extent and variety of aquatic habitats available [56]. The loss of 

water volume can increase contaminant and pathogen concentrations and water temperatures 

and decrease dissolved oxygen [57–59]. Biological responses can, therefore, be in direct 

response to changes in habitat availability as well as changes in physicochemical quality and 

subsequent intensification of species interactions [60,61]. Conversely, inundation, 

groundwater accessibility, and continuous forces of flow associated with long streamflow 

duration limit edaphic processes and colonization of channel habitats by terrestrial biota 

[62–64].

Physical indicators, such as biological indicators, respond to hydrology. The physical 

environment of stream channels reflects the hydrology and transported sediment that shape 

channels and bed and bank material [65]. While periodic high magnitude flows are 

responsible for channel and floodplain maintenance (e.g., sediment transport, channel 

geometry, bed topography), it is the entire range of flows that shape the channel and 

floodplain environment [66]. The physical forms of stream channels are diverse, spanning a 

range within and across flow duration classes [67–69]. Flow duration, though an important 

gradient, is just one environmental dimension that contributes to channel form [70]. 

Sporadic flows (mostly large floods), downstream transmission losses, high sediment 

supplies and bedload, sparse vegetation, and easily erodible banks are commonly cited as 

causes for the predominant forms of ephemeral channels being braided channels and single-
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threaded planar-bed channels in arid regions [71]. Meandering channel morphology has been 

considered largely restricted to perennial rivers having riparian vegetation and cohesive bank 

material, but ephemeral meandering channels were widespread and had subtle differences 

from perennial meandering channels in arid regions [72]. The tightness of the bends (i.e., 

curvature ratio) and the meander wavelength (linear distance between bends) relative to the 

channel width in the ephemeral channels were, on average, lower than those of perennial 

channels [72]. Reid and Laronne [73] indicated that flow duration represents a gradient for 

describing bedload transport, whereby very high amounts of bedload are transported from 

ephemeral compared to perennial channels under the same flood magnitude. Limited 

opportunity for winnowing of fine sediments in ephemeral channels results in higher 

amounts of fine sediments within the upper layer of the streambed compared to the coarse 

armored surface layer of perennial channels. Hassan [30] differentiated gravel bars in 

ephemeral channels in Israel as being unsorted, intermixed with sand, and without 

downstream fining, whereas bars in perennial channels had armored surfaces and 

downstream fining. Physical indicators that differ among flow duration classes may reflect 

not just the difference in flow duration (or dry duration) but also other factors such as 

magnitude, timing, and frequency of flows within a given landscape.

Channel form reflects not only fluvial processes experienced during flow but also the 

counteracting terrestrial processes such as riparian vegetation growth, soil formation, and 

hillslope coupling [74]. As flow duration decreases, high magnitude flows become more 

infrequent, and the intervening time for terrestrial processes increases [75–77]. This is 

relevant to flow duration indicators because geomorphological characteristics associated 

with fluvial processes may be indicative of longer flow durations, whereas those associated 

with terrestrial processes may be indicative of shorter flow durations. However, the relative 

effect of fluvial versus terrestrial processes influencing channel form is complex and 

depends on factors such as climate, bed slope, and sediment supply that in turn influence the 

propensity for channel change by floods and subsequent recovery (or “healing”) [78]. For 

example, channels in arid regions are considered more prone to change because floods 

generally have higher magnitudes than in humid regions due to higher precipitation intensity 

and compact upland soils with little stabilizing vegetation and organic matter [79,80]; 

therefore, terrestrial and fluvial features may be evident at the same time in the same reach. 

The longitudinal position of reaches within a stream network also mediates the relative 

effect of fluvial versus terrestrial process on channel form. For example, in humid regions, 

headwater channels can have substantial structural complexity derived from terrestrial 

processes (e.g., large wood, tree roots, boulder, bedrock outcrops). Such structural 

complexity, even on steep terrain, is largely considered to be resistant to channel change 

from storm runoff as discharges are forced out of high roughness, shallow channels as 

overbank flow, interstitial flow, and interconnected overland flow [81], minimizing the 

influence of fluvial processes on channel form even where flow is perennial. In contrast, 

lower reaches in arid regions tend to have downstream flow volume decreases because of 

transmission losses, evapotranspiration, and lack of significant tributary inflows [70]. Thus, 

physical indicators reflecting fluvial or terrestrial processes should be evaluated in the 

context of other factors, such as physiography, longitudinal position, and adjacent land use.
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In addition to properties representing responses to flow duration, SDAM indicators can 

include drivers of, or controls on, flow duration (Figure 2); these are properties that 

influence flow duration at the targeted reach. Surface flow in a reach occurs when upstream 

discharge is higher than the transport capacity of the underlying streambeds. Therefore, 

causes of drying are factors limiting water supply and/or channel transport capacity, 

including meteorology, geology, and land cover across a hierarchy of scales [17]. 

Meteorology includes water and energy input across increasing temporal scales from 

individual events (e.g., storm, cold front) to subannual weather patterns, multi-annual 

phenomena, and climate. Geology ranges from sediment grain size at the patch scale (e.g., 

0.1–1 m) to subreach or habitat units (e.g., pools vs. riffles), individual reaches, and entire 

catchments. Land cover encompasses in-channel structures that govern flow, land-water 

interface along reaches, land uses within catchments, and subcontinental biomes. Here, we 

largely focus on catchment- to subreach-scale controls, whereas regional-scale controls are 

further discussed in relation to study reach selection.

Meteorology influences the proximity of the water table to the streambed elevation, the 

availability of water exceeding evapotranspiration and infiltration for streamflow, and when 

water is released from storage [17]. Surface flow duration within reaches represents a 

balance between supplied water and the extent and permeability of streambeds. Shallow 

water tables can supply flow to intersecting channels for varying lengths of time in response 

to recent precipitation. Shifts in the balance of evapotranspiration with water available for 

streamflow can occur at diel, seasonal, and multi-annual time scales [52,82,83]. Flow 

duration increases with more frequent, intense, and longer periods of precipitation. In 

addition to affecting contributions and deficits to flow, meteorology can affect flow duration 

through the flow timing and storage in areas draining snowpack and/or glaciers [84].

Geology describes conditions mediating how water is stored and transported through the 

river network. Characteristics such as catchment area, elevation, and topographic relief 

describe the position of reaches within catchments and provide information on the quantity, 

source, and storage capacity for water to reaches. Storage capacity and hydraulic 

conductivity are also key surficial geologic characteristics that influence flow duration. At 

the catchment scale, permeable surficial geology and soils enhance storage that can extend 

flow duration over dry periods [85]. Within reaches, however, thick layers of coarse 

unconsolidated bed sediments enhance transmissivity and subsurface transport capacity, 

diminishing surface flow duration [86,87], whereas thin bed sediment layers overlying 

impermeable layers can maintain surface flow for extended periods. Reach slope also affects 

flow duration; steeper topography will tend to have less permeable surface geology, and the 

water table will sit farther from the surface than in adjacent lowlands [88]. Flow duration can 

be higher in reaches with springs and seeps that emerge where preferential flow paths 

(fractures, contacts between contrasting geology, soil macropores) intersect channels and/or 

coincide with abrupt changes in slope, hydraulic properties, or high topographic 

convergence [89–91]. Because of local geological heterogeneity, flow duration may not 

reflect a gradual longitudinal gradient along streams (i.e., increasing or decreasing flow 

duration with catchment area) but a discontinuous one such that expansion-contraction 

dynamics reflect the coalescence and fragmentation of surface water connectivity [4,92].
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Land cover describes the land surface conditions mediating how water is received and 

shunted, reflecting the interactions between meteorology, geology, and natural and human 

activities. For instance, catchment vegetation cover interacts with meteorology through 

changes in evapotranspiration. Increased impervious surface cover can lower flow duration 

by reducing recharge and water available for baseflow during dry periods, but year-round 

surface flows can be sustained by effluent discharges and/or elevated groundwater tables 

within incised channels [93,94]. Irrigation extraction and withdrawals can lower flow 

duration by diverting water that would otherwise flow within stream channels [95,96]. 

Riparian vegetation cover may be a response to flow duration but can be a control at the 

reach scale by affecting channel form, surface-subsurface exchange, and local groundwater 

levels [26,70,97]. Several studies have documented increases in streamflow following 

removal of riparian vegetation due to decreases in evapotranspiration [98,99]; however, 

riparian vegetation can sometimes increase streamflow when it plays a major role in 

intercepting fog that replenishes groundwater [100].

Physical and biological responses and/or controls of flow duration operate at a range of 

spatial and temporal scales (Table 1). Some indicators are meaningful at large scales but 

provide little discriminatory power at small scales or vice-versa. For instance, the 

heterogeneity of control or response variables is greater at large scales but is homogeneous 

over a smaller scale. Indicators across different scales may also interact with one another. 

For example, riparian plant assemblages of intermittent and perennial reaches were nested 

along an elevation gradient [101], showing that elevation mediates how riparian vegetation 

reflects flow duration class. Across forested headwater catchments in eastern U.S., 

ephemeral reaches had smaller catchment areas than intermittent and perennial reaches, but 

intermittent and perennial reaches differed by entrenchment ratio [36]. The discriminatory 

ability of some indicators to classify reaches by flow duration is affected by other 

environmental conditions linking flow duration to other gradients.

The discriminatory ability of indicators to classify reaches by flow duration can also be 

affected by other environmental conditions that vary over space and time. For example, 

response indicators may reflect not only flow duration, but also other aspects associated with 

source water or water quality. The distribution and cover of biota can be strongly linked to 

the physiochemistry of groundwater [102,103]. Disturbances are discrete events that disrupt 

natural systems and their components through exposure to stressors and can be broadly 

divided into those that are sustained (i.e., press) versus transient (i.e., pulse) in their temporal 

pattern [104]. Disturbances other than stream drying can reduce discriminatory ability of 

flow duration indicators if responses are indistinguishable or complex (e.g., synergistic, 

antagonistic; [105,106]. High impervious cover increases the frequency of moderate-sized 

stormflow events in arid streams [107,108], so differences among flow duration classes in 

sedimentary characteristics and channel form may be diminished. A major flood reduced the 

abundance and diversity of the macroinvertebrate assemblage to a greater extent at a 

downstream perennial reach than at upstream intermittent reaches in a tallgrass prairie 

stream network because flood magnitude downstream was ~30X greater than at intermittent 

reaches [109]. Indicator differences among flow classes will vary over time since 

disturbance. Progressive changes in the structure of biotic communities since rewetting 

[109,110] indicate that timing has a strong bearing on distinguishing intermittent from 
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perennial and ephemeral reaches using biotic indicators. The time required for biotic 

assemblages to stabilize following disturbance is dependent upon biotic characteristics (e.g., 

growth rate, mobility, life history) and physical factors of the reach (e.g., refuge proximity 

and size, recent and historical flow regime). The time for physical characteristics to stabilize 

following disturbance is dependent upon climatic, geologic, and biological factors. For 

instance, higher magnitude floods can cause more enduring physical changes to channels in 

arid regions than in humid regions because the frequency of lower magnitude floods is 

lower, and the rate of terrestrial processes is much slower [74].

Because the goal of an SDAM is to classify reaches by flow duration, which represents the 

typical regime over many years, indicators reflecting flow duration over longer periods of 

time are favored over those that reflect more immediate flow conditions. While there are a 

variety of bed features (e.g., mud drapes, desiccation cracks, flaser bedding) that represent 

physical evidence of recent flow, their presence in a reach is typically transient and does not 

differentiate flow duration classes as these features can be left by flows of different 

magnitudes regardless of their duration [111]. Persistent fluvial features in channels are 

normally formed by high flows and, therefore, are more indicative of magnitude and 

frequency than flow duration alone. The persistence of geomorphological indicators depends 

upon the propensity for change and the capacity of the system to resist change [78]. Many 

physical features indicative of dry channels (e.g., aerially distributed leaf litter, evaporites, 

efflorescence, mud cracking) have low resistance to low and high magnitude flows and, 

therefore, are transient features. Although such indicators may be recurrent over space and 

time, their presence is likely to reflect recent or contemporary conditions. Many aquatic 

biota will not be evident when channels dry because they will disperse or have been 

consumed by scavengers [112,113]. However, some aquatic organisms have life stages that 

remain viable in dry streambeds (“seedbank” [114]). Others move to habitats within reaches 

that remain wetted, such as the hyporheic zone or isolated pools. Many taxa leave behind 

shells, cases, burrows, and exuviae as evidence of their recent presence [115–117]. Likewise, 

some terrestrial biota are capable of withstanding temporary inundation by behavioral, 

morphological, and physiological adaptations [118]. Inundation and summer groundwater 

depth were key factors governing the distribution and abundance patterns of vegetation, 

gastropods, and ground beetles in the floodplain grasslands of the Elbe River [119]. 

Following an extreme flood with a 168-y recurrence interval, vegetation and gastropods still 

reflected long-term inundation and groundwater depth patterns because they possessed 

resistance adaptations. In contrast, carabid beetles were less equipped to resist the extreme 

flood and were decimated [120]. Another strategy (“resilience”) employed by biota that do 

not withstand drying or inundation locally is to recolonize from elsewhere. Depending upon 

life stage and mobility traits, dispersal to a reach following drying or resumption of flow can 

be active (e.g., flying, crawling, swimming) and/or passive (e.g., anemochory, hydrochory, 

zoochory). Biota use cues to trigger passive and active dispersal [121,122], but only actively 

dispersing biota can use cues to terminate dispersal [123,124]. While dispersal can stabilize 

biotic assemblages to reflect long-term hydrologic conditions, dispersal also enables 

connectivity across a mosaic of habitats with varying flow duration for different life stages 

[125]. By expanding the habitat template that biota can inhabit, dispersal between reaches of 

varying flow duration can enhance growth, survival, and reproduction [126,127] but may 
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limit the use of some biota as flow duration indicators, particularly when reaches with 

different flow duration classes are in close proximity.

Linkages among morphological, physiological, behavioral, and/or life history traits have 

been identified as suites or syndromes for dispersal, pace-of-life, or stress under different 

environmental conditions and ecological contexts [128–130]. Recognizing the suites of traits 

commonly associated with flow duration classes is useful for targeting potential indicators 

for SDAMs. Lifespan, time to reach maturity, mobility, and consistency of environmental 

requirements for life functions are traits of biotic indicators that are likely to discriminate 

among flow duration classes [131,132]. For example, while there are a few freshwater 

bivalves that are able to aestivate within sediments to withstand drying (e.g., Uniomerus 
tetralasmus, Toxolasma paulus, Musculium partumeium), most species are poorly adapted to 

long periods of drying because they have limited mobility and require flowing water for 

many life functions (e.g., respiration, filter-feeding, reproduction) [133]. Historically, 

freshwater unionids were referred to as “naiads” after the Greek goddesses of flowing waters 

who would expire if their water body dried up. Diametrically, lichens are terrestrial 

examples of sedentary, slow growing biota, many species of which are not adapted to 

extended inundation or flowing water. The bulk of lichen diversity associated with 

freshwater environments is along marginal zones with varying frequencies of inundation 

[134,135] with few aquatic species requiring permanent inundation [136,137].

4. Conceptual Framework for Data-Driven Components of SDAMs

The relationship among indicators, study reaches, and hydrologic data represents the 

conceptual framework upon which SDAMs are built (Figure 3). The relationship between 

direct hydrologic data and indicators reflects the cause and effect relationships between 

stream drying and physical and biological environmental variables. Study reaches need to 

reflect the range of streamflow duration and hydrologic conditions as quantified by 

hydrologic data observed at the reach-to catchment-scale. Regionalization and stratification 

of SDAM study reaches through site selection may account for the natural and 

anthropogenic spatial variability (e.g., climate, biogeography, land use) to ensure 

environmental indicators can consistently and accurately distinguish flow duration classes 

throughout space and time within a targeted geographic area.

4.1. Indicators

As previously described, indicators can be physical or biological and either responses to or 

controls of flow duration. Although SDAMs may include control variables, the purpose of 

SDAMs is to predict flow duration not to provide causal insight for why flow at some 

reaches has longer or shorter durations than at other reaches. Meteorology, geology, and land 

cover controls describe the balance between the supplied water and the extent and 

permeability of the streambed. The strength of an aquatic indicator’s signal will tend to 

increase with longer flow duration, whereas the strength of a terrestrial indicator’s signal 

will tend to decrease. Consequently, a standardized protocol that uses a combination of 

aquatic (e.g., macroinvertebrate life history traits) and terrestrial (e.g., presence of woody 

vegetation) indicators of flow duration should capture the full flow duration spectrum within 
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a region. The discriminatory ability of indicators will vary spatially and temporally as their 

relationships to flow duration are linked to other environmental gradients; therefore, 

indicators reflecting flow duration over longer periods of time (e.g., years) are favored over 

those that reflect more transient flow conditions. Resistance and resilience mechanisms 

possessed by biota enhance the representation of flow duration protracted over many years 

as opposed to the recent hydrologic conditions. Biological traits reflect the adaptations 

possessed by indicators to cope with varying degrees of environmental fluctuations.

4.2. Study Reaches

Study reaches for SDAM development are selected to capture variability of the primary 

spatial and temporal controls on, and responses to, streamflow duration. Assessing indicators 

at a sufficient number of reaches to adequately represent key gradients will help produce a 

robust method for the target region. There is no scientific reason to stratify reaches within a 

study region by control indicators versus response indicators of flow duration; however, 

most response indicators of flow duration are measured at the reach scale (Table 1), and it 

would be impractical to stratify study sites across large regions by many response indicators 

(e.g., presence of macroinvertebrates, amphibians, substrate sorting). If the target study 

region is small enough, and datasets pertaining to relevant reach-scale indicators exist at the 

appropriate spatial scale, reaches could be stratified based on reach-scale response 

indicators, such as the presence or absence of an indicator species. At a minimum, the study 

design should consider stratifying reaches of varying flow duration across the three 

dominant controls of intermittency: meteorology, geology, and land cover [17]. Existing 

frameworks, such as hydrologic landscapes [138], were designed to characterize similar 

hydrologic settings across the U.S. and can be used to stratify study reaches across controls 

of stream intermittency [24]. Similarly, the North American ecoregion framework was 

designed for studies that aim to analyze subjects that reflect the intersections of multiple 

abiotic and biotic controls such as stream flow duration [139]. Frameworks that aim to 

capture variability in flow regimes [140,141] may also be useful, even if not explicitly 

addressing flow duration, to identify areas or seasons with distinct flow regimes, such as 

snowmelt versus groundwater dominated reaches or catchments. While existing hydrologic 

and ecoregion frameworks can be used to guide reach selection to ensure adequate 

representation of flow conditions within a region, we do not recommend using existing 

frameworks to establish a priori flow duration classes of study reaches due to the large 

spatial scale at which most frameworks are developed.

4.3. Hydrological Data

Direct hydrologic data (e.g., long-term flow records) that can discriminate among 

streamflow duration classes are critical for SDAM development. Hydrologic data are 

described as direct because they need to describe the actual hydrological conditions at a 

reach and be independent from the environmental indicators. For instance, visual 

observations of sediment sorting or riparian vegetation from remotely sensed images or field 

visits should not be used to determine flow duration of study reaches to avoid circularity in 

the method development process, which could lead to model bias.
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Direct hydrologic data are broadly divided based on measurement frequency into (1) daily or 

more frequent and (2) less frequent than daily (e.g., monthly, seasonally). Daily or more 

frequent data are typically collected using deployed devices with data storage capabilities 

and referred to as continuous data, whereas less frequently collected data are referred to as 

discrete data. Continuous hydrologic data include the measuring of stage, velocity, water 

temperature, electrical resistance, and time-lapse imagery [142–144]. Less frequent 

observations or discrete data are typically collected using field observations (e.g., in-person, 

field cameras, landowner interviews [87,145,146] or remotely sensed observations (e.g., 

aerial photos, satellite images; [7,147,148] of flow status. Although continuous, long-term 

data are generally preferred for flow classification, such data collection is limited, and 

typically biased towards streams with longer flow duration. To ensure the adequate 

representation of nonperennial reaches in SDAM development, discrete or short-term 

hydrologic data may need to be considered.

Direct hydrologic data are used to calculate flow metrics which summarize magnitude, 

frequency, duration, timing, and rate of change characteristics of streamflow regimes [149]. 

Hydrologic classification can be driven by the data to identify groupings of flow regimes of 

which flow duration may be one aspect [35,150,151]. Alternatively, hydrologic classification 

can be driven by narrative definitions that are translated with particular metrics and 

associated thresholds to classify reaches based on their hydrologic data. The latter is a 

predominant approach used for flow duration classification with the percentage of time with 

zero flow being most common (Table 2). When a continuous and complete hydrologic 

record is available, metrics can be used to repeatably and unambiguously translate 

hydrologic data into flow duration classes.

In general, the certainty of flow classification from direct hydrologic data increases with the 

duration, completeness, frequency, recentness, and spatial resolution of the record. 

Analyzing data from longer records will ensure that flow classification is accurately 

determined within and across years, while accounting for natural temporal variability. 

Additionally, longer records may capture human-caused or natural changes on the landscape 

that have influenced the flow classification over time. If such changes have occurred, the 

recent hydrology data are preferred for SDAM development to reflect the contemporary flow 

duration. Higher frequency data also ensure that flow classification is accurately determined, 

as changes may occur at relatively short time intervals (e.g., on a diurnal, weekly, or monthly 

basis) that influence inferences about flow duration. For example, some streams dry at night 

when glacial or snowmelt is low, which would likely not be captured by visual observations 

during the day [152]. Additionally, continuous data are important for classifying streams that 

do not flow predictably, given uncertainty about when to conduct field observations during 

the year. Finally, higher spatial resolution data can increase the accuracy of flow 

classifications. For instance, aerial imagery may not capture very low flows or obscured 

flows (e.g., below tree canopies or beneath boulders) that would be evident based on field 

observations. Direct observations, time-lapse imagery, and in some situations, aerial imagery 

can capture hydrologic conditions (e.g., dry channel, isolated pools, interstitial flow) [9,10] 

more resolutely than what is typically captured by gauging stations, temperature, or 

electrical resistance dataloggers. Careful deployment and/or additional information may be 

needed to confirm that some continuous datasets can differentiate standing from flowing 
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water or frozen from dry conditions [11]. Parallel use of discrete and continuous datasets 

and/or the deployment of longitudinal arrays of recording devices can inform flow duration 

and surface flow connectivity over larger areas [3,54,153].

Direct hydrologic data may be insufficient as a sole source of information to determine flow 

duration classification. For instance, streamflow data collected during a year of high or low 

precipitation or temperature may not be representative of a reach’s flow classification under 

normal conditions. Streamflow data can be supplemented by jointly considering climatic 

and/or groundwater data to inform classifications with a long-term lens [54,154]. 

Supplemental datasets can be used to identify portions of the hydrologic dataset that 

represent extreme or supraseasonal flows [155] and thereby guide flow duration 

classification, site selection, and/or data interpretation.

5. Operational Framework for SDAM Development

We provide an operational framework for the development of rapid, accurate, robust, and 

consistent regional SDAMs (Figure 4), outlining the process steps needed to successfully 

integrate the data-driven components of SDAMs into usable methods: preparation, data 

collection, data analysis, evaluation, and implementation. These process steps outline how to 

include stakeholders and end-users throughout method development to ensure users have 

trust in the SDAM development process and that SDAMs are used consistently and 

appropriately within a region.

5.1. Preparation

5.1.1. Establish Technical Advisory Committee—A technical advisory committee 

(TAC) with local and regional knowledge makes important contributions [156] to several of 

the steps outlined (Figure 4) for the development of regionally applicable SDAMs. TACs not 

only provide technical vetting of the science, they can also improve the adoption of tools and 

other work products by the organizations they represent. A TAC would ideally include 

scientific staff from state, tribal, federal, and local agencies and organizations working in 

related water resource management, land management, and monitoring programs likely to 

use the SDAM. At the preparation stage, prior to field validation, contributions include 

identifying regionally appropriate indicators of streamflow duration either formally or 

informally used, existing sources of direct hydrologic data, possible study reaches, and area-

specific considerations such as unusual or challenging hydrologic conditions or unique 

management needs. Additionally, TAC members increase interdisciplinary connections to 

other area practitioners and organizations—public, private, and nonprofit—who may provide 

similarly relevant information useful to study design and implementation.

Following data collection and data analysis, an effective TAC also provides local input and 

review contributing to the development of the initial, interim SDAM which helps to assure 

the applicability and usability of the interim SDAM and engages local stakeholders for 

successful interim method release and use. A TAC continues to serve as a local forum for 

outreach during the period of local use and evaluation after the release of an interim method, 

which supports consideration of local feedback in producing a final revised method. Ideally, 
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TAC members form the core of a regional practitioner network which supports method 

implementation.

5.1.2. Identify Streamflow Duration Classes—SDAMs are typically developed to 

support the implementation of monitoring, regulatory, assessment, or other water-related 

programs that benefit from an understanding of flow duration. Therefore, identifying flow 

duration classes for SDAM development should be informed by the water resource 

management needs of targeted end-users. One challenge in developing an SDAM for 

application across a region is that potential end-users may have differing management needs 

and may define flow duration classes differently. For example, while riparian buffer rules 

within a region may require definitions of perennial, intermittent, and ephemeral reaches 

[157,158], water quality standards programs may only require definitions of perennial versus 

intermittent reaches. Similarly, some programs may distinguish between different types of 

intermittent streams. The Texas water quality standards program distinguishes intermittent 

streams from intermittent streams with perennial pools [159], and Ohio distinguishes 

between warm-water streams with intermittent flow and cold-water streams with interrupted 

flow [160]. It is also important to consider how flow class definitions will be implemented, 

as data to inform assessments are often limited to what can be observed at a reach in a single 

visit. However, it may not be possible to develop a rapid field assessment method to 

distinguish between types of nonperennial streams without first having a hydrologic record 

that distinguishes between those classes. Regardless of the number of classes defined for the 

development of an SDAM, if the described data-driven elements are integrated into the 

development process, resulting SDAMs will support more objective, accurate, and consistent 

reach-based classification of streamflow duration.

5.1.3. Conduct Literature Review and Outreach to Local Experts—A two-

pronged approach to identifying potential study reaches having direct hydrologic data 

available and identifying regionally useful indicators of flow duration includes conducting a 

literature review and consultation with local practitioners. Data quality objectives for 

literature review data should emphasize the quality of the data sources used in the review, 

including the utility of data sources to identify flow duration and potential indicators, and 

support evaluation of indicator applicability in the study region. Possible data sources 

include established assessment methods, field protocols, scientific reports, grey literature, 

and peer reviewed publications that seek to classify streams by flow duration and/or evaluate 

potential indicators of flow duration in the study region. Several assessment factors may be 

used to evaluate possible data sources, including applicability, utility, soundness, clarity, 

completeness, and documentation of variability or uncertainty. The TAC may be a useful 

resource for identifying contacts and conducting outreach with local experts, such as field 

scientists, water resource managers, land managers, park rangers, citizen scientists, and 

others familiar with local catchment hydrology or managing or generating hydrologic data. 

A comprehensive literature review, along with local expert input, informs the identification 

of potential study reaches and results in a list of potential indicators of flow duration 

supporting the development of a regional SDAM, which will then be narrowed to a list of 

final indicators during model development.
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5.1.4. Identify Potential Indicators—Potential indicators of flow duration can be 

characterized by type (hydrological, geomorphological, biological) and endpoints used to 

assess the indicator. Indicators may be qualitative, such as using ordinal scoring of physical 

and biological characteristics based on the degree to which that characteristic is observable 

along the reach, or result in discrete or continuous quantitative data, such as 

macroinvertebrate abundance or percent slope of the reach. Some may be indicators already 

in use, or those showing potential to discriminate flow duration classes based on literature 

review and consultation with local practitioners. Potential indicators should be evaluated for 

study inclusion based on consistency, repeatability, defensibility, rapidness, objectivity, 

robustness, and practicality.

There are often tradeoffs in applying the criteria that are used to evaluate potential indicators 

for inclusion in SDAM development studies. For instance, an indicator that can be assessed 

rapidly may lack objectivity and repeatability, having been modified from a more 

quantitative, resource intensive measure assessing characteristics of streamflow duration. 

One example is the sinuosity index, a quantitative measure of reach sinuosity requiring 

calculation of the ratio of channel thalweg length to valley length [161]. The measurement of 

this index in the field requires the use of a surveying level and compass, but this time-

intensive method has been replaced with a visual estimation of the number of bends within a 

stream reach [160] or ordinal scoring using narrative descriptions of the sinuosity index 

[158], which trades accuracy (and potentially repeatability) for rapidity of measurement. 

Such tradeoffs can be improved by providing guidelines for establishing standardized 

assessment reaches and consistent training of end-users [162]. Evaluating indicators for 

inclusion or exclusion in an SDAM development study, and ultimately for a final SDAM 

method, is often an iterative process that evolves as the limitations of indicators are revealed 

during data collection, analysis, and method evaluation.

5.1.5. Develop Data Collection Protocols—Following the evaluation of potential 

indicators for inclusion in the study, a protocol providing detailed instructions on preparing 

for field data collection and assessing selected indicators can be developed. Such a protocol 

is critical to ensure consistent data collection, quality of data collected, and efficiency in the 

field. Importantly, a data collection protocol for the field study also serves as a precursor to 

the development of a user guide supporting method implementation.

An important aspect of a stream assessment protocol is describing the boundaries of the 

assessment reach in a way that can be consistently applied by multiple practitioners. Flow 

characteristics often vary along the length of a stream, resulting in transitions in flow 

duration and indicators. Because flow duration can vary over short distances, the delineation 

of standard assessment reaches at study sites needs to be clearly described. For instance, in a 

study of 264 stream reaches supporting the development of an SDAM for the Pacific 

Northwest [24], standard reaches are equivalent to 35–40 channel widths of the stream 

[163], and a minimum assessment reach length of 30 m is set for narrow streams. Reach 

length is measured along the thalweg, and if the target reach is near a culvert or road 

crossing, the assessment reach begins at a minimum of 10 m from the feature. If a reach is 

not uniform, two or more representative reach assessments are recommended to fully 

describe the changes along the reach; these guidelines for identifying standard assessment 

Fritz et al. Page 14

Water (Basel). Author manuscript; available in PMC 2021 September 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



reaches are maintained in the final, implemented SDAM [164]. In the Fairfax County, VA, 

protocol for identifying perennial streams [165], standard assessment reaches are described 

as at least 61 m (200 ft) and having similar physical characteristics potentially bounded by 

an upstream and downstream tributary, grade control, other physical feature, or an obvious 

change in channel characteristics.

Several additional elements should be covered in a comprehensive data collection protocol 

to ensure that data quality and efficiency objectives are met. Especially given that some 

measured indicators may be ordinally scored based on visual estimates (e.g., presence, 

absence, extent), which are subjective measurements including subjective interpretation 

[166], a precise written description of how to assess each indicator is essential. It should 

include specific instructions for instrumentation, photodocumentation, and the collection, 

treatment, and identification of biological organisms, as appropriate. Common 

circumstances where data collection protocols may need to be adjusted are ideally 

anticipated and described to support consistent decision-making in the field. Finally, a quick-

reference field work of operations, complementing electronic or hard copy field forms, 

promotes a streamlined approach to data collection.

5.1.6. Identify and Classify Study Reaches—We describe both a resource-intensive 

and a resource-limited approach to identify reaches for SDAM development. Both 

approaches require reaches that are representative of the range of hydrologic conditions 

within a region. For the resource-intensive approach, direct hydrologic data to inform a 

priori flow duration classifications is preferable, but not required, because reaches are either 

instrumented or regularly monitored to document flow at the reach-scale. Previous 

monitoring efforts (e.g., instrumentation or reach visits) and knowledge of controls on flow 

duration within a region can help to characterize hydrological conditions at the reach scale 

and a priori flow duration classifications. For example, spatial data and models combined 

with knowledge of underlying geology, precipitation patterns, and anthropogenic influences 

can inform the stratification of reaches within a region. Once reaches are identified based on 

previous monitoring data or regional controls on flow duration, reaches are instrumented to 

monitor the presence or absence of water over time (e.g., with cameras, temperature or 

conductivity data loggers). If instrumentation is not feasible, reaches may be visited multiple 

times during wet and dry seasons; in certain regions, visits may be timed to provide the best 

information about flow duration (e.g., visiting streams at the peak of the dry season in 

Mediterranean California) [167]. Knowledge of predictable patterns in local hydrology and 

other anecdotal evidence provided by local experts (i.e., best professional judgement) may 

inform reach selection through a resource-intensive approach because hydrology will also be 

monitored throughout SDAM development. However, when considering best professional 

judgment, it is important to focus on hydrologic observations as opposed to indirect 

indicators of flow duration (e.g., vegetative cover, macroinvertebrate community structure) 

to avoid confirmation bias when choosing indicators for inclusion in the final SDAM. For 

example, if a local expert recommends an ephemeral reach because surface water is rarely 

observed during frequent and well-timed visits, this reach would be a good candidate for the 

study. In contrast, if an expert recommends an ephemeral reach because it lacks typical 

riparian vegetation, including this reach would introduce circular reasoning when defining a 
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priori flow duration classes and potential model bias if riparian vegetation is included as an 

indicator of flow duration during data analysis. Reaches selected through a resource-limited 

approach must use direct hydrological data from previous monitoring efforts to inform a 

priori streamflow classifications. Spatial data and knowledge of controls on flow duration 

within a region may help to stratify study reaches by hydrological condition, but such 

knowledge must be combined with direct hydrological observations at the reach scale for 

reach selection. If possible, resource-limited study reach selection should not rely on best 

professional judgement alone to make a priori flow duration classifications.

There are advantages and disadvantages to both resource-intensive and resource-limited 

reach selection approaches. As described, the resource-intensive approach requires more 

time to monitor sites over multiple wet and dry seasons and has greater costs associated with 

instrumentation and site visits compared to the resource-limited approach. However, due to 

the limited availability of high-frequency, long-term hydrological monitoring on 

nonperennial streams [11,168], the resource-limited approach is constrained in its ability to 

adequately identify reaches that represent a range of hydrologic conditions, as nonperennial 

streams will likely be underrepresented. If a moderate level of resources is available, the two 

approaches could be combined. A subset of previously visited reaches where flow duration 

is inferred through best professional judgement could be instrumented, and visited multiple 

times throughout SDAM development, while reaches with a long-term and recent continuous 

hydrologic record do not need instrumentation.

5.2. Data Collection

5.2.1. Collect Field Indicator Data—To capture temporal variability of measured 

indicators, we recommend sampling all study reaches during times when intermittent 

streams are expected to be both wet and dry. Visiting perennial streams when nonperennial 

streams are expected to be dry can help to confirm that perennial streams do not dry, even 

during dry seasons. Visiting nonperennial streams when they are expected to be dry helps to 

confirm that they are not perennial and visiting intermittent streams when they are expected 

to be flowing can help confirm that they are not ephemeral. Not all regions have strong 

seasonal patterns in drying (see [40]), in which case assessing reaches multiple times per 

year can help capture seasonal variation in flow duration indicators. Planning for reach visits 

should also consider prolonged stressors such as drought and discrete disturbances such as 

floods and channel-modifying activities (e.g., channel armoring, bank stabilization, 

revegetation) that can temporarily obscure observations of indicators that normally help 

discriminate among flow duration classes. Recent channel modifications or large flood 

events can obscure geomorphic indicators such as soil texture and recent alluvial deposits. 

Some existing methods recommend not assessing reaches within 48–72 h of significant 

rainfall to ensure that indicators are not observed directly after disturbance [158,169,170]. 

Similarly, abnormally long periods without precipitation can obscure biological indicators 

such as the presence of hydrophytic plants and macroinvertebrate community structure. The 

New Mexico Hydrology protocol strongly recommends not assessing reaches during a 

drought period and provides a Standardized Precipitation Index threshold to indicate severe 

to extreme drought conditions [169]. We recommend assessing reaches under normal 
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climatic conditions and after an appropriate recovery period from major anthropogenic 

disturbances.

5.2.2. Collect GIS Indicator Data—Most GIS derived indicators of flow duration will 

reflect controls on flow duration at the catchment or larger spatial scales. Existing regional 

and national data layers, for example StreamCat [171] and national coverages within the 

database (e.g., National Land Cover Dataset, Parameter-elevation Regressions on 

Independent Slopes Model (PRISM)) can provide spatial data that reflect many of the 

geological, meteorological, and land cover controls on flow duration. Within homogenous 

ecoregions or hydrologic landscapes, catchment area can correlate with flow duration [36]. 

Catchment area thresholds between intermittent and perennial headwater streams were 

derived in the northeast U.S. [37,170], as well as between ephemeral and intermittent 

streams in western U.S. [45]. As with most landscape scale controls on flow duration, such 

as catchment area and precipitation, thresholds between flow duration classes are rarely 

universal within and among regions. For example, Olson and Brouillette [170] constrained 

catchment area thresholds between intermittent and perennial streams to < 12.9 km2, and 

Hedman and Osterkamp [45] excluded streams of the arid southwest from catchment area 

and flow duration relationships in the western U.S. GIS control metrics can be used 

throughout SDAM method development to inform reach selection as well as during model 

development to account for landscape-level differences in indicator effectiveness.

5.3. Data Analysis

5.3.1. Screening Analysis of Indicators—The purpose of screening analysis is to 

narrow the list of measured indicators to the candidate indicators for an SDAM. Screening 

indicators first involves reviewing data for outliers, independence, and other underlying 

statistical assumptions [172]. Many steps used for developing indices for biological 

condition assessment [173,174] are helpful for screening SDAM indicators (particularly 

those indicators derived from biological assemblage data). If data collection involved 

collecting raw continuous data (e.g., abundance or % cover of species assemblages), an 

initial step may be needed to calculate indicators (i.e., metric calculation) that summarize 

specific aspects or subsets of the raw field data (e.g., traits, taxonomic groups, diversity 

metrics) and/or make the data comparable across sampling units (e.g., relative abundance) if 

qualitative or semiquantitative sampling was used.

There are several simple screening tests that can identify which measured indicators have 

desirable properties, such as good discrimination ability or high precision. Range tests 

eliminate indicators with small ranges that are not useful in discriminating between flow 

duration classes. Reproducibility tests identify indicators whose values are consistently 

associated with flow duration classes. A common way to evaluate reproducibility is the ratio 

of the variance of indicator values from visits among all reaches (“signal”) to the variance of 

indicator values from visits to the same reach (“noise”). Higher signal:noise ratios indicate 

higher reproducibility of the indicator. Redundancy among indicators describes whether 

different indicators provide very similar information or have collinearity regarding flow 

duration. Redundancy can be evaluated using Pearson or rank correlation coefficients (e.g., 

strongly correlated r > |0.71|) or variance inflation factor [172]. In most situations, 
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redundancy or collinearity among candidate indicators will help to detect the effect of 

individual indicators in the SDAM model but not necessarily the overall model’s ability to 

predict SDAM classes. Responsiveness (i.e., the ability of an indicator to change along flow 

duration gradients) is arguably the most important property of SDAM indicators. Measures 

of responsiveness (e.g., t-statistics from comparing mean indicators in two classes of 

streams) can provide useful criteria for screening indicators, as they describe whether 

indicators in isolation can differentiate flow duration classes. Indicators should reflect an 

interpretable and predictable relationship with flow duration. This, however, does not 

necessarily signify a clear one-to-one or linear relationship between the indicator and flow 

duration. Indicators can still be judicious in combination with other measures to accurately 

predict flow duration class. Visualizing the indicator data using boxplots or dotplots are 

simple ways to evaluate responsiveness. Statistical methods that test for substantial 

differences among indicators scores, such as t-tests [174] and nonparametric Mann–Whitney 

U-tests [175], can help to identify the most responsive study indicators. If complete 

biological community data are available, indicator species analysis [176] or similarity 

percentage [177] approaches can identify taxa that are most responsible for assemblage 

difference at reaches that differ by flow duration. It is important to keep in mind that some 

indicators may be better at distinguishing between perennial and ephemeral reaches and that 

ability does not necessarily reflect how well an indicator may discriminate those reaches 

from intermittent reaches.

The next screening step is the evaluation of the remaining indicators to identify the 

candidate indicators. Discriminant analysis is one approach to compare the ability of 

different combinations of indicators to discriminate among flow duration classes and 

screening indicators [36]. Machine learning approaches such as random forest [178] and 

conditional inference trees [179] are nonparametric classifications that use ensemble 

learning (“bagging” or bootstrap aggregation) across many decision trees or Classification 

and Regression Trees (CARTs) [180] to identify the most important indicators in classifying 

flow duration. Datasets are randomly split into training and validation sets, and variable 

importance is measured using the Gini Index or mean decrease in classification error. Fritz et 

al. [181] used random forest to identify which indicators of an existing SDAM were most 

important in differentiating among streamflow duration classes in South Carolina. Random 

forest was applied as a screening step for indicators representing macroinvertebrate traits to 

predict hydrologic state (flowing vs. disconnected pools) at the time of sampling from seven 

Mediterranean streams [182]. One advantage of such nonparametric machine learning 

methods is that the only underlying assumption is that sampling is representative of 

conditions for which the SDAM could be subsequently used, making reach selection a 

particularly important step in SDAM development.

5.3.2. Assemble Interim SDAM—The assembly of interim SDAM models is the 

evaluation of combinations of candidate indicators that most accurately predict the flow 

duration class membership of stream reaches. There are three formats that have been 

produced for applying SDAM models: multimetric indices, linear equations, and decision 

trees. The format of SDAMs in large part reflects the data analysis approach used to arrive at 

the best combination of indicators. Multimetric indices are the most common format that has 
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been used in the U.S.; examples include the North Carolina Methodology for Identification 

of Intermittent and Perennial Streams and Their Origins, Version 4.11 [158] and several 

derivative indices such as the New Mexico Hydrology Protocol [169], Tennessee 

Hydrological Determination Guidance, Version 1.4 [183], and Fairfax County Perennial 

Stream Field Identification Protocol [165]. The assembly of some multimetric SDAM 

indices are modeled after early biotic integrity indices (IBIs) [184], which at the time were 

revolutionary advances in stream monitoring, but indicator selection was largely based on 

hypothesized relationships and expert judgement. Multimetric SDAM indices use ordinal 

scoring of physical and biological indicators based on the degree (e.g., strong, moderate, 

weak, and absent) to which each indicator is observable along the reach. The ordinal degrees 

to which indicators are observable are weighted numerically (e.g., 3, 2, 1, 0 or 1.5, 1, 0.5, 0) 

to reflect the potential utility of the indicator for discriminating among flow permanence 

classes. The numerical values are summed across the indicators, and this total index score is 

used to assign a flow permanence class based on thresholds between classes [185]. A 

multimetric index was developed based on the plant, mollusk, and carabid beetle indicator 

species to predict classes for the inundation duration per year and mean depth of 

groundwater during the growing season of a German grassed floodplain [119]. Each 

indicator species was assigned an indicator value as the abundance-weighted mean value for 

weeks of inundation per year and for growing season groundwater depth in meters from a 

subset of the samples. The multimetric index score was derived as the weighted mean 

indicator value of all recorded indicator species at a reach. Proponents of the multimetric 

approach consider redundancy among metrics to afford robustness to errors or variability 

that may affect a single metric. However, metric redundancy may compound error or inflate 

signals from indicators that are not singularly responsive to flow duration.

SDAMs that use linear equations have primarily derived from logistic regression for 

predicting the probability that a reach does (true probabilities > 0.5) or does not (false 

probabilities < 0.5) belong to a flow duration class. Logistic regression equations have been 

developed for Massachusetts [37,186], Vermont [170], and the Triassic Basins Ecoregion in 

North Carolina [187] using catchment-scale indicators (as opposed to field-based measures 

collected from reaches). The best equation was selected using a Hosmer and Lemeshow 

goodness-of-fit test, receiver-operating-characteristic curves, and regression diagnostics 

(e.g., Akaike’s Information Criterion, Kendall’s Tau-a, McFadden’s pseudo R2). The flow 

duration class was determined by calculating probabilities using the best logistic equation, 

and associated uncertainty could be described with upper and lower confidence limits of the 

predicted probabilities. The probability cutpoint is the optimized threshold for correctly 

assigning flow duration class to reaches. Logistic regression was used to predict the 

probability of plant species occurrence in relation to the inundation duration along the 

Fremont River in Utah [188]. Species probabilities were used as weights for a wetland 

prevalence index developed for predicting the inundation duration class (aquatic, 

transitional, and upland). Least-square regression equations using catchment-scale indicators 

have been used to differentiate flow duration classes in Idaho, where the annual minimum 

flow is a surrogate for flow duration [38]. Related to SDAMs, logistic models with 

catchment-scale indicators have also been used to predict the probability of stream reaches 

being wet or dry at different parts of the year [189]. Straka et al. [175] developed an SDAM 
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index (i.e., Biodrought index) that discriminated among three flow duration classes 

(perennial, near-perennial, and intermittent) in minimally disturbed streams of the Czech 

Republic. The index was assembled using discriminant analysis to identify the best linear 

combinations of macroinvertebrate indicators from spring and autumn samplings. The 

authors then adjusted the equation so that the resulting index score was centered (i.e., zero) 

on the flow duration gradient across study reaches such that strongly positive scores 

reflected a high probability of being perennial, whereas strongly negative scores reflected a 

high probability of being intermittent [175].

Decision trees are an increasingly common classification approach that optimizes prediction 

over understanding. Earlier we described CART and random forest as decision tree 

approaches for screening indicators. These same approaches can be used to assemble interim 

SDAMs using sets of candidate indicators. Decision trees are versatile in the data types that 

can be used; indicators are not evaluated in a linear manner and do not have the underlying 

assumptions of other approaches. One potential disadvantage of decision tree approaches is 

that they can be unstable, where small changes in the data used to inform the model can 

result in major structural changes in the resulting tree. The drawing structure from many 

decision trees, as performed using random forest and gradient boosting, helps to address this 

problem. Selecting representative study reaches for SDAM model assembly is important 

because CART, gradient-boosted trees, and random forest are data-driven (rather than 

process-driven) machine learning models which are particularly susceptible to poor 

performance when extrapolated. Fundamental to decision trees is the identification of 

optimal splits (thresholds) in indicators that discriminate between subsets of classes. This 

helps to simplify the eventual application of decision tree SDAMs for indicators that were 

originally more meticulously quantified as continuous measures into one of two categories

—above and below the split—for more rapid field application. The optimum decision tree, 

however, can use the same indicator more than once in the tree and have different splits. The 

Pacific Northwest method is an example of an SDAM that initially used random forest as an 

indicator screening tool then used CART to assemble the interim SDAM model from the set 

of candidate field indicators, and the tree has two different splits for channel slope [24]. Cid 

et al. [182] used a similar approach to develop a decision tree using macroinvertebrate 

indicators for predicting the aquatic state (flowing or dry) of Mediterranean stream reaches. 

Combinations of physical habitat and amphibian indicators were used in a CART model to 

predict flow duration classes for reaches in forested headwater streams [27]. By using a 

cross-validation process to remove the least important predictors and subsequently testing 

the prediction power of reduced models, parsimonious decision trees for predicting flow 

duration can be developed. Model fit is evaluated using regression diagnostics, such as 

percent of variation explained (pseudo-R2), observed vs. predicted class (false positives, 

false negatives), Cohen’s kappa, residual distribution, and root mean square error. Random 

forest-based SDAM models using control indicators to predict flow duration class in river 

networks have been developed for the Upper Colorado River basin [39], northern Rocky 

Mountains [84], France [190], and northern Spain [191]. Another related approach that has 

used machine learning to classify flow duration using control indicators has predicted 

continuous probabilities of year-round flow rather than discrete flow classes [35].
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5.3.3. Single Indicator Selection—An additional strategy that some existing SDAMs 

have incorporated is the use of single indicators. Single indicators are those indicators that 

provide strong discriminating information about a reach alone or in conjunction with the 

SDAM model prediction. For instance, the presence of fish (except Gambusia) and particular 

amphibians and reptiles that require sustained water presence are used in the Pacific 

Northwest SDAM as single indicators to indicate that reaches are at least intermittent. The 

absence of single indicators, however, is not indicative of flow duration class because they 

are commonly not found in intermittent and perennial reaches, but when they are present, 

they are accurate indicators of those flow classes [24]. Similarly, NCDWQ [158] also uses 

single biological indicators in conjunction with a multimetric SDAM, but their presence 

indicates that reaches are perennial. Single indicators may be designated early in the 

indicator selection process step when the existing literature, previous studies, or expert 

consensus strongly supports their utility for discriminating flow duration. Because of their 

limited distribution across study reaches, some indicators screened out during data 

exploration may be suitable to investigate as single indicators. Such indicators should be 

highly accurate in discriminating flow classes based on their presence or absence, but not 

necessarily both conditions. Single indicators enhance the rapidity of SDAMs by providing 

an accurate classification using only a single indicator, rather than collecting data for an 

SDAM model in its entirety to predict flow duration class.

5.4. Evaluation

5.4.1. Provide Evaluation and Feedback Opportunity—To ensure usability and 

applicability, we recommend making an interim SDAM publicly available [156] for a 

minimum of one year to allow the user community the opportunity to provide feedback on 

their experiences using the method across seasons. Evaluation and testing of an interim 

method, including identifying strengths and weaknesses to inform the production of a final 

method, could range from voluntary use to more formal efforts aimed at specific features of 

the model. For instance, a more formal approach includes intensification studies [192] in 

which a state, tribal, or other organization invests resources and leverages study designs to 

collect data at additional reaches in the region of interest to produce a finer-scale evaluation 

of an interim SDAM. The latter approach could be especially beneficial if an interim SDAM 

model was developed for a very large area and would benefit from a finer-scaled distribution 

of study reaches in hydrologic landscapes not adequately represented in the initial field 

study.

Additionally, we recommend that the complete, quality-assured dataset from which the 

interim SDAM model was assembled be made publicly available. This ensures transparency 

and provides access for parties interested in additional data analysis. This transparency is 

one of the fundamental open-science principles that advance the adoption of technical 

products into environmental management decisions, and builds credibility for tools by 

regulated parties, advocacy groups, and other stakeholders [193]. It also contributes to the 

growing collection of streamflow duration datasets that may inform larger scale analyses and 

other lines of inquiry to which the data are relevant, helping to advance the science of 

streamflow duration assessment to support management needs.
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Regardless of the evaluation approach, a mechanism facilitating user feedback on an interim 

SDAM model, such as agency-hosted outreach and training events, a dedicated e-mail 

address or website for receiving user comments, specified agency contact(s), or some 

combination should be implemented. This will encourage timely feedback and build trust 

and support for the process and product [156].

5.4.2. Produce Final SDAM—Following the period of evaluation and testing, including 

any intensification studies, by the local user community, direct feedback received should be 

considered and incorporated, where appropriate, to produce a final SDAM method. A 

description of how user feedback and analysis is reflected in the final method, and the value 

of those contributions in producing a user-friendly final SDAM applicable to the region for 

which it was developed, should be communicated [156] with the public release of the final 

SDAM.

5.5. Implementation

There are several actions that contribute to the efficient implementation of an SDAM and 

ensure that it is used effectively in informing streamflow classification determinations. To 

optimize outcomes, the described actions should be iterative, supporting the public release of 

both an interim and final SDAM.

5.5.1. Prepare User Guide and Training Materials—A user guide provides detailed 

instructions for collecting data regarding the described indicators of streamflow duration, 

completing necessary field assessment forms and evaluating the results to distinguish 

between described classes of flow duration. It helps to ensure consistency, repeatability, and 

efficiency in SDAM application by practitioners, and the documentation of results. This, in 

turn, facilitates output review and concurrence, and supports the defensibility of outputs 

used to inform decision-making.

While a user guide serves as a foundational training document, because training is vital to 

ensure that science is used in practice [194], we recommend developing a standard training 

module incorporating training materials and format. This facilitates providing a consistent 

level of training to end-users and has the added benefit of being easily transferable among 

trainers. For a field-based SDAM, both classroom instruction (or a distance learning 

equivalent) and field exercises should be included in the training format.

5.5.2. Deliver Training and Establish Practitioner Network—The delivery 

requirements of turning science into practice can be considerable [194]. Additionally, while 

training enables a wider number of end-users to fully appreciate the potential of a method 

[194], implementing agencies and organizations often lack the staff and resources to deliver 

direct training to the universe of potential end-users with the desired frequency to sustain a 

practitioner network.

The Train-The-Trainer model, in which a smaller number of people are trained to 

disseminate the knowledge as in-house experts for their organization, offers several 

advantages to mitigate these constraints. It is cost-effective, provides consistency in 

delivering the training curriculum, helps trainers become subject matter experts, and can be 
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more rapidly deployed than direct training by method developers alone [195]. For these 

reasons, we recommend using the Train-The-Trainer model to deliver training both 

internally and externally and to establish and sustain a practitioner network, which in turn 

supports accurate and consistent method application and implementation.

6. Needs to Improve SDAMs and Their Application

There remains a need for increased hydrologic data collection in intermittent and ephemeral 

streams, because most stream gauges are stationed in perennial streams. While direct 

hydrologic data are an important component of validating SDAMs and choosing appropriate 

indicators [24], such data are also critical for other research efforts such as mapping streams, 

modeling water budgets and water quality, and a variety of other applications [196,197]. 

Collecting additional continuous data through gauges, loggers, and time-lapse photography 

should be prioritized for high-confidence streamflow duration classifications that can be 

used in developing SDAMs. With the evolution of sensor technologies, we anticipate the 

expanded use of low-cost data loggers that can directly characterize flow duration [198,199]. 

Such devices reduce resource barriers that prevent the collection of widespread continuous 

hydrologic data, although data loggers still require routine visits to conduct maintenance, 

download data, and field-verify recorded data, and there is a lag time between data 

collection and availability.

Discrete sources of direct hydrologic data also present a strong opportunity for data 

collection expansion, including data that are obtained through local expertise, indigenous 

ecological knowledge, or citizen science efforts. Discrete data from these sources may be 

particularly useful for characterizing small streams which may be difficult to access, difficult 

to gauge, or obscured from remote images by forest or other cover. For example, citizen 

science efforts have been successful in some parts of the United States [200–202] and 

France [18], but such programs should be expanded to better characterize nonperennial 

streams. We also recognize the need to create standardized approaches for determining 

streamflow duration class when relying primarily on discrete hydrologic data.

In addition to expanding the spatial coverage of direct hydrologic data, future efforts should 

also focus on the development of long-term flow records from intermittent and ephemeral 

streams. Because streamflow duration classes represent the typical regime at a reach over 

many years, long-term datasets could be used to inform the relevant degree of interannual 

variability that should be considered when determining typical flow conditions, as well as 

the appropriate length of record needed to capture that variability. Without the availability of 

long-term streamflow data, the consideration of climatic data is often necessary to determine 

streamflow duration class. While there has been useful expansion of accessible weather data 

that can be geolocated (e.g., PRISM, Snow Telemetry (SNOTEL)), further research is still 

needed to identify the relevant temporal scales that should be considered when determining 

whether recent or short-term flow data are representative of typical flow conditions. We see 

this as an area of research where more interdisciplinary work could be performed between 

meteorologists and hydrologists to improve streamflow duration classification and inform 

SDAM development.
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Future work should also focus on SDAM indicator development, including identifying the 

appropriate scope of inference for such indicators across different geographic areas and 

other natural or human-driven gradients. A promising SDAM frontier is the development of 

statistical relationships between flow duration and indicators that can be gathered via remote 

sensing or geographic information system datasets (e.g., [35,191]). The strength of such 

relationships, as well as data availability, may vary widely across landscapes and should, 

therefore, be developed on a regional basis. Such information could reduce the need for 

resource-intensive field studies to classify flow duration. We also advocate for focused 

research on indicators and SDAMs across different stressor gradients, (e.g., old versus new 

urban or agricultural development) to confirm applicability and identify controls that could 

be used for indicator or model stratification.

Importantly, continued work in pursuit of developing functional assessment methods and 

biomonitoring programs that explicitly consider streamflow duration class will continue to 

inform our ecological understanding of nonperennial streams, and thus, the development of 

SDAMs [203–205]. Specifically, the collection of macroinvertebrates from biomonitoring in 

intermittent and ephemeral streams could be used to improve the identification of regionally-

specific indicator taxa for SDAM development. Additionally, increased monitoring efforts in 

nonperennial streams may also be helpful for identifying other response indicators, 

determining effective endpoints or thresholds for certain indicators, and improving our 

understanding of the temporal variability of these indicators in response to flow conditions.
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Figure 1. 
Conceptual figure illustrating differences among ephemeral (a), intermittent (b), and 

perennial (c) reaches during wetter and drier periods. Typical baseflow hydrologic 

conditions of the stream reach (box) are shown. The arrow thickness illustrates the relative 

magnitude of catchment inputs (rain/runoff, groundwater) and outputs (potential 

evapotranspiration (pet), groundwater) that influence hydrologic connection within a stream 

reach.
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Figure 2. 
Conceptual figure illustrating indicators of streamflow duration. Response indicators are 

“filtered” along the gradient of streamflow duration, such that the strength of aquatic signal 

(black arrows; e.g., stream biota, fluvial geomorphology) declines and terrestrial signal 

(white arrows; e.g., terrestrial biota, soil development) increases with decreasing flow 

duration. Control indicators (gray arrow) are factors that govern streamflow duration from 

reach to landscape scales (e.g., meteorology, geology, land cover).
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Figure 3. 
Key components of streamflow duration assessment methods (SDAMs) and their inter-

relationships. The arrows moving from indicators to hydrologic data represent indicators that 

control stream flow duration, whereas the arrow moving from hydrologic data to indicators 

represent indicators that respond to stream flow duration. Applicability is the selection of 

study reaches reflecting the intended range of streamflow duration and hydrologic 

conditions for the developed SDAM. Stratification or regionalization captures variability to 

improve certainty in the SDAM classification.
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Figure 4. 
Flow chart showing operational framework for SDAM development. Small black arrows 

indicate stepwise actions within a process step. The greyarrows denote that implementation 

actions are iterative, ideally supporting public release of both an interim and final SDAM.
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Table 1.

Examples of response and control indicators of streamflow duration evaluated over spatial and temporal 

scales. - is not applicable.

Indicator Response/Control Spatial Scale Temporal Scale References

Bryophytes Response Reach Multi-annual [20]

Filamentous algal biomass Response Subreach to reach Subannual to annual [21]

Periphyton pigment concentration Response Subreach to reach Subannual to annual [22]

Lichens Response Subreach Multi-annual [23]

Macroinvertebrates presence Response Reach Subannual to multi-annual [24]

Macroinvertebrate indices Response Reach Subannual to multi-annual [25]

Riparian vegetation Response/control Reach Multi-annual [24,26]

Amphibians Response Reach Annual to multi-annual [27]

Fish Response Reach to catchment Subannual to multi-annual [28,29]

Sediment sorting Response Reach Subannual to multiannual [30]

Leaf litter Response Reach Subannual to annual [31,32]

Wood Response/control Reach, Catchment Multi-annual [33,34]

Channel slope Control Reach Decadal [35]

Entrenchment ratio Control Reach Multi-annual [36]

Catchment area Control Catchment - [37,38]

Potential evapotranspiration Control Catchment Annual [39]

Precipitation Control Catchment Daily, annual, decadal [35,40]

Precipitation- vegetation feedback Control Catchment Annual [41]

Percent sand and gravel deposits Control Catchment - [37]

Percent grassland Control Catchment - [39]

Percent forest Control Catchment - [35]
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Table 2.

Examples of hydrologic metrics used for flow duration classifications.

Geography Metric Flow Classes Ref.

USA Percent of year with flow Intermittent: 25 to <100
Perennial: 100 [44]

Western USA Percent of year with flow
Ephemeral: <10

Intermittent: 10 to 80
Perennial: >80

[45]

Forested USA Percent of year with flow Intermittent and ephemeral: <90
Perennial: 90 to 100 [46]

Great Plains USA Percent of year with flow
Ephemeral or interrupted: <20

Intermittent: 20 to 80
Perennial: >80

[47]

Huachuca Mountains, 
Arizona, USA Percent of year with flow

Ephemeral: 0.01 to 5
Intermittent: 1.5 to 70

Perennial: 100
[3]

USA Percent of year with flow

Ephemeral: <9
Intermittent: 9 to 99.726

1 zero flow per year: 99.726 to <100
Perennial: 100

[48]

SE Queensland, 
Australia Percent of year with flow

Strongly intermittent: <30
Weakly intermittent: 30 to 90

Perennial: >90
[49]

Mediterranean Europe

Mean number of months with 
flow per year

Episodic-ephemeral: 0 to 7.2
Intermittent-dry: 7.2 to 10.2
Intermittent-pool: 10.2 to 12

Permanent: 10.8 to 12
[10]

Probability of dry in 6 month dry 
season

Episodic-ephemeral: 0.25 to 1
Intermittent-dry: 0 to 1
Intermittent pool: 0 to 1

Permanent: 0 to 1

USA Percent of year contains surface 
water

Intermittent: <100 *
Perennial: 100

[50]

Burkina Faso
Mean number of months with 

zero flow in normal and drought 
years

Strongly ephemeral: 9
Mid ephemeral: 7

Permanent w/ high variability: 12 normal, <12 drought
Permanent w/ low variability: 12 but erratic in drought

Permanent: 12

[41]

Upper Colorado basin, 
USA

Mean number of zero flow days 
yr−1

Strongly intermittent: >20
Weakly intermittent: 19 to 1

Perennial: 0
[39]

Percent of months with zero flow
Strongly intermittent: >5

Weakly intermittent: 5 to 0
Perennial: 0

Segura basin, Spain Percent of months with zero flow
Intermittent and ephemeral: 50 to 20

Perennial seasonal: 20 to 0
Perennial stable: 0

[51]

Piedmont region, North 
Carolina, USA Months of continuous flow Intermittent: 3 to 12

Perennial: 12 [52]

Idaho, USA 7Q2
Intermittent: <28.32 L/s
Perennial: >28.32 L/s [38]

Okanagan basin, British 
Columbia, Canada Minimum daily discharge

Intermittent: 0 L/s
Almost intermittent: <5 to 0 L/s

Perennial: >5 L/s
[53]

France Minimum daily discharge over 5 
consecutive days

Intermittent: <1 L/s
Perennial: ≥1 L/s [54]
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Geography Metric Flow Classes Ref.

Mediterranean Europe

Mean percent of months with 
flow

Episodic: 0 to 20
Occasional: 0 to 40
Alternate: 0 to 40

Alternate-stagnant: 0 to 40
Stagnant: 0 to 40

Alternate-fluent: >40 to 90
Fluent-stagnant: >40 to 90
Quasi-perennial: >90 to 99

Perennial: >99

[55]

Mean percent of months with 
isolated pools

Episodic: 80 to 100
Occasional: 60 to 100
Alternate: 60 to 100

Alternate-stagnant: 60 to 90
Stagnant: 50 to 100

Alternate-fluent: 0 to <50
Fluent-stagnant: 0 to <60
Quasi-perennial: 0 to 10

Perennial: 0 to <1

Mean percent of months dry
Episodic: 80 to 100Occasional: 60 to <80Alternate: 20 to <60Alternate-
stagnant: 10 to <60Stagnant: 0 to 10Alternate-fluent: 10 to <60Fluent-

stagnant: 0 to 10Quasi-perennial: 0 to 10Perennial: 0 to <1

*
But more than just after rainstorms and at snowmelt.
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