
The impact of long-term non-pharmaceutical interventions
on COVID-19 epidemic dynamics and control

Marissa L. Childs1*, Morgan P. Kain2,3*, Devin Kirk2,4, Mallory Harris2,
Lisa Couper2, Nicole Nova2, Isabel Delwel2, Jacob Ritchie5, Erin A. Mordecai2

May 3, 2020

*Denotes equal authorship. Corresponding authors: marissac@stanford.edu, morganpkain@gmail.com
1Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA,
94305, USA
2Department of Biology, Stanford University, Stanford, CA, 94305, USA
3Natural Capital Project, Woods Institute for the Environment, Stanford University, Stanford, CA 94305,
USA
4Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
5Department of Computer Science, Stanford University, Stanford, CA, 94305, USA

Abstract

Non-pharmaceutical interventions to combat COVID-19 transmission have worked to slow the spread of
the epidemic but can have high socio-economic costs. It is critical we understand the efficacy of non-
pharmaceutical interventions to choose a safe exit strategy. Many current models are not suitable for as-
sessing exit strategies because they do not account for epidemic resurgence when social distancing ends
prematurely (e.g., statistical curve fits) nor permit scenario exploration in specific locations.
We developed an SEIR-type mechanistic epidemiological model of COVID-19 dynamics to explore tempo-
rally variable non-pharmaceutical interventions. We provide an interactive tool and code to estimate the
transmission parameter, β, and the effective reproduction number, RE . We fit the model to Santa Clara
County, California, where an early epidemic start date and early shelter-in-place orders could provide a
model for other regions.
As of April 22, 2020, we estimate an RE of 0.982 (95% CI: 0.849 - 1.107) in Santa Clara County. After June
1 (the end-date for Santa Clara County shelter-in-place as of April 27), we estimate a shift to partial social
distancing, combined with rigorous testing and isolation of symptomatic individuals, is a viable alternative
to indefinitely maintaining shelter-in-place. We also estimate that if Santa Clara County had waited one
week longer before issuing shelter-in-place orders, 95 additional people would have died by April 22 (95%
CI: 7 - 283).
Given early life-saving shelter-in-place orders in Santa Clara County, longer-term moderate social distanc-
ing and testing and isolation of symptomatic individuals have the potential to contain the size and toll of
the COVID-19 pandemic in Santa Clara County, and may be effective in other locations.
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Introduction1

COVID-19 is rapidly expanding across the globe and has the potential to overwhelm healthcare systems,2

killing hundreds of thousands to millions of people worldwide in the process1. Without an effective vaccine3

or specific drug therapy, non-pharmaceutical interventions such as physical distancing, diagnostic and4

serological testing, and contact-tracing are the best available tools to slow the spread of the pandemic and to5

mitigate its health toll. Governments and other decision-makers have used models to predict the spread of6

COVID-19 and show the benefits of social distancing for “flattening the curve,” i.e., slowing the epidemic—7

reducing and delaying the peak—to prevent medical systems from becoming overwhelmed.8

Many decision-makers internationally, nationally, and locally, have used models that are statistical9

curve-fits, such as the IHME model2, to the observed numbers of COVID-19 cases, hospitalizations, or10

deaths, without capturing the underlying epidemiological dynamics of transmission. While statistical mod-11

els can be successful at describing near-term epidemic trajectories, they may fail to capture the high degree12

of uncertainty in the long-term epidemic process, and therefore should not be used to project far into the13

future3. More worryingly, these models cannot anticipate impacts of major shifts in policy, such as ending14

shelter-in-place orders and reopening businesses. Thus, policy informed by statistical curve-fitting models15

may fail to anticipate the potential for a resurgence of COVID-19 epidemics, and therefore will not be able16

to adequately inform exit strategies from shelter-in-place and other social distancing interventions.17

Epidemiological models that directly model the transmission process almost universally predict that18

lifting interventions too soon will result in a devastating resurgence in the epidemic1, a phenomenon sup-19

ported by historical evidence, including data from the 1918 flu pandemic4. Balancing the economic and20

social costs of shelter-in-place orders with those of resurgence events, all of which are overwhelmingly21

borne by the most vulnerable, make identifying safe and effective exit strategies an urgent priority. How-22

ever, many currently available epidemiological models are not set up for other scientists or policymakers23

to conveniently explore a variety of exit strategies for specific locations to which the model is also fit.24

We developed an epidemiological compartment model of COVID-19 dynamics that uses a time-varying25

transmission parameter, β, to investigate the impact of non-pharmaceutical interventions on epidemic dy-26

namics and control. The model incorporates transmission from both asymptomatic and presymptomatic27

infectious people. By fitting the model to local epidemic dynamics (using daily reported COVID-19 deaths),28

we can estimate key epidemiological metrics and evaluate the effectiveness of different long-term interven-29

tion strategies. Specifically, we explore three classes of strategies: 1) long-term shelter-in-place orders,30

which we consider the most drastic approach; 2) widespread testing and isolation of symptomatic people31

paired with less intensive social distancing in the general population; 3) an adaptive triggering approach32
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that ramps up or turns down levels of social distancing when hospitalizations reach critical thresholds. We33

are particularly interested in identifying intervention strategies that do not require long-term sheltering-in-34

place while still maintaining epidemic control until a vaccine becomes widely available.35

The goals of the model are to capture the transmission process accurately enough to understand qual-36

itative impacts of intervention strategies without requiring extensive data on contact patterns, demog-37

raphy, movement, and other population features. We therefore model a homogeneous population with38

population-average parameters that reflect the demography of the population of interest. As a case study,39

we focus on Santa Clara County, California, where the first COVID-19 death in the U.S. was retroactively re-40

ported from February 6, 2020, and where the first-in-the-nation shelter-in-place order took effect early in the41

epidemic, on March 17, 2020. We estimate transmission rate for Santa Clara County under pre-intervention42

and shelter-in-place conditions, calculate reproduction numbers before and during interventions, explore43

the impact of long-term intervention strategies, and investigate counterfactuals to understand the impact of44

early intervention decisions. This case study illustrates how the model could be tailored to other locations45

to understand the impact of long-term interventions in COVID-19 epidemic dynamics.46

Methods47

Model Structure48

We developed a compartmental model using an SEIR (Susceptible, Exposed, Infectious, Recovered) frame-49

work. We divided the population into states with respect to COVID-19: susceptible (S); exposed but not yet50

infectious (E); infectious and presymptomatic (IP), asymptomatic (IA), mildly symptomatic (IM), or severely51

symptomatic (IS); hospitalized cases that will recover (HR) or die (HD); recovered and immune (R); and52

dead (D), as shown in Equation sets S1 - S2; Figure S1. Parameters are defined in Tables 1 and 2.53

By including asymptomatic and presymptomatic individuals, we are able to track ”silent spreaders” of54

the disease, both of which have been shown to contribute to COVID-19 transmission5. Tracking hospital-55

izations and deaths allows us to compare our simulations to data sources that should be more reliable than56

confirmed cases, particularly in the absence of widespread rapid testing and case detection. Mildly symp-57

tomatic cases are defined as those people that show symptoms but do not require hospitalization, while we58

assume that all severely symptomatic cases will eventually require hospitalization. We also assume that no59

onward transmission occurs from hospitalized individuals.60

The transmission parameter, β, describes the average per capita rate of contact between susceptible and61

infectious people multiplied by the per-contact transmission probability; we allow this parameter to vary62
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over time to represent different social distancing strategies (i.e., stronger social distancing decreases β by63

decreasing the per capita rate of infectious contacts).64

Fitting the Model65

We estimated both β0, which describes the initial value of β in the absence of any interventions, and σ,66

which describes the proportional reduction in β0 under shelter-in-place, where β = β0 · σ. To estimate β067

and σ, we assumed point estimates for some parameters (Table 1) and drew 200 sobol sequences across a68

range of plausible values for others (Table 2) to form 200 plausible parameter sets.69

Table 1: Parameter point estimates.

Parameter Value Description Citation
CP, CM, CS 1 Relative infectiousness of presymptomatic, mild symp-

tomatic, and severe symptomatic
Assumed

γ 3.5 days Preinfectious period
6,7

λP 1.5 days Presymptomatic duration
8

λA 7 days Infectious period for asymptomatic infections
9

λS 5.5 days Time from symptom onset to hospitalizations (severe
cases) 10,11

λM 5.5 days Time from symptom onset to recovery (mild cases)
9

ρR 13.3 days Time from hospitalization to recovery
12

ρD 15 days Time from hospitalization to death
13

N 1.398x106 Population
14
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Table 2: Parameter range estimates, some of which are specific to Santa Clara County, California.

Parameter Lower Bound Upper Bound Description Citation
15-Jan 29-Jan Start date of the epidemic

15

01-Mar 10-Mar Work from home start date
16

0.7 0.9 Work from home proportion of con-
tacts remaining 16

E0 3 6 Number of initial infections that began
the epidemic 15

CA 0.4 0.8 Relative infectiousness of asymp-
tomatic infections 1,17

α 0.3 0.5 Proportion of infections that are
asymptomatic 1,18,19

δ 0.1 0.3 Fatality rate among hospitalizations
1,20

1− µ 0.025 0.075 Proportion of symptomatic infections
that require hospitalization 1,20

Using the pomp package21 (function mif2) in the R programming language22, we fit both parameters to70

daily deaths for each of the 200 parameter sets using six particle filtering runs with variation in starting71

values; each run used 100 iterations and 3000 particles.72

We use COVID-19 death data from The New York Times, based on reports from state and local health73

agencies23. Daily deaths are calculated from differences in cumulative death reports. Using these data,74

which are available for all counties in the US, our model can be used to fit β0 and σ in any county. Location-75

specific variation in these parameters results from differences in social structures, population immunity,76

population density, and other factors that determine the number of potentially infectious contacts and the77

per-contact transmission probability. For a given location, our model assumes that the population is homo-78

geneous with a single average value for each parameter.79

We calculated R0 as estimated β0 times the duration of an average infection (as defined by our model80

structure) for each of the 200 parameter sets (using all six estimates from the mif2 iterations). We esti-81

mated RE on April 22 using the estimated β0, σ, and the median proportion of the population remaining82

susceptible across the 300 simulated epidemics.83

Simulating epidemics under interventions84

Our modeling framework allows for different types, intensities, and durations of interventions, and thereby85

illustrates how these interventions impact dynamics and the resulting number of COVID-19 cases and86

fatalities through time. We consider three possible interventions that can be implemented at different times87

during the simulation:88
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1. Social distancing for a set duration applied as a scaling of the transmission rate for all individuals89

2. Isolation of symptomatic individuals applied as a scaling of the transmission rate for only symp-90

tomatic individuals IS and IM; we assume isolation paired with partially relaxed social distancing91

3. Adaptive triggering applied as a tightening or relaxing of social distancing, triggered by hospitaliza-92

tions crossing a defined threshold93

Other scenarios that can be modeled as a time-varying reduction in β0 can be explored using the code94

available on GitHub24.95

To visualize the dynamics of a single intervention scenario, we simulate 300 epidemics from the single96

best fit across the 200 parameter sets as defined by negative log likelihood. To quantify the effectiveness97

of each intervention scenario, we estimate summary statistics from the simulated epidemics, such as total98

deaths, for a range of parameters for each intervention (e.g., the effectiveness of infected isolation). For each99

scenario, we simulate 300 epidemics across each of the 200 parameter sets, and calculate the 95% confidence100

interval (CI) for the summary statistic across all simulated epidemics. Here we define a 95% CI as an interval101

that captures the central 95% range of outcomes seen across all parameter sets and stochastic simulations.102

These are simultaneously wide because of large numbers of stochastic simulations, but narrow because we103

ignore uncertainty in all parameters listed in Table 1, and thus should be interpreted with caution.104

Results105

Local epidemic dynamics and control: Santa Clara County, California106

We fit the model to Santa Clara County, California where work-from-home, social distancing, and shelter-107

in-place orders occurred early in the epidemic. We estimated that in the absence of controls, R0 was 2.88108

(95% CI: 2·47 - 3·45) in Santa Clara County, and that under our estimated efficacy of current shelter-in-place109

orders, RE in Santa Clara as of April 22 is 0·98 (95% CI: 0·85 - 1·11) (Figure 1). We estimated R0 and RE110

over time by holding out recent data to understand how our ability to estimate RE evolved as the epidemic111

unfolded (Figure S2). From stochastic simulations with the fitted parameter sets, we further estimated112

the percent of Santa Clara County population that would have been in the recovered class on April 22113

(Figure S3).114
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Figure 1: Distribution of R0 (red) and RE (gold) estimates in Santa Clara County, California as of April 22,
2020.

If shelter in place is simply lifted on June 1, 2020, we estimate that a second peak is inevitable in the ab-115

sence of any non-pharmaceutical interventions, as illustrated here for one parameter set (Figure 2). Across116

all 200 parameter sets and stochastic epidemic simulations, we estimate a median of 5,478 deaths (95% CI:117

1,767 - 11,632) and a peak number of concurrent infections of 171,667 (95% CI: 124,307 - 211,640) occurring118

on August 12 (95% CI: July 23 - September 9).119
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Figure 2: Maintaining shelter-in-place (gold) or test-and-isolate (blue) strategies over long periods are nec-
essary to prevent a major epidemic resurgence (red) following the end of the initial shelter-in-place order
on June 1 (dashed vertical line) in Santa Clara County. Lines show stochastic simulations of cumulative
deaths (top, black points: observed data) and concurrent infections (bottom) for a single parameter set.
Dates range from February 2020 (left) to July 2021 (right).

Maintaining shelter-in-place until June 1, followed by less stringent social distancing (50% of baseline120

contacts), combined with strong symptomatic case isolation (removing an additional 80% and 70% of in-121

vective contacts from severe and mild infections respectively), allows for higher background contact rates122

(e.g., more businesses reopening). For the parameter set shown, this scenario leads to an increase in mor-123

tality compared to maintaining shelter-in-place (Figure 2). Across a range of efficiencies of symptomatic124

case isolation in Santa Clara County, we find an overlap in CIs for deaths at all parameter sets but higher125

medians at the weakest levels of social distancing in the general population (Figure 3). For reference, the126

median number of estimated deaths under maintained shelter-in-place is shown by the horizontal black127

line, with 80% and 95% CI in dashed and dotted lines, respectively. These confidence intervals span a wide128

range because our estimated RE values range from 0·85 - 1·18, which leads to some epidemics growing and129
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some declining through time.130
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Figure 3: Similar total COVID-19 deaths are expected under various test-and-isolate strategies which in-
clude the effectiveness of symptomatic isolation (point colors), and social distancing effectiveness in the
general population (x-axis). Due to both parameter uncertainty (here 100 randomly chosen from all 200 for
computational reasons) and stochastic simulations, 95% CI are wide (point: median, error bars: 95% CI).
Here, CI summarize cumulative deaths through June 2021. Epidemic toll begins to diverge when social
distancing in the general public is weak (40% effectiveness) and symptomatic isolation is also weak (70%
effectiveness). Lines represent the median (solid), 80% (dashed), and 95% (dotted) confidence intervals for
maintaining current shelter-in-place orders indefinitely.

If widespread testing is not available before the end of shelter-in-place, a hypothetical alternative strat-131

egy is adaptive triggering, in which social distancing orders are intensified and relaxed as hospitalizations132

exceed and fall below critical thresholds. However, because the estimated RE for Santa Clara County is133

approximately one (and CI spans one), a strategy that periodically reduces the strength of social distancing134

may lead to an overall increase in cases that is not reversed when the current shelter-in-place is reinstated.135

In the advent of more stringent shelter-in-place (e.g., reducing infectious contacts to 0·20 of baseline, which136

is realistic in other settings), an adaptive triggering strategy that alternates between a social distancing137

strength of 0·20 and 0·50 could be effective in keeping hospitalizations low (Figure S4). This method keeps138

the epidemic within the capacity of the healthcare system, but results in prolonged cycles of epidemic resur-139

gence and control that continue until herd immunity is reached through recovery of infected individuals or140
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vaccination.141

Counterfactuals142

Santa Clara County’s early shelter-in-place order (enacted on March 17, 2020) helped to keep the death toll143

low; we estimate that waiting even one additional week would have led to an additional 95 deaths (95% CI:144

7 - 283) by April 22, 2020. (Figure 4, orange trajectories and histogram). Alternatively, the implementation145

of test-and-isolate starting on March 17, 2020 in addition to the shelter-in-place (assuming an additional146

proportional reduction in contacts for mildly symptomatic and severely symptomatic infections by 0·3 and147

0·2 respectively), would have helped to save an additional 24 lives (95% CI: 81 - [-1] (one extra death), green148

trajectories and histogram) (Figure 4).149
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Figure 4: Early shelter-in-place in Santa Clara County saved lives, but early testing and isolation of symp-
tomatic infections could have saved more. Cumulative deaths observed (top left panel; points) and daily
cases (bottom left panel) under stochastic simulations using a single parameter set (lines; medians are in
darker lines) under reality (gray), delaying shelter-in-place by one week (gold), or starting test-and-isolate
on March 17, 2020 (green). We assume counterfactuals diverge on March 17, 2020 (vertical dashed line), the
beginning of Santa Clara County shelter-in-place. Histograms (right) show the differences in the number
of deaths for each stochastic model realization under the counterfactual scenarios compared to reality for
all parameter sets.
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Discussion150

Long-term interventions will be necessary to control the COVID-19 pandemic until more effective therapeu-151

tic drugs and vaccines are widely available: possibly 12-18 months from now, but potentially by the winter152

of 2020-2021. We found that social distancing orders such as work-from-home and shelter-in-place are ef-153

fective at flattening the curve. However, lifting such measures even after periods of three to ten months or154

longer—depending on the strength of the intervention and the local transmission setting—risks allowing a155

major resurgence in the epidemic, undoing hard-won gains from social distancing measures. As an alterna-156

tive to blanket shelter-in-place orders over long periods of time, we explored the efficacy of test-and-isolate157

and adaptive triggering methods for epidemic control. We found that test-and-isolate measures paired with158

lighter social distancing, especially when combined with early shelter-in-place orders, can be effective at159

keeping the epidemic under control while presumably alleviating some of the social and economic costs160

of shelter-in-place. Given the social and economic challenges of maintaining shelter-in-place for months161

at a time, test-and-isolate interventions are a potential alternative until better therapeutics become widely162

available. Improved testing coverage would also have the added benefit of: 1) improving implementa-163

tion of contact tracing to identify and quarantine contacts before they potentially become asymptomatic164

and presymptomatic spreaders, and 2) helping to fit models and other public health surveillance tools to165

COVID-19 cases, rather than deaths.166

Recent evidence suggests that a large proportion of infected people may be asymptomatic or presymp-167

tomatic25,26, and that a larger proportion of the population than previously understood may have already168

been infected (Stanford seroprevalence study:27; Harvard seroprevalence study:28). Our model currently169

estimates that 1.18% (95% CI: 0·01% - 4·65%) of the Santa Clara County population has already recovered170

from infection, as of April 22, 2020. A better general understanding of the total magnitude of the epidemic171

size, based on improved diagnostic and serological testing, will help to tailor estimates of epidemic trajec-172

tories under different intervention scenarios, and to improve estimates of epidemiological parameters like173

R0.174

The model we present is deliberately simplified in several respects so that we are able to use it in differ-175

ent settings, explore a range of intervention scenarios, and to fit using death data. For example, the model176

ignores heterogeneity in susceptibility, contact rates, and disease outcomes arising from population demo-177

graphic structure, co-morbidities, mobility, and other factors. Additionally, we did not take into account178

hospital capacity, meaning that lifting interventions could potentially lead to more deaths than predicted179

here if capacity is overwhelmed and mortality rates increase. However, with this simple model and ac-180

companying open-access code24 and interactive tool (covid-measures.stanford.edu) as a baseline181
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for exploring qualitative long-term intervention scenarios, we expect that researchers and public health ex-182

perts could adapt the model based on further data availability or locally-specific goals, either by adding183

state variables or adjusting intervention scenarios and parameter values.184

Despite its simplicity, the model captures the early dynamics of COVID-19 in Santa Clara County well185

(Figure 2), and provides estimates of R0 that broadly match other estimates in the literature29. The model186

clearly shows that early action in California, including work-from-home and shelter-in-place orders, saved187

lives. The qualitative effect of early social distancing on epidemic dynamics is robust to a wide range188

of parameter uncertainty; we estimated that waiting even one additional week to implement shelter-in-189

place would have led to an additional 7–283 deaths in the county by April 22, 2020. With the benefit of190

early action, some increase in social contact in the general public may be possible by June 1, given that191

the capacity for testing and isolation of symptomatic people continues to increase. Though we find that192

adaptive triggering is unlikely to work based on current conditions in Santa Clara County, it may be a193

viable option in locations such as Italy or India where legally-enforced lockdown has led to more stringent194

reductions in social contacts30. Expansion of diagnostic testing capacity is a top priority for long-term195

COVID-19 mitigation efforts because of its multifaceted benefits for concentrating social distancing efforts196

on those most at risk of transmitting COVID-19, for determining the true size and trajectory of epidemic197

dynamics, and for providing more certainty to individuals experiencing COVID-19 symptoms.198

During an unfolding pandemic, modeling is an essential tool for tactical decision-making, strategic199

planning, and communication of qualitative scenarios to the public. The number of COVID-19 models has200

grown apace with the pandemic itself, and many of these models have overlapping goals and approaches;201

organizations such as the MIDAS Network (Models of Infectious Disease Agent Study) provide an im-202

portant service in coordinating data-gathering and modeling efforts and in providing publicly available203

resources for the modeling community29. The rapid adoption of open-data policies from across the spec-204

trum of academic, government, business, and media organizations has been a major boon to research and205

pandemic control efforts. At the same time, keeping up with the growing COVID-19 modeling literature is206

nearly impossible, and the differences among models remain confusing to the public amidst a fragmented207

pandemic response across US states, counties, and the federal government. While statistical curve-fitting208

models may be valuable for modeling short-term trajectories in cases, hospitalizations, deaths, and health-209

care capacities2,3, epidemiological models that capture the underlying transmission dynamics are critical for210

evaluating the impact of major changes in policy over the long term. Epidemiological compartment mod-211

els vary widely in how they subdivide populations and in the assumptions that govern movement among212

compartments. Individual-based, network, and meta-population models expand on compartmental mod-213

els by capturing elements of individual and population heterogeneity that influence epidemic dynamics,214
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but require much more extensive data for parameterization e.g., see1. Along the modeling continuum from215

statistical curve-fitting to compartmental models to individual-based, network, and meta-population mod-216

els, compartmental models such as the one presented here are most useful for exploring long-term impacts217

of intervention scenarios across different settings where highly detailed data are not available.218

We aimed to provide an open-source modeling tool that is detailed enough to capture key elements219

of transmission, including asymptomatic and presymptomatic transmission and a time-varying transmis-220

sion coefficient, while remaining simple enough to be parameterized using widely available information221

and data. As demonstrated here, this relatively simple model captures key epidemiological dynamics and222

parameters in Santa Clara County, California, and suggests important qualitative differences among in-223

tervention scenarios. In settings where more detailed modeling tools and data are not readily available,224

this modeling approach can provide some guidance about qualitative impacts of different scenarios, and225

can be easily tailored to fit local epidemic dynamics. Most importantly, this model suggests that early in-226

terventions have already saved lives, and that exit strategies from shelter-in-place orders should be made227

thoughtfully and based on rigorous epidemiological models.228
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Data and Code Availability229

Data used in this study are available at https://github.com/nytimes/covid-19-data. Code used230

to produce the results in this study are available at231

https://github.com/morgankain/COVID_interventions.232
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Supplement: Equations and model implementation

We assume an underlying, unobserved process model of SARS-CoV-2 transmission described by Equation

set S1 and shown in Figure S1. The compartments in the model are susceptible (S); exposed but not infec-

tious (E); infectious and asymptomatic (IA), presymptomatic (IP ), mildly symptomatic (IM ), and severely

symptomatic (IS); hospitalized cases that will recover (HR) or die (HD); and recovered (R). We use an

Euler approximation of the continuous time process with a time step of 4 hours. Transitions between com-

partments are simulated as binomial (B) or multinomial (M) processes; Equation set S2 describes in detail

the stochastic rates used to approximate the transition terms in Equation set S1. Parameters are defined in

Tables 1 and 2. Finally, we assume that the observed deaths are a Poisson random variable with mean of

total new deaths accumulated over the observation period (i.e. one day for this analysis).

dS

dt
= −dSE

dE

dt
= dSE − dEIA − dEIP

dIa
dt

= dEIA − dIAR

dIp
dt

= dEIP − dIP IS − dIP IM
dIm
dt

= dIP IM − dIMR

dIs
dt

= dIP IS − dISHR − dISHD

dHR

dt
= dISHR − dHRR

dHD

dt
= dISHD − dHDD

dR

dt
= dHRR

dD

dt
= dHDD

(S1)
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dSE ∼ B

(
S, 1− exp

(
−β0

CAIA + CP IP + CMIM + CSIS
N

dt

))

dEE

dEIA

dEIP

 ∼M

E,


exp(−γdt)

α(1− exp(−γdt))

(1− α)(1− exp(−γdt))




dIAR ∼ B(IA, 1− exp(−λAdt))
dIP IP

dIP IM

dIP IS

 ∼M

IP ,


exp(−λP dt)

µ(1− exp(−λP dt))

(1− µ)(1− exp(−λP dt))




dIMR ∼ B(IM , 1− exp(−λMdt))
dISIS

dISHR

dISHD

 = M

IS ,


exp(−λSdt)

δ(1− exp(−λSdt))

(1− δ)(1− exp(−λDdt))




dHRR ∼ B(HR, 1− exp(−ρRdt))

dHDD ∼ B(HD, 1− exp(−ρDdt))

(S2)
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Supplement: Figures
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Figure S1: Epidemiological model box diagram
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Figure S2: Estimated R0 and RE from fits to truncated time series. A date corresponding to a pair of violin plots shows
the most recent data for which data was used to fit the model. The low and confident RE estimate on April 8 was due
in part to 5 consecutive days, ending on April 8, with a total of 3 deaths.
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Figure S3: Distribution of estimated percent of Santa Clara County in the recovered class from 300 simulations of 200
parameter sets.
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Figure S4: Adaptive triggering that alternates between a social distancing strength of 20% of background contacts
and 50% of background contacts when the number of people hospitalized reaches 15 people or falls to 5 people,
respectively. This strategy results in a moderately constant number hospitalized and leads to a slowly increasing
cumulative death toll over time.

24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2020. .https://doi.org/10.1101/2020.05.03.20089078doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.03.20089078
http://creativecommons.org/licenses/by/4.0/

