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The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is a

heterotrimeric AB2 toxin capable of inducing lymphocytes, and other cell types, to

undergo cell cycle arrest and apoptosis. Exposure to Cdt results in binding to the

cell surface followed by internalization and translocation of the active subunit, CdtB,

to intracellular compartments. These events are dependent upon toxin binding to

cholesterol in the context of lipid rich membrane microdomains often referred to as

lipid rafts. We now demonstrate that, in addition to binding to the plasma membrane

of lymphocytes, another early and critical event initiated by Cdt is the translocation of the

host cell protein, cellugyrin (synaptogyrin-2) to the same cholesterol-rich microdomains.

Furthermore, we demonstrate that cellugyrin is an intracellular binding partner for CdtB as

demonstrated by immunoprecipitation. Using CRISPR/cas9 gene editing we established

a Jurkat cell line deficient in cellugyrin expression (JurkatCg−); these cells were capable

of binding Cdt, but unable to internalize CdtB. Furthermore, JurkatCg− cells were not

susceptible to Cdt-induced toxicity; these cells failed to exhibit blockade of the PI-3K

signaling pathway, cell cycle arrest or cell death. We propose that cellugyrin plays a

critical role in the internalization and translocation of CdtB to critical intracellular target

sites. These studies provide critical new insight into the mechanism by which Cdt, and

in particular, CdtB is able to induce toxicity.
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INTRODUCTION

Intracellular-acting microbial toxins face the common need
to gain entry into the cytosol of host target cells. To meet
this challenge, microbes have developed numerous strategies
for toxin internalization as well as mechanism(s) by which
they incapacitate cells (Oswald et al., 2005; Donaldson and
Williams, 2009; Lebrun et al., 2009). Once inside, bacterial
toxins typically hijack existing endocytic trafficking pathways
to deliver their active component to appropriate subcellular
targets. It is becoming increasingly clear that one bacterial toxin,
the cytolethal distending toxin (Cdt), produced by the oral
pathogen Aggregatibacter actinomycetemcomtans and over 30
γ- and ε- Proteobacteria, has developed a unique approach to
overcoming these common challenges (Boesze-Battaglia et al.,
2016; Scuron et al., 2016). The A. actinomycetemcomitans
Cdt is a heterotrimeric complex consisting of three subunits
designated CdtA, CdtB, and Cdt C which collectively function
as an AB2 toxin (de Rycke and Oswald, 2001; Elwell et al.,
2001; Lara-Tejero and Galan, 2001; Nesic et al., 2004; Shenker
et al., 2004, 2005; Thelestam and Frisan, 2004; Gargi et al.,
2012). The first step leading to cell intoxication requires that
Cdt binds to cell surfaces; this occurs via the cell binding
unit (B) consisting of subunits CdtA and CdtC reviewed in
Boesze-Battaglia (2006) and Gargi et al. (2012). This complex
is responsible for not only toxin binding to the cell surface
but also subsequent delivery of the active subunit (A), CdtB,
to intracellular compartments. The exact role for CdtA in
binding to cells is not clear, but several studies have suggested
that this subunit may recognize a range of targets including
fucose moieties and glycosphoingolipids, among others (Nesic
et al., 2004; Mise et al., 2005). It should also be noted the Cdt
binding occurs in the context of cholesterol/sphingomyelin-rich
membrane microdomains, commonly referred to as lipid rafts.
This association is the result of the CdtC subunit’s ability to
recognize and bind to cholesterol via cholesterol recognition
sequences known as CRAC sites (Guerra et al., 2005; Boesze-
Battaglia et al., 2009, 2015; Eshraghi et al., 2010; Zhou et al., 2012;
Lai et al., 2013). These observations are particularly significant
as membrane cholesterol rich microdomains have been shown
to serve a number of relevant functions including concentrating
toxins on the cell surface and providing access to molecular
pathways associated with endocytosis and signaling (Cherukuri
et al., 2001; Dykstra et al., 2003).

The mechanism by which CdtB induces toxicity is
controversial and has recently been reviewed (Scuron et al.,
2016). Briefly, we have demonstrated that CdtB functions as
a lipid phosphatase capable of degrading the signaling lipid,
phosphatidylinositol-3, 4, 5-triphosphate (PIP3), thereby causing
PI-3K signaling blockade and conditions that trigger cell cycle
arrest and apoptosis. Other investigators propose that CdtB
function as a DNase capable of causing DNA strand breaks
which in turn lead to toxicity (Elwell and Dreyfus, 2000;
Cortes-Bratti et al., 2001; Frisan et al., 2002; Nesic et al., 2004;
Thelestam and Frisan, 2004). Nonetheless, internalization of
CdtB has been shown to be essential for the induction of toxicity.
CdtB internalization has been shown to involve cholesterol

recognition as well as endocytic mechanisms that are dynamin
dependent and which involve clathrin coated pits (Cortes-Bratti
et al., 2000; Thelestam and Frisan, 2004; Boesze-Battaglia et al.,
2009, 2015; Guerra et al., 2011). However, there is controversy as
to how this active subunit is transported through the cell cytosol.
Some studies suggest a role for the ER-associated degradation
(ERAD) pathway, while others have failed to demonstrate
ERAD involvement (Guerra et al., 2009; Eshraghi et al., 2014).
We now report that immunoprecipitation and proteomic
analysis of cell extracts derived from Jurkat cells treated
with A. actinomycetemcomitans Cdt identified a novel protein,
cellugyrin, that associates with CdtB complexes. Furthermore, we
demonstrate that internalization of A. actinomycetemcomitans
CdtB is dependent upon cellugyrin, also known as synaptogyrin
2 (Kedra et al., 1998). These findings are consistent with
those of Carette et al. (2011) who suggested a link between
Cdt intoxication and cellugyrin. Cellugyrin is a tetraspanin
membrane protein expressed in most cells and is a non-neuronal
paralog of the synaptic vesicle protein, synaptogyrin 1 (Janz
and Sudhof, 1998). Moreover, it is proposed to be a component
of ubiquitous intracellular transport vesicles that mediate
protein transport between sorting endosomes and the endocytic
recycling compartment and/or trans-Golgi network (TGN)
(Kupriyanova and Kandror, 2000).

In this paper we demonstrate that in concert with Cdt binding
to cholesterol and association with membrane microdomains,
cellugyrin levels increase and the protein translocates from the
cytoplasm to cholesterol rich membrane microdomains. We
further demonstrate that cellugyrin is a critical component of
an intracellular complex that binds to CdtB; this interaction is
critical to CdtB internalization. Moreover, we demonstrate that
cells deficient in cellugyrin are unable to internalize CdtB and
they are also resistant to its intoxication.

MATERIALS AND METHODS

Reagents and Antibodies
Construction and expression of the plasmid containing the cdt
genes for the holotoxin (pUCAacdtABChis) has previously been
reported (Shenker et al., 2004). The histidine-tagged peptide
holotoxin was isolated by nickel affinity chromatograpy as
previously described (Shenker et al., 2000). Murine monoclonal
antibodies to Cdt subunits were prepared as previously reported
(Boesze-Battaglia et al., 2006). Rabbit polyclonal antibody against
a cellugyrin peptide (Ac-CQNVETTEGYQPPPVY-OH) was
raised and affinity purified (Kim and Kandror, 2012). All other
antibodies were obtained from commercial sources as indicated.

LC-MS/MS Analyses and Data Processing
Liquid chromatography tandemmass spectrometry (LC-MS/MS)
analysis was performed by the Proteomics and Metabolomics
Facility at the Wistar Institute using a Q Exactive HF mass
spectrometer (ThermoFisher Scientific; Waltham, MA) coupled
with a Nano-ACQUITY UPLC system (Waters; Milford, MA).
Samples were digested in-gel with trypsin and injected onto a
UPLC Symmetry trap column (180µm i.d. × 2 cm packed with
5µm C18 resin; Waters). Tryptic peptides were separated by
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reversed phase HPLC on a BEH C18 nanocapillary analytical
column (75µm i.d. × 25 cm, 1.7µm particle size; Waters)
using a 95min gradient formed by solvent A (0.1% formic acid
in water) and solvent B (0.1% formic acid in acetonitrile). A
30-min blank gradient was run between sample injections to
minimize carryover. Eluted peptides were analyzed by the mass
spectrometer set to repetitively scan m/z from 400 to 2,000 in
positive ion mode. The full MS scan was collected at 60,000
resolution followed by data-dependent MS/MS scans at 150,000
resolution on the 20 most abundant ions exceeding a minimum
threshold of 20,000. Peptide match was set as preferred, exclude
isotopes option and charge-state screening were enabled to reject
unassigned charged ions.

Peptide sequences were identified using MaxQuant 1.5.2.8
(Cox and Mann, 2008). MS/MS spectra were searched against a
custom UniProt human protein database containing cytolethal
distending toxin sequences using full tryptic specificity with up to
two missed cleavages, static carboxamidomethylation of Cys, and
variable oxidation of Met, and protein N-terminal acetylation.
Consensus identification lists were generated with false discovery
rates of 1% at protein and peptide levels.

CRISPR/cas9 Mediated Genome Editing
CRISPR/cas9 technology was employed to generate cellugyrin
knockout Jurkat cells (JurkatCg−) using commercially available
reagents (Santa Cruz Biotechnology; Santa Cruz, CA). The
Amaxa Nucleofector system (Lonza; Basel) was used to transfect
cells with a pool of three plasmids each encoding the Cas9
nuclease and a cellugyrin-specific 20 nt guide RNA (gRNA).
Cells were co-transfected with a pool of three plasmids each
containing a homology-directed DNA repair (HDR) template
corresponding to sites generated by the cellugyrin CRISPR/cas9
knockout plasmid. The HDR plasmids insert the puromycin
resistance gene for selection of stable knockout cells. Cells were
incubated 5 days after transfection followed by incubation in
puromycin (5µg/ml) for an additional 7 days. Surviving cells
were cloned by limiting dilution. Clones were expanded and
evaluated by Western blot analysis for the presence of cellugyrin;
clones deficient in cellugyrin were cloned a second time by
limiting dilution. Cells were maintained in medium containing
puromycin (1µg/ml).

Cell Culture, Cell Cycle, and Apoptosis
The T cell leukemia cell line Jurkat [E6-1; (American Type
Tissue Culture Collection; Manassas, VA)] was maintained as
previously described (Shenker et al., 2004). Briefly, JurkatWT

cells were maintained in RPMI 1640 supplemented with 10%
FCS, 2mM glutamine, 10mM HEPES, 100 U/ml penicillin, and
100µg/ml streptomycin. JurkatCg− cells were maintained in the
same medium with the addition of puromycin as described
above. Human peripheral blood mononuclear cells lymphocytes
(HPBMC) were prepared and incubated as described previously
(Shenker et al., 1982). HeLa cells (CRL-1958; ATCC) were
cultured inMEM supplemented with 10% fetal bovine serum and
2% antibiotic solution at 37◦C in 5% CO2 (Shenker et al., 2016a).

To measure Cdt-induced cell cycle arrest, JurkatWT and
JurkatCg− cells were incubated in the presence of medium or Cdt

for 16 h as previously described (Shenker et al., 2000). Briefly,
cells were then washed and fixed for 60min with cold 80%
ethanol. After washing, the cells were stained with 10µg/ml
propidium iodide containing 1 mg/ml RNase (Sigma Chemical
Co; St. Louis, MO) for 30min. Samples were analyzed on a
Becton-Dickinson LSR II flow cytometer (BD Biosciences; San
Jose, CA). Propidium iodide fluorescence was excited by an argon
laser operating at 488 nm and fluorescence measured with a
630/22 nm bandpass filter using linear amplification. Aminimum
of 15,000 events were collected on each sample; cell cycle analysis
was performed using Modfit (Verity Software House; Topsham,
ME).

To measure Cdt-induced apoptosis, JurkatWT and JurkatCg

cells were incubated for 48 h in the presence of medium or Cdt.
DNA fragmentation was measured using the TUNEL assay [In
SituCell Death Detection Kit; (BoehringerMannheim)] (Shenker
et al., 2001). Cells were harvested and re-suspended in freshly
prepared 4% formaldehyde and permeabilized with 0.1% Triton
X-100 for 2min at 4◦C. The cells were then washed with PBS
and incubated in a solution containing FITC labeled nucleotide
and terminal deoxynucleotidyl transferase (TdT) according to
the manufacturers specifications. FITC fluorescence was assessed
by flow cytometry using an argon laser at 488 nm to excite
the fluorochrome; emission was measured through a 530/30 nm
bandpass filter.

Isolation of Triton X-100 Resistant
Membrane Rafts
Triton X-100 resistant cholesterol rich membrane microdomains
were prepared from Jurkat cells using a previously published
protocol (Boesze-Battaglia et al., 2006). Briefly, cell homogenates
were centrifuged on a sucrose gradient at 40,000 rpm for 20 h
at 4◦C. Two prominent zones were recovered, designated DRM1
andDRM2; these were washed and resuspended inHEPES buffer.
As previously reported, the lipid and protein composition of
these zones were analyzed to verify that they were indeed rafts
(Boesze-Battaglia et al., 2006).

Immunoprecipitation and Western Blot
Analysis
Cells were treated as described and solubilized in 20mM
Tris-HCl buffer (pH7.5) containing 150mM NaCl, 1mM
EDTA, 1% NP-40, 1% sodium deoxycholate, and protease
inhibitor cocktail (ThermoFisher Scientific; Waltham, MA).
Samples (30 µg) were separated on 12% SDS-PAGE and
then transferred to PVDF membranes. The membrane was
blocked with BLOTTO and then incubated with one of the
following primary antibodies for 18 h at 4◦C (Shenker et al.,
1999): anti-Akt, anti-pAkt (S473), anti-GSK3β, anti-pGSK3β
(S9), or anti-GAPDH (Cell Signaling Technology; Danvers,
MA). Membranes were washed and incubated with goat anti-
mouse immunoglobulin conjugated to horseradish peroxidase
(Southern Biotech Technology; Birmingham, AL). The Western
blots were developed using chemiluminescence and analyzed
by digital densitometry (Li Cor Biosciences; Lincoln, NE) as
previously described (Shenker et al., 2010).
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For immunoprecipitation studies, control IgG or antibody to
cellugyrin or CdtB was immobilized by crosslinking to protein
A/G using the Pierce Crosslink IP kit (ThermoFisher Scientific).
Jurkat cells, HPBMC, or HeLa cells were incubated with medium
or Cdt (2µg/ml) for 2 h at 37◦C and then lysed and centrifuged
at 5,000 × g for 5min. Supernatants were loaded onto columns
containing the protein A/G with crosslinked antibody (or control
IgG) and incubated overnight at 4◦C. The columns were washed
and immunopreciptated protein eluted and analyzed by Western
blot as described above. Western blots were developed using
anti-cellugyrin antibody or anti-Cdt subunit mAb as described
above.

Immunofluorescence Microscopy and Flow
Cytometry
Jurkat cells were incubated with or without Cdt holotoxin
(1µg/ml) for 1 h at 37◦C, washed twice, and re-suspended
in RPMI 1640. Membrane lipid raft staining was performed
by incubating the cells with 1µg/ml cholera toxin B (CTB)
conjugated to AlexaFluor 594 (Invitrogen, Carlsbad, CA) for
30min at 4◦C. The cells were washed in RPMI 1640, then
incubated with mouse anti-CTB antibody (Invitrogen) at 4◦C
for 30min followed by 37◦C for 30min, washed and fixed in
cold methanol (−20◦C) for 15min. For cellugyrin staining, cells
were blocked in 5% BSA and permeabilized with 0.2% Triton-
X100 in PBS (PBST), incubated with rabbit anti-cellugyrin
conjugated to Alexa Fluor 488 at 37◦C for 1 h and washed
in PBST. Additionally, cells were stained with Hoechst 33258
(AnaSpec Inc; Freemont, CA). Samples were mounted in
Cytoseal mounting medium (Electron Microscopy Sciences,
Hatfield, PA) and images captured with a Nikon A1R laser
scanning confocal microscope with a PLAN APO VC 60 ×

water (NA 1.2) objective at 18◦C. Image z-stacks were acquired
at an interval of 0.3µm (11 focal planes/image stack). Data
were analyzed using Nikon Elements AR 4.30.01 software; for
co-distribution analyzes, the Pearson’s’ coefficient was at least
0.55, and analysis included maximum intensity projection and
standard LUT adjustment (Reyes-Reveles et al., 2017).

Cdt binding and internalization was detected by incubating
Jurkat cells for 30min (surface staining) or 1 h (intracellular
staining) in the presence of medium or 2µg/ml of Cdt. Surface
CdtC was detected as previously described (Boesze-Battaglia
et al., 2015). Briefly, cells were washed, exposed to normal mouse
IgG (Zymed Labs; San Franscisco, CA) and then stained (30min)
for the CdtC subunit with anti-CdtC subunit mAb conjugated
to AlexaFuor 488 (Molecular Probes; Eugene, OR). Following
fixation with 2% paraformaldehyde the cells were analyzed by
flow cytometry. Intracellular CdtB was detected after exposure of
cells to toxin (or medium) and fixation with 2% formaldehyde for
30min followed by permeabilization with 0.1% Triton X-100 in
0.1% sodium citrate and stained with anti-CdtB mAb conjugated
to Alexafluor 488 (Molecular Probes).

Statistical Analysis
Mean ± standard error of the mean were calculated for replicate
experiments. Significance was determined using a Student’s t-test

using SigmaPlot Software (Systat; San Jose, CA); a P-value of
<0.05 was considered to be statistically significant.

RESULTS

In previous studies we have demonstrated that the ability of
Cdt to intoxicate cells was dependent upon toxin association
with cholesterol-rich membrane microdomains. Specifically, by
employing laser confocal microscopy, we observed that all
three Cdt subunits co-localized with GM1 ganglioside which
is both enriched within and characteristic of membrane lipid
rafts (Boesze-Battaglia et al., 2006). Western blot analysis of
lipid raft fractions isolated as detergent resistant membranes
(DRM) also demonstrated the presence of Cdt peptides within
these cholesterol-rich regions. Proteomic analysis of an anti-
CdtB immunoprecipitate obtained from toxin treated Jurkat
cells identified the presence of a ubiquitously expressed protein,
cellugyrin. Specifically, analysis of these samples by LC-MS/MS
revealed 10 peptides consistent with detection of MS/MS spectra
for SYNGR2 peptides (Table 1); chromatograms for four of these
peptides are shown in Figure 1. We have now extended these
observations to determine if cellugyrin interacts with CdtB in a
manner that is critical to the internalization of this active subunit
and for its ability to induce PI-3K signaling blockade, a requisite
for toxin induced cell cycle arrest and apoptosis (Boesze-Battaglia
et al., 2016; Scuron et al., 2016; Shenker et al., 2016a).

Cholesterol-rich microdomains were isolated as DRM
fractions from both control (no toxin) and toxin-treated
Jurkat cells after 2 h exposure to Cdt. Cells were disrupted by
homogenization in ice-cold Triton X-100 and ultracentrifuged
on a sucrose gradient; two distinct low buoyant density
zones, designated DRM1 and DRM2, were obtained. We
have previously demonstrated that these fractions contained
membrane microdomains as evident by analysis for the presence
of GM1 as well as cholesterol and phosphate content (Boesze-
Battaglia et al., 2006). As shown in Figure 2A, Western blot
analysis of these preparations demonstrate small quantities
of cellugyrin in DRM1 isolated from control Jurkat cells and
none in DRM2. In addition to DRM1 and DRM2 we also
analyzed detergent soluble, non-lipid raft, material; the largest
amount of cellugyrin was found in this fraction in control cells.
The prevalence of cellugyrin in the latter soluble fraction is
quite significant when accounting for the greater volume of
this fraction. In contrast, Jurkat cells treated with Cdt for 2 h
demonstrated a dramatic shift in the association of cellugyrin
with lipid rafts as most of the cellugyrin was now found in the
DRM1 and DRM2 zones. It should be noted that in earlier studies
we observed that Cdt subunits A and C were primarily found in
DRM1 and to a lessor extent in DRM2; detectable amounts of
CdtC were observed within the soluble fraction. CdtB was found
primarily in DRM1, but also in DRM2 and the soluble fraction
(Boesze-Battaglia et al., 2006).

To further examine the translocation of cellugyrin to
membrane microdomains, laser confocal microscopy was
employed to assess Jurkat cells. Cells were treated with Cdt,
or medium only, and then dual stained to identify cellugyrin
with antibody conjugated to AlexaFluor (AF) 488 as well
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TABLE 1 | Synaptogyrin-2 (SYNGR) peptides detected by LC-MS/MS.

Sequence Mass Charge aPEP bScore Intensity (anti-CdtB) Intensity (control IgG)

AAITFSFFSIFSWGVLASLAYQR 2581.3369 3 2.98E-06 65.184 6.28E+06 0

AGGSFDLR 821.4032 2 2.12E-02 68.224 2.06E+08 0

AGGSFDLRR 977.5043 2 4.10E-02 72.879 2.26E+08 0

DVLVGADSVR 1029.5455 2 5.06E-03 62.466 3.24E+08 0

DVLVGADSVRAAITFSFFSIFSWGVLASLAYQR 3592.8718 3, 4 4.22E-09 41.174 4.86E+06 0

FLTQPQVVAR 1157.6557 2 2.19E-03 99.815 6.30E+08 0

FLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESK 4073.0543 4 6.92E-19 59.748 9.30E+06 0

MESGAYGAAK 983.4382 2 6.73E-03 48.284 1.83E+07 0

QMYCVFNR 1116.4845 2 6.61E-05 101.28 1.41E+08 0

QMYCVFNRNEDACR 1861.7658 3 4.12E-04 87.083 2.11E+07 0

aPosterior error probability of the identification.
bAndromeda score

as GM1, a well-established marker for membrane rafts. To
identify GM1, cells were stained with CTB conjugated to
AF594; to visually identify microdomains, patches of GM1
were induced by treatment with anti-CTB antibody. As shown
in Figure 2B, control Jurkat cells displayed low cytoplasmic
immunofluorescence for cellugyrin with almost no detectable co-
localization with CTB. In contrast, Jurkat cells treated with Cdt
exhibited a shift in cellugyrin associated immunofluorescence
as it now exhibits partial co-localization with CTB in close
proximity to the plasma membrane.

It should be noted that we were unable to utilize
immunofluorescence in combination with confocal microscopy
to demonstrate co-localization between CdtB and cellugyrin
as immunostaining for each protein requires fixation and
permeabilization protocols that were not compatible with one
another. Therefore, we employed immunoprecipitation to
demonstrate association between cellugyrin and Cdt subunits.
As shown in Figure 3A, cell extracts obtained from control
and Cdt-treated Jurkat cells were immunoprecipitated with
immobilized anti-cellugyrin (Cg) Ab or control IgG; the
immunoprecipitate was eluted, fractionated by SDS-PAGE
and then analyzed by Western blot. Cellugyrin was observed
in the immunoprecipitate from extracts derived from both
control (medium only) and Cdt-treated cells. Additionally,
the immunoprecipitate from toxin treated cells also contained
CdtB and CdtC. CdtA was not detected in these preparations
suggesting that this subunit remains associated with the
membrane and is not internalized. Cellugyrin as well as Cdt
subunits were not present in samples processed with immobilized
control IgG.

Western blot analyses of immunoprecipitates obtained using
anti-Cdt subunit mAbs were performed. Jurkat cells were treated
as above with either medium only or Cdt; cell extracts were
then exposed to immobilized anti-CdtB or anti-CdtC mAb. As
shown in Figure 3B, immunoprecipitation with immobilized
anti-CdtB mAb not only pulled down CdtB, but also cellugyrin.
Likewise, immunoprecipitates obtained with anti-CdtC mAb
contained both CdtC and cellugyrin (Figure 3C). Control Ig did
not immunoprecipitate either the toxin subunits or cellugyrin.
Since cellugyrin is a ubiquitously expressed protein, we wanted
to determine if it interacted with CdtB in other cells known

to be susceptible to Cdt. Cell extracts were obtained from both
HPBMC and HeLa cells treated with medium or Cdt and then
processed with immobilized anti-CdtB or control Ig. In both
instances, the immobilized anti-CdtB mAb immunopreciptated
both CdtB and cellugyrin while neither was present with control
Ig (Figure 4).

We next determined if, in addition to altering cellugyrin
subcellular localization, exposure to Cdt also results in changes
in its expression. Jurkat cells were treated with 25 pg/ml Cdt
for varying periods of time and cell homogenates analyzed by
Western blot for cellugyrin content. As shown in Figure 5, a 50%
increase in cellugyrin protein levels was observed within 30min
of exposure to Cdt. Cellugyrin expression continued to increase
at 60 and 120min to 200 and 275% over that observed in control
cells. It should be noted that we did not detect an increase in
cellugyrin mRNA levels, but instead a slight decrease (Figure S1)
suggesting that the observed increase in protein might be due to
reduced degradation.

In order to advance our understanding of the biological
significance of CdtB-cellugyrin interaction, we next determined
if cellugyrin was critical for Cdt holotoxin association with cells,
CdtB internalization, and/or toxicity. To achieve these goals,
cellugyrin expression was eliminated by utilizing CRISPR/Cas9
gene editing of Jurkat cells. A cell line deficient in cellugyrin
(JurkatCg−) was successfully prepared (Figure 6B inset).
JurkatCg− cells were first assessed for their ability to bind Cdt
holotoxin; toxin binding to the cell surface was carried out at
5◦C and monitored by immunofluorescence using anti-CdtC
mAb conjugated to AF488. Representative association of Cdt
with wildtype Jurkat (JurkatWT) cells is shown in Figure 6A;
JurkatWT cells consistently bound Cdt as these cells exhibited a
mean channel fluorescence (MCF) of 51.1 ± 6.8 with anti-CdtC
mAb (Figure 6C; open bars). Likewise, JurkatCg− cells were also
capable of binding comparable amounts of toxin as these cells
exhibited a MCF of 58.6 ± 4.3 (Figures 6B,C). Control cells
exposed to medium alone exhibited MCF of 6.4 (JurkatWT) and
8.2 (JurkatCg−).

The dependence on cellugyrin for CdtB internalization was
next evaluated by assessing immunofluorescent staining with
anti-CdtB mAb following fixation and permeabilization in both
JurkatCg− and JurkatWT cells. Cells were exposed to Cdt for
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FIGURE 1 | Extracted ion chromatograms of four representative doubly

charged SYNGR2 peptides. Jurkat cells were treated with Cdt holotoxin as

described in Materials and Methods for 1 h. Cell extracts were prepared and

immunoprecipitated with immobilized anti-CdtB or isotype control IgG and the

samples analyzed as described. The immunoprecipitates obtained with

anti-CdtB mAb show strong signals for the peptides indicated; results are

consistent with detection of MS/MS spectra for SYNGR2 peptides obtained

exclusively with this mAb and were not detectable in the control

immunoprecipitate.

1 h at 37◦ and then fixed, permeabilized and stained with anti-
CdtB mAb conjugated to AF488. Figure 6D shows representative
results of CdtB internalization in JurkatWT cells. CdtB was
observed to be reproducibly internalized in JurkatWT cells as
results from repetitive experiments exhibited a MCF of 18.5 ±

1.6 in toxin treated cells (Figure 6F); this compares to a MCF
of 4.7 ± 0.2 in control cells. In contrast, JurkatCg− cells did not

FIGURE 2 | Translocation of cellugyrin to cholesterol rich micro domains. (A)

Jurkat cells were treated with medium (−Cdt) or with 2µg/ml Cdt for 2 h. Cells

were harvested, washed, and cholesterol rich microdomains isolated as

detergent resistant membranes (DRM) as described in Materials and Methods.

Two DRM zones, designated DRM1 and DRM2, as well as a soluble fraction

were obtained and further analyzed by Western blot for the presence of

cellugyrin. Results are representative of three experiments. (B) Jurkat cells

were treated with medium (−Cdt) or 1µg/ml Cdt (+Cdt) for 1 h; cells were

stained and fixed as described in Materials and Methods and analyzed by

confocal microscopy. Maximum intensity projection of a 3µm z-stack series is

presented (3 cells/condition). For each image, fluorescence is shown for

cellugyrin alone (green), lipid rafts using fluorescence of cholera toxin B (CTB;

red) and merged images (yellow) with (blue) and without nuclear staining

Results are representative of multiple fields and analysis of over 50 cells for

each condition. Scale bar = 5µm.

exhibit internalization of CdtB as the MCF was 6.7± 0.8 in toxin
treated cells vs. 4.8 ± 0.5 in control cells exposed to medium
only (Figures 6E,F). This is a statistically significant reduction
in JurkatCg− cell associated fluorescence when compared to the
MCF observed in JurkatWT. It should be noted that in previous
studies we have demonstrated that the immunofluorescence
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FIGURE 3 | Immunoprecipitation of cellugyrin and Cdt subunits. Jurkat cells

were treated with medium or Cdt (2µg/ml) for 2 h and then washed and

homogenized as described in Materials and Methods. (A) Shows the results of

extracts immunoprecipitated with either immobilized control IgG or

anti-cellugyrin antibody. The bound material was eluted and analyzed by

Western blot for the presence of cellugyrin (Cg), CdtB or CdtC. (B) Shows the

results of cell extracts obtained from similarly treated cells as above and

immunoprecipitated with immobilized control IgG or anti-CdtB mAb. The

bound material was eluted and analyzed by Western blot for the presence of

CdtB and Cg. (C) Shows the results of cell extracts obtained from cells treated

as described above and immunopreciptated with immobilized control IgG or

anti-CdtC mAb. The bound material was eluted and analyzed by Western blot

for the presence of CdtC and Cg. Results are representative of three

experiments.

due to CdtB internalization observed in JurkatWT cells was
both dependent upon permeabilization and temperature; cells
not permeabilized or those incubated at 5◦C failed to exhibit
fluorescence when stained with anti-CdtB mAb (Shenker et al.,
2014).

The final series of experiments focused on the requirement for
cellugyrin in Cdt-mediated toxicity; specifically, JurkatCg− cells

FIGURE 4 | Immunoprecipitation of cellugyrin and CdtB in HPBMC and HeLa

cells. HPBMC and HeLa cells were treated with medium or Cdt (2µg/ml) for

2 h. Cell extracts were prepared as described in Materials and Methods and

immunoprecipitated with immobilized control IgG or anti-CdtB mAb. The

bound material was eluted and further analyzed by Western Blot for CdtB and

cellugyrin. Results are representative of three experiments.

FIGURE 5 | Effect of Cdt on cellugyrin levels in Jurkat cells. Jurkat cells were

incubated in the presence of medium or 25 pg/ml Cdt for 0–120min. Cells

were harvested, homogenized and analyzed by Western blot for relative

cellugyrin content. Blots were further analyzed by digital densitometry. Results

of a representative blot are shown in (A) and the mean ± SEM of three

experiments are shown in (B); results are expressed as a percentage of the

intensity observed in control cells. *Indicates statistical significance (p < 0.05)

when compared to untreated cells.

were assessed for susceptibility to Cdt-induced PI-3K blockade,
cell cycle arrest, and apoptosis. We have previously demonstrated
that one of the earliest events following exposure to Cdt, and
a requirement for downstream toxicity, is blockade of the PI-
3K signaling pathway. In this regard, we have shown that the
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FIGURE 6 | Cdt binding and CdtB internalization in JurkatWT cells vs. JurkatCg− cells. JurkatWT and JurkatCg− were first compared for their ability to bind Cdt (A–C).

Cells were incubated for 60min at 5◦C with Cdt (2µg/ml), washed and stained for the presence of cell surface associated Cdt using anti-CdtC mAb conjugated to

AF488. Representative flow cytometric analysis for Cdt binding to JurkatWT is shown in panel A; solid line is the result obtained with Cdt-treated cells and the shaded

curve represents cells exposed to medium alone. Cdt binding to JurkatCg− cells is shown in (B). Cells were generated as described in Materials and Methods;

confirmation of their inability to express cellugyrin was demonstrated by Western blot as shown in (B) inset. Results from multiple experiments are shown in (C);

results are the MCF ± SEM obtained from three experiments. Internalization of CdtB in JurkatWT and JurkatCg− cells was analyzed following exposure to Cdt

(2µg/ml) for 1 h at 37◦C; cells were washed, fixed, permeabilized, and stained with anti-CdtB mAb conjugated to AF488. Representative results are shown for

JurkatWT in (D) and for JurkatCg− in (E); solid line represents results obtained from cells treated with Cdt and the shaded curve from cells exposed to medium only.

Results from multiple experiments are shown in (F); results are the MCF ± SEM obtained from three experiments. *Indicates statistical significance (p < 0.05) when

compared to control (-Cdt) cells.

active Cdt subunit, CdtB, functions as a phosphatidylinositol 3,
4, 5-triphosphate (PIP3) phosphatase thereby depleting cells of
the signaling lipid leading to a concomitant reduction in the
phosphorylation status of downstream targets (Shenker et al.,
2016a). To further confirm the failure of CdtB to be internalized
in cellugyrin deficient cells, we next determined if treatment
of JurkatCg− cells with Cdt also failed to result in a change in
the phosphorylation status of Akt and GSK3β. JurkatWT and

JurkatCg− cells were treated with 0–25 pg/ml Cdt for 2 h and
the levels of Akt, pAkt, GSK3β, and pGSK3β were analyzed by
Western blot. Figure 7A shows a representative Western blot
and results from multiple experiments are shown in Figure 7B.
JurkatWT cells exhibited reductions in Akt phosphorylation; pAkt
(S473) was reduced to 71.1 ± 14.0 and 49.8 ± 20.1% of control
values in the presence of 10 and 25 pg/ml Cdt, respectively.
Total Akt levels were slightly elevated under these conditions: 38
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and 33% above control values. In contrast, JurkatCg− exhibited
a small, but not statistically significant, reduction in pAkt in the
presence of Cdt to 90.7 ± 14.1% (10 pg/ml) and 71.1 ± 20.4%
(25 pg/ml). GSK3β is a downstream target for Akt; reductions
in the phosphorylation status of Akt leads to a decrease in its
kinase activity and a concomitant reduction in the downstream
phosphorylation of GSK3β. Consistent with the reduction in
pAkt, JurkatWT cells exhibit a reduction in pGSK3β (S9) to 65.5
± 13.0% and 47.8 ± 11.7% of control levels in the presence of 10
and 25 pg/ml Cdt. Total GSK3β levels were observed to increase
to 43.6 and 67% above levels observed in untreated JurkatWT

cells. JurkatCg− cells did not exhibit significant reductions in
pGSK3β as toxin treated cells contained comparable amounts of
this phosphorylated protein: 89.4 ± 16.9% (10 pg/ml Cdt) and
73.9± 21.0% of that observed in control cells.

FIGURE 7 | Comparison of the effects of Cdt on PI-3K signaling blockade in

JurkatWT vs. JurkatCg− cells. JurkatWT and JurkatCg− cells were treated with

0–25 pg/ml Cdt for 2 h and then analyzed by Western blot for pAkt (S473),

Akt, pGSK3β (S9), GSK3β, and GAPDH as a loading control. (A) Contains a

representative Western blot showing the effect of Cdt on Akt and GSK3β

phosphorylation. (B) Shows the results of Western blot analyses from three

experiments; blots were analyzed by digital densitometry and are expressed

as a percentage of the relative intensity of untreated control cells; mean ±

S.E.M. for three experiments are plotted. *Indicates statistical significance (p <

0.05) when compared to untreated control cells.

JurkatCg− cells were next assessed for their susceptibility to
Cdt-induced cell cycle arrest. Cells were treated with Cdt for 16 h
and cell cycle distribution was determined by measuring DNA
content with propidium iodide and flow cytometry. As shown in
Figure 8A, JurkatWT cells (solid bars) treated with Cdt exhibited
cell cycle arrest; the cells were treated with 0.05–5 pg/ml Cdt
and exhibited 18.2 ± 2.6 to 46.4 ± 5.4 percent cells in the G2/M
phase of the cell cycle. Control cells treated with medium alone
contained 12.0± 0.6 percent G2 cells. In contrast JurkatCg− cells
(hatched bars) did not exhibit cell cycle arrest as the percentage
of G2/M cells did not increase when cells were treated with the
same concentrations of Cdt. Exposure to 5 pg/ml Cdt resulted in

FIGURE 8 | Comparative toxic effects of Cdt on JurkatWT and JurkatCg−

cells. (A) Shows the effect of Cdt on cell cycle arrest; JurkatWT and JurkatCg−

cells were incubated for 16 h in the presence of 0–5 pg/ml Cdt. Cells were

stained with propidium iodide and cell cycle analysis performed using flow

cytometry. The percentage of G2 cells is shown as a mean ± SEM for three

experiments each performed in triplicate; solid bars represent JurkatWT cells

and hashed bars JurkatCg− cells. (B) Shows the effect of Cdt on apoptosis;

cells were treated with 0–25 pg/ml Cdt for 48 h analyzed for DNA strand

breaks using the TUNEL assay. Results are expressed as the mean

percentage of TUNEL positive cells ± SEM for three experiments (); solid bars

represent JurkatWT cells and hashed bars JurkatCg− cells. *Indicates

statistical significance (p < 0.05) when compared to untreated cells;

**indicates statistical significance of p < 0.01.
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14.7± 0.5% G2/M cells; control cells incubated in medium alone
contained 14.3± 0.3 percent G2/M cells.

Finally, to determine the requirement for cellugyrin in toxin-
induced apoptosis, cells were treated with 1–25 pg/ml Cdt for
48 h and then analyzed for DNA strandbreaks using the TUNEL
assay. Results are shown in Figure 8B and indicate that JurkatWT

cells exhibited 3.5 ± 1.6, 17.0 ± 1.4, 48.0 ± 1.5, and 69.7 ± 1.8
percent apoptotic cells in the presence of 0, 1, 5, and 25 pg/ml Cdt,
respectively. In contrast, JurkatCg− cells exhibited no increase in
the percentage of apoptotic cells over that observed in control
cells; 1.8± 0.4 percent apoptotic cells was detected at the highest
concentration of toxin (25 pg/ml) employed while control cells
exhibited 1.3± 0.3 percent apoptotic cells.

DISCUSSION

It is well established that pathogens subvert host cell endocytic
vesicles and retrograde trafficking to be effective. Once
internalized, intracellular pathogens translocate a range of
effector proteins to manipulate vesicle trafficking and signaling
pathways thereby facilitating toxic and cytopathic events
(reviewed in Personnic et al., 2016). Likewise, secreted bacterial
toxins gain access to the cytosol by first binding to cell surface
moieties that trigger endocytic uptake. Once internalized, vesicle
trafficking provides access to retrograde transport to the TGN
and eventually to intracellular target sites (Medina-Kauwe, 2007;
Ahnert-Hilger et al., 2013; Harper et al., 2013; Backert and
Tegtmeyer, 2017; Orrell et al., 2017). Thus, toxin-host cell
interaction is facilitated by a common structure consisting of two
units: the A unit representing the active (catalytic or enyzmatic)
component which must be internalized and the B unit which is
responsible for cell binding.

Most Cdt holotoxins utilize this AB2 structure where CdtB
represents the internalized active unit and the binding unit
is comprised of both CdtA and CdtC. CdtB internalization
has been shown to occur by endocytic mechanisms dependent
upon dynamin and involving clathrin coated pits (Cortes-Bratti
et al., 2000; Thelestam and Frisan, 2004; Guerra et al., 2011;
Guidi et al., 2013; Bielaszewska et al., 2017). These findings
are consistent with the observations that Cdt binding and
internalization involves CdtC recognition of cholesterol in the
context of membrane microdomains (Boesze-Battaglia et al.,
2006, 2009, 2015, 2016; Eshraghi et al., 2010; Zhou et al.,
2012; Lai et al., 2013). Indeed, cholesterol rich membrane
microdomains, often referred to as lipid rafts, are known to
concentrate toxins and provide access to endocytic processes
and signaling platforms (Cherukuri et al., 2001; Dykstra et al.,
2003). The actual mechanism whereby CdtB is transported from
cholesterol rich membrane microdomains to subcellular sites is
controversial (Eshraghi et al., 2014) but likely involves the ERAD
pathway.

In this study we demonstrate that exposure of Jurkat cells to
Cdt leads to the translocation of the host cell protein, cellugyrin,
from the cytosol to the plasma membrane in association with
membrane lipid rafts. It is noteworthy that we have previously
demonstrated that Cdt subunits also initially accumulate in the

same region (Boesze-Battaglia et al., 2006, 2009, 2016). Toxin
treated cells also exhibit increased levels of cellugyrin; however,
RNA levels were decreased thereby suggesting that Cdt treatment
may result in decreased cellugyrin degradation. Additionally,
we demonstrate that shortly after exposure to toxin, the active
Cdt subunit, CdtB, binds to a complex containing cellugyrin.
These observations extend beyond an isolated observation in a
lymphoid cell line as similar events were detected in primary
HPBMC as well as HeLa cells which are commonly used as an
experimental target for Cdt.

The significance of CdtB-cellugyrin interactions is exemplified
by the observations that cells deficient in cellugyrin were able
to bind Cdt holotoxin, but were unable to internalize CdtB.
The inability to internalize CdtB is further corroborated by the
finding that JurkatCg− cells exhibited a concomitant resistance
to CdtB-mediated toxicity. The toxin failed to induce a PI-
3K signaling blockade, cell cycle arrest, and apoptosis (Shenker
et al., 2007, 2016a,b; Scuron et al., 2016). It should be noted
that this deficiency did not extend to other endocytic processes
as JurkatCg− cells did not exhibit alterations in transferrin
receptor recycling, a process known to involve internalization
of receptors associated with membrane lipid rafts (Figure S2).
We now propose that cellugyrin is a key host cell protein
critical to for Cdt toxicity by facilitating the internalization and
subsequent translocation and retrograde transport of CdtB to
key sites enriched in the signaling lipid, PIP3 (Shenker et al.,
2007, 2016a,b; Boesze-Battaglia et al., 2016; Scuron et al., 2016). It
should also be noted that these results are in agreement with those
of Carette et al. (2011) who utilized insertional mutagenesis on a
haploid background to disrupt gene function and identify critical
genes for Cdt toxicity.

Cellugyrin is a member of a family of proteins known as
synaptogyrins which contain four transmembrane regions with
a tyrosine-phosphorylated tail (Janz and Sudhof, 1998); three
synaptogyrin isoforms exist (Kedra et al., 1998). Synaptogyrins 1
and 3 are neuronal and are the most abundant protein in synaptic
vesicles. It has been proposed that these synaptogyrins are critical
to vesicle biogenesis, exocytosis, and endocytotic recycling as well
as neurotransmission (Kedra et al., 1998; Hubner et al., 2002).
In contrast, cellugyrin (synaptogyrin 2) is found in all tissue,
except brain where it has been proposed to be a component of
synaptic-like microvesicles (SLMVs) (Janz and Sudhof, 1998;
Kupriyanova and Kandror, 2000; Belfort and Kandror, 2003;
Kioumourtzoglou et al., 2015). Like synaptogyrin 1, cellugyrin
has been shown to be critical for the biogenesis of cellugyrin
containing SLMVs (Belfort et al., 2005). There is no information
available to date that sheds light on the physiologic function of
cellugyrin containing SLMVs in lymphoid or other cell types.
Although it should be noted that Kupriyanaova and Kandror
have shown that in adipose cells cytoplasmic cellugyrin positive
SLMVs also contain Glut4; however, they do not localize to the
plasma membrane following insulin treatment (Kupriyanova
and Kandror, 2000). The authors proposed that these vesicles
represent early sorting vesicles that are a component of the TGN.
Further support that cellugyrin may exist in cytoplasmic vesicles
comes from Chapel et al. (2013) who have suggested that this
cellular protein is a lysosomal transporter protein. Of particular
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importance to our study is a recent report by Sun et al. (2016)
who were studying Bunyavirus infection in mammalian cells
and demonstrated that synaptogyrin-2 (cellugyrin) interacts
with viral nonstructural proteins and together were transported
into inclusion bodies “reconstructed from lipid droplets” during
infection. They further reported that this translocation was
critical to viral replication as silencing of cellugyrin expression
reduced inclusion body formation and decreased virus
titers.

It is becoming clear that cellugyrin and/or cellugyrin positive
SLMVs may be a critical host target protein exploited by
pathogens for the purposes of intracellular trafficking and
retrograde transport of essential pathogen effector proteins to
critical target sites. In this context, our current observations
provide important insight into the earliest events that occur
following the binding of Cdt holotoxin to target cells. There
is agreement that in order for the active subunit, CdtB,
to induce toxicity it must first gain access to intracellular
compartments. Early studies on Cdt toxicity conducted by several
investigators have suggested that the nucleus was the critical

cellular compartment; these studies were conducted under a
paradigm proposing that the critical events in Cdt toxicity were
dependent upon CdtB’s ability to function as a DNase (Elwell and
Dreyfus, 2000; Cortes-Bratti et al., 2001; Frisan et al., 2002; Nesic
et al., 2004; Thelestam and Frisan, 2004).

More recently, we have established a new paradigm for Cdt
toxicity demonstrating that at least forA. actinomycetemcomitans
Cdt, CdtB is a potent PIP3 phosphatase and further that this
activity leads to PI-3K signaling blockade (Shenker et al., 2007,
2010, 2014, 2015, 2016a,b; Scuron et al., 2016). Thus, we propose
that following internalization, CdtB must gain access to those
intracellular sites containing enriched PIP3 pools. One such
site is the cytosolic leaflet of plasma membranes particularly
in regions associated with cholesterol enriched lipid rafts as
these typically incorporate signaling platforms. Additional sites
known to contain PIP3 include membrane bound subcellular

compartments and, in particular, cytosolic structures such as,
intracellular transport vesicles (Cockcroft and De Matteis, 2001;
Simonsen et al., 2001; Di Paolo and De Camilli, 2006; Swanson,
2014). It is also noteworthy that phosphatidylinositols are

FIGURE 9 | Schematic model showing proposed CdtB-cellugyrin interaction. Cdt holotoxin binds to cells via cholesterol in the context of membrane lipid rafts. CdtB

binding and internalization is further dependent upon its ability to interact with cholesterol. As a result of exposure to Cdt, cellugyrin (shown in red) containing SLMVs

translocate from cytosol to membrane lipid rafts. We propose that this translocation leads to the association of CdtB with the cellugyrin-containing SLMVs. This

interaction may involve direct binding to cellugyrin either on extra- or intra-vesicular loops or indirect association via an unidentified binding partner (shown in black).

We further propose that CdtB is transported via SLMVs to intracellular target sites; for example sites containing PIP3 pools where the enzymatically active CdtB

subunit is released from SLMVs and is then able to degrade the signaling lipid resulting in PI-3K blockade and toxicity.
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known to play a role in governing the movement of these

sorting vesicles. Interestingly, Xu et al. (2006) have shown
cellugyrin positive SLMVs contain phosphatidylinositol 4-kinase;
the authors suggest that polyphosphorylated derivatives of
phosphatidylinositol may regulate vesicular traffic and protein
recruitment. Thus, it is conceivable that CdtB’s lipid phosphatase

activity may enable the toxin subunit to re-direct and thereby
re-purpose these vesicles to meet its needs of accessing PIP3
pools.

The latter observation may be critical to our findings that
Cdt induces not only increased levels of cellugyrin, but also its
translocation from the cytoplasm to the plasmamembrane. Based
on current understanding of the relationship between cellugyrin
and SLMVs, these events likely lead to increased biogenesis
of these vesicles and the likelihood of CdtB’s hijacking them
to facilitate its own translocation (Figure 9). In summary, we
now propose that among the earliest critical events that occur
following exposure of lymphocytes to A. actinomycetemcomtans
Cdt involves the translocation of cellugyrin to cholesterol rich
membrane microdomains and binding to CdtB (Figure 9).
These interactions are essential as CdtB is unable to enter and
translocate to intracellular sites in cells deficient in cellugyrin;
these deficient cells exhibit a concomitant resistance to the toxic
effects of Cdt which include PI-3K signaling pathway blockade,
cell cycle arrest and apoptosis. We anticipate that future studies
on CdtB-cellugyrin interactions will provide further insight into
the role of cellugyrin positive SLMVs in the trafficking of
CdtB to critical subcellular target sites. It is also likely that
such studies will provide an understanding of the possible
physiologic role(s) that cellugyrin and/or SLMVs play in cell
homeostasis.
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