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Abstract

Data-driven research in biomedical science requires structured, computable data. Increas-

ingly, these data are created with support from automated text mining. Text-mining tools

have rapidly matured: although not perfect, they now frequently provide outstanding results.

We describe 10 straightforward writing tips—and a web tool, PubReCheck—guiding authors

to help address the most common cases that remain difficult for text-mining tools. We antici-

pate these guides will help authors’ work be found more readily and used more widely, ulti-

mately increasing the impact of their work and the overall benefit to both authors and

readers. PubReCheck is available at http://www.ncbi.nlm.nih.gov/research/pubrecheck.

Introduction

Automated text analysis has proven very effective for helping researchers search the biomedi-

cal literature to retrieve relevant articles [1,2]. But as biomedical research becomes increasingly

quantitative, the requirement for data-driven research is pushing a need for more specific

knowledge embedded within individual articles and for more comprehensive results across the

literature [3]. Biocuration addresses these needs by manually extracting the unstructured

information in free text articles into structured and computable data in knowledge bases [4].

These curated resources enable connections between seemingly disparate studies and have

become essential to current biomedical research. However, data curation at scale remains chal-

lenging because of the requirement for significant manual effort by humans [5,6]. Text mining

can greatly complement human efforts by automating the conversion of unstructured text

such as scientific publications into structured, computable formats, thereby enabling more

rapid analyses at a larger scale [7]. Successful uses of text mining in biology include literature-

based knowledge discovery [8–11], facilitating analysis of high-throughput (gene expression/

genome-wide association) data [12,13], detecting false and contradictory findings [14], and

pharmacovigilance [15], among many others.

A critical step in almost all text-mining systems is identifying words and phrases within the

text that refer to biomedical concepts. This long-standing task in biomedical text mining was
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first considered in the 1990s [16] and has been addressed at a number of community-wide

challenges since 2004 [17]. The extracted text is then linked with concepts from the relevant

biological databases or controlled vocabularies, making the content more accessible, especially

to large-scale computational analysis. Fig 1 illustrates concept extraction using extracts from

three PubMed articles. Concept recognition systems have matured significantly, identifying a

variety of biomedical concepts [18] with performance approaching that of an individual

human annotator [19]. Despite significant progress, however, the accuracy of text-mining

results remains imperfect.

For text mining to realize its full potential as a powerful method for “seeking a new biology”

[23], it is imperative that the critical step of concept extraction be performed as accurately as

possible. As illustrated in Fig 1, concept extraction is difficult because of variation and ambigu-

ity, both of which are present to some degree in any natural language. Variation allows con-

cepts to be referenced in multiple ways; for example, Fig 1 shows that the human gene

“PTCH1” can also be called “patched” or “PTC,” the condition “basal call nevus syndrome” is

also known as “Gorlin’s syndrome,” and “phenylthiourea” and “phenylthiocarbamide” are

synonyms. Ambiguity, on the other hand, allows a single phrase to refer to multiple concepts;

for example, the acronym “PTC” might refer either to the PTCH1 or RET genes, to papillary

thyroid carcinoma, or to phenylthiourea. Managing variation and ambiguity is an important

goal of terminology standardization efforts [24,25]. Although we strongly support standardiza-

tion, we also recognize that authors may not find it practical to identify and apply all relevant

standards.

The imperfection of existing automated methods and the difficulty of standardizing termi-

nology has motivated active discussion of alternatives. One proposal suggests that the authors

themselves should identify the biomedical concepts referenced in their article [26]. Under this

proposal, authors would use controlled vocabularies or ontologies to identify the concepts

mentioned in their article prior to publication, similar to the requirement to submit new genes

to a central database prior to publication of the manuscript [23]. Unfortunately, this approach

requires authors to become knowledgeable in terminologies and curation, which may not be

practical. Another proposal is crowdsourcing, in which tasks are outsourced and distributed to

many nonexpert workers online, typically by decomposing large tasks into individual decisions

[27]. Despite progress, neither alternative has succeeded to date at a large scale.

Meanwhile, recent advances in natural language processing and machine learning continue

to improve automated text-mining systems, allowing them to reach an overall accuracy of

approximately 80% or higher in many cases. Performance at this level provides mostly out-

standing results, with additional help typically only required for the few cases that remain diffi-

cult. In this work, we propose 10 writing tips based on a comprehensive analysis of the most

prevalent errors experienced by current approaches for automatic concept extraction. We

have attempted to make these tips straightforward for authors to implement—regardless of

their preferred English dialect—and believe that the suggestions should typically also make the

text clearer to human readers. We also provide a web-based tool, PubReCheck (http://www.

ncbi.nlm.nih.gov/research/pubrecheck), to help authors visualize the information automated

concept extraction tools derive from their text and to automatically identify many types of

issues prior to publication. Published research that follows these guides will typically be pro-

cessed more accurately by automated text analysis tools. We anticipate these guides will allow

the author’s work to be found more readily and used more widely, ultimately helping the mil-

lions of readers who search the biomedical literature satisfy their information needs.
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Top 10 Tips

Tip 1: Clearly associate gene and protein names with the species

Entries in gene and protein databases are differentiated by species: in humans, the BRCA1

gene is NCBI Gene 672, but in mice (Mus musculus) it is NCBI Gene 12189. Automated sys-

tems for identifying genes and proteins must, therefore, determine the species first. If the spe-

cies is not mentioned directly, the system must try to infer it from related concepts: the cell

line “GH(3)” implies Rattus norvegicus [28] and the strain “TA100” signifies Salmonella

Fig 1. Concept extraction is a critical step in text mining. Phrases referring to a concept are associated with an identifier from an

appropriate database (purple = gene, orange = disease, brown = mutation = brown, cyan = chemical). Text-mining systems must handle

variation—“patched” and “PTC” both refer to “PTCH1”—and ambiguity—“PTC” could refer to “PTCH1,” “RET,” “papillary thyroid

carcinoma,” or “phenylthiourea.” Examples adapted from [20–22].

https://doi.org/10.1371/journal.pbio.3000716.g001
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typhimurium [29]. Although inferring the species from context is often effective, directly stat-

ing the species significantly reduces the potential for error. We recommend authors clearly

mention the relevant species when discussing genes or proteins whenever possible. This is

especially important the first time it is mentioned: for example, “we investigated the role of

Brca1 during mouse embryonic cortical development . . .” [30]. This recommendation does

not apply, however, in cases when the discussion is not with respect to any specific species,

such as when referring to (homologous) genes in a general context.

Tip 2: Supply context critical for comprehension prominently and in

proximity

Like human readers, text-mining systems use the surrounding context to help resolve ambigu-

ous words and phrases. For example, whereas “p24” could refer to at least four different

human proteins, the text “p24 also maps to chromosome 12” [31] must refer to the product of

human gene TMED2 (NCBI Gene 10959), because the other possibilities are assigned to other

chromosomes. Synonyms are especially useful for clarifying the intended meaning; for exam-

ple, the synonym provided in the text, “which interacts with human NAP1 (NCKAP1) . . .”

[32], narrows the number of possibilities for “NAP1” from 9 to 1 (NCBI Gene 10787). The

need for clarifying context may arise because a specific name is ambiguous, or it may arise

because a specific relationship is required, such as the species for a gene or a gene name for a

genetic variant.

Although context can resolve ambiguity effectively, it is only helpful if the correct associa-

tion can be identified. This is especially important for the abstract: it summarizes the article, is

often provided without the full article text, and is the focus of many text-mining methods—

though work on mining full-text articles is well underway [33–35]. Current automated meth-

ods for context association are more accurate when the related information is within the same

sentence or, at most, within the same paragraph. Although the abstract cannot contain the

details necessary to analyze its claims, if comprehending the summary provided by the abstract

requires context from other sections—for example, to determine which “p24” protein is the

subject of the article—then the risk of error is significantly increased. We recommend authors

provide context that is critical for comprehension (such as identifying ambiguous concept

names) prominently—in the abstract—and in proximity, preferably in the same sentence.

Tip 3: Define abbreviations and acronyms

Abbreviations and acronyms allow cumbersome terms to be referenced more concisely: “acute

myeloid leukemia” could become “AML.” Although a few carefully chosen acronyms can

improve readability, acronyms can also be ambiguous because they typically have more than

one possible meaning. For example, “AML” often refers to “acute myeloid leukemia,” but it is

also used for “angiomyolipoma,” “anterior mitral leaflet,” “amlodipine,” “amoxicillin,” and

“amiloride.” The intended meaning of an acronym is therefore usually provided at first use, as

in “Patients with acute myeloid leukemia (AML) are . . .” [36]. Without such a definition, a

human reader or text-mining system must infer the meaning of an acronym from context,

which is often unclear. We recommend all abbreviations and acronyms be listed with the cor-

responding full term the first time they are used.

Tip 4: Refer to concepts by name

Language is variable: it can communicate ideas in multiple ways. Accordingly, a text might

refer to a concept by name (“orthostatic hypotension”) or with a description (“immediate drop

in systolic blood pressure observed on standing” [37]). Descriptions can be very helpful, but
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names provide several important advantages for automated tools. Names are usually easier for

automated tools to locate because they have a simpler structure and less freedom for variation

than descriptions. This makes them easier to differentiate from the surrounding text and

match against the names in a controlled vocabulary, thus identifying them as referring to the

corresponding concept. Names are also shorter than descriptions and thus have fewer places

where the reference could potentially begin or end, which translates to fewer opportunities for

error. We recommend referring to concepts primarily by name; when a description is needed,

we suggest providing both.

Tip 5: Use one term per concept

Synonyms can help authors clarify their intended meaning when a concept is first introduced,

as in “The mouse Foxq1 gene, also known as Hfh1 . . .” [38] or “Primary hyperaldosteronism

(Conn’s syndrome) is . . .” [39]. However, using multiple terms interchangeably without clearly

indicating that they should be considered equivalent is confusing at best and at worst may

cause the reader—or text-mining system—to consider them to refer to different concepts. For

automated algorithms, even minor variations such as hyphenation (“gastroenteritis” vs “gas-

tro-enteritis” [40]) or possessives (“Schiff bases” vs “Schiff’s bases” [41]) require additional

handling, increasing the risk of error. We recommend authors choose a term for each concept

and use it consistently—varying from the exact text chosen only when required, such as for

capitalization or plurals.

Tip 6: Prefer the complete and precise term

Some biomedical terms have multiple meanings and are therefore ambiguous, despite being

commonly used in the literature. The term “yeast” often refers specifically to the model organ-

ism Saccharomyces cerevisiae, but there are over 1,500 known species of yeast—one of which

(Candida auris) is an emerging global health threat [42]. Similarly, “mouse” frequently refers

to M. musculus, but “mouse” could refer to any species in the genus or to the genus itself. Sub-

types also matter: despite some shared characteristics, “type 1 diabetes” and “type 2 diabetes”

have many clinically relevant differences. Other ambiguous terms involve a close relationship

between concepts. For example, “Epstein-Barr” probably refers to either to “Epstein-Barr

virus” or “Epstein-Barr infection” and “Multiple Endocrine Neoplasia Type 1 (MEN1)” refers

to “MEN1 syndrome” or “MEN1 gene.” We recommend preferring the precise and complete

scientific term wherever possible. If the full term is too cumbersome, we suggest clarifying a

more convenient term at first use, as in “The laboratory rat (Rattus norvegicus) is . . .” [43].

However, detailed classifications that are irrelevant or uncertain should be withheld, as in

“Danio sp. could therefore play a significant role in controlling mosquito breeding . . .” [44].

Tip 7: Coordinate compound terms cautiously

Compound terms such as “pineal tumour” and “retinal tumour” are often combined or coor-

dinated to form a single phrase, as in “pineal and retinal tumours” [45]. Although simple coor-

dinated phrases often improve readability, the number of possible interpretations for complex

coordinated phrases quickly make them difficult to interpret. For example, a human reader

might be able to determine that the phrase “unstimulated and MTb- or LPS-stimulated THP-1

cells” [46] refers to “unstimulated THP-1 cells,” “MTb-stimulated THP-1 cells,” and “LPS-

stimulated THP-1 cells.” However, an automated tool must consider a vastly greater number

of possibilities—such as “unstimulated LPS-stimulated THP-1 cells” and “MTb-1 cells”—and

discard them as nonsensical. The risk that an automated tool will incorrectly prefer the wrong

interpretation therefore depends strongly on the complexity of the coordinated phrase [47,48].
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Simplifying the phrase—for example, to “unstimulated, MTb-stimulated, and LPS-stimulated

THP-1 cells”—greatly reduces the complexity and thus the opportunities for error. We recom-

mend that authors avoid creating coordinated compound terms with multiple potential

interpretations.

Tip 8: Spacing matters

Automated text-mining algorithms often initially identify meaningful units of text (such as

sentences and words) and then proceed to interpret each unit. This approach is efficient and

generally effective but tends to encounter problems if boundary markers such as spaces or

periods are misplaced or missing. For example, the space missing from “ipratropiumbromide”

[49] will make it more difficult to automatically recognize that it refers to the drug “ipratro-

pium bromide.” Similarly, the space missing in “BRAFV600E” [50] will increase the difficulty

of identifying the gene "BRAF" and the mutation "V600E." Extraneous spaces (“malignant lym

phoma,” [51]) cause similar issues. We recommend identifying spacing issues with careful

proofreading and spell-checking.

Tip 9: Verify parentheses and brackets are correctly paired

Missing parentheses are also a concern, as in “ultrafiltration during cardiopulmonary bypass

ICPB) has mandated . . .” [52]. Because parenthetical text is typically used to provide readers

with information outside of the main narrative [53], correctly interpreting text with mismatch-

ing parentheses is difficult. Moreover, it is not straightforward for automated systems to deter-

mine whether a parenthesis should be added (and if so, which location) or removed (and if so,

which one). We recommend verifying that all parentheses are correctly paired and no paren-

theses are placed extraneously.

Tip 10: Recheck spelling with a different method

Biomedical terminology can be difficult to spell correctly, and it is not hard to find misspell-

ings in the published literature. For example, not only does PubMed contain many examples

of “hemorrhage” misspelled as “hemmorhage,” it also contains the plural (“hemmorhages”)

and at least two related forms (“autohemmorhage” and “microhemmorhage”). Although auto-

mated tools can help with misspellings, the need to balance correcting errors against the possi-

bility of introducing new ones makes automatic spelling correction more difficult than

suggesting potential corrections to the user. On the other hand, recent text-mining tools

should be able to handle true spelling variations (e.g., “leukemia” versus “leukaemia”).

Although careful proofreading is always valuable, proofreading manually may be subject to

diminishing returns. We recommend rechecking for misspellings using a method not used

previously. For example, authors could request assistance from a colleague not previously

involved or use a different spell-checking tool. If nothing else, we suggest carefully rechecking

each word in the title and abstract for any remaining spelling errors.

Automated Tool: PubReCheck

To help authors automatically identify many types of issues prior to publication, we developed

a web-based tool, PubReCheck (http://www.ncbi.nlm.nih.gov/research/pubrecheck). PubRe-

Check provides two primary functions, as shown in the screenshot of its results on a synthetic

abstract in Fig 2. First, PubReCheck identifies six types of biomedical concepts: genes, diseases,

chemicals, genetic variants, species, and cell lines. These results help authors visualize the

information that automated tools derive from their text, allowing the text to be rephrased if
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required. PubReCheck also directly identifies six types of potential errors: misspellings, word

spacing errors, novel words, undefined abbreviations, entities that cannot be uniquely identi-

fied, and unmatched parentheses. Like many automated tools, PubReCheck identifies mis-

spellings (Tip 10) but is adapted to handle biomedical vocabulary that is rare in the general

domain. Similarly, PubReCheck identifies potential word spacing errors (Tip 8)—phrases that

need a space added or removed—and words that are uncommon in the biomedical literature,

even if they may not be marked as a misspelling. PubReCheck also identifies undefined abbre-

viations (Tip 3) and unmatched parentheses and brackets (Tip 9). Finally, PubReCheck locates

biomedical concepts that cannot be uniquely identified, which addresses several issues that

may result in an ambiguous concept name (Tips 1, 2, and 6, primarily).

Automatically identifying and correcting potential errors is itself subject to errors. Error-

checking the existing biomedical literature directly is problematic because it is difficult to

recover from the additional errors that may be introduced. PubReCheck instead provides feed-

back directly to authors, who have both a strong interest in ensuring no errors remain and the

Fig 2. Screenshot of the PubReCheck system using an artificial abstract. PubReCheck identifies six types of biomedical concepts: genes, diseases, chemicals,

genetic variants, species, and cell lines. PubReCheck also identifies six types of potential issues: misspellings, word spacing errors, undefined abbreviations, entities

that cannot be uniquely identified, novel words, and unmatched parentheses.

https://doi.org/10.1371/journal.pbio.3000716.g002
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ability to simply ignore a few phrases incorrectly identified as containing an error. PubRe-

Check therefore intentionally prioritizes identifying more potential errors. Moreover, because

PubReCheck also allows authors to correct issues prior to publication, the maximum benefit is

provided to both authors and readers.

Conclusion

The continued rapid expansion of the biomedical literature necessitates the use of automated

methods to address the information overload. Moreover, the increase in quantitative research

in biology motivates moving beyond retrieving articles to extracting and converting their con-

tent to structured formats that enable computational processing. Although the accuracy of

text-mining methods has improved dramatically in recent years—and will likely continue to

improve—several issues remain difficult to address automatically.

Complementary to calls and initiatives that ask authors to follow standards and use stan-

dardized terminology, we have proposed a set of straightforward writing tips, summarized in

Box 1, to help authors provide the information necessary to help automated text-mining algo-

rithms to process their articles correctly. These tips—and especially our online tool, PubRe-

Check—may also be useful for editors, reviewers, publishers, and proofreaders. Although

additional suggestions (and exemptions) could be identified, the ones presented have been

chosen as likely to provide significant benefit for relatively modest effort. Articles that follow

these tips will typically be processed more accurately, allowing their content to be found more

readily and used more widely, thereby increasing its impact. Following these guidelines at a

large scale will improve the ability of individual researchers to find the articles that meet their

information needs. In short, following these tips will help us help you, and millions.

Box 1. Summary of our recommendations to help articles be
processed more accurately

• Clearly mention the relevant species when discussing genes or proteins

• Supply context critical for comprehension prominently and in proximity

• Define abbreviations and acronyms the first time they are used

• Refer to concepts primarily by name, not description

• Choose a term for each concept and use it consistently

• Prefer the complete and precise scientific term

• Avoid creating complex coordinated compound terms

• Recheck for word spacing errors

• Verify parentheses and brackets are correctly paired

• Recheck for misspellings using a different method
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